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After 20 years since their birth, equation-oriented and object-oriented modelling techniques and tools are
now mature, as far as solving simulation problems is concerned. Conversely, there is still much to be done in
order to provide more direct support for the design of advanced, modelbased control systems, starting from
object-oriented plant models. Following a brief review of the current state of the art in this field, the paper
presents some proposals for future developments: open model exchange formats, automatic model-order re-
duction techniques, automatic derivation of simplified transfer functions, automatic derivation of LFT mod-
els, automatic generation of inverse models for robotic systems, and support for nonlinear model predictive control.

I ntroduction

Control system engineering requires to master the
dynamics of plants which are in general complex,
interacting, multi-physics and multi-disciplinary. This
explains why object-oriented modelling (OOM) and
a-causal, equationbased, object-oriented languages
(EOOL) always had a very strong connection with
control system design. It is by no means accidental
that much pioneering work in the OOM field was
carried out within systems and control departments
and research groups: consider, for example, the
Omola language and the associated OmSim simula-
tion environment, developed at the Department of
Automatic Control of Lund Technical University [29,
30, 4], or the MOSES environment developed at the
Dipartimento di Elettronica of Politecnico di Milano
[26, 9]. During the 90, OOM was considered a very
promising tool for Computer Aided Control System
Design (CACSD), and there was a lot of activity in
this field, which eventually culminated in the devel-
opment of the Modelica Language [32].

At the beginning of that decade, papers appeared on
the subject in the IEEE’s Control Systems Magazine
[31, 10], which discussed the potential of OOM for
control system design. Reading those papers in retro-
spect shows that some of the promises where actually
met or even exceeded: OOM is now a mature field,
both from a theoretical side and from the point of
view of available simulation tools. On the other hand,
much work still has to be done on two fronts. The
first one, which has a more “political” nature, is
spreading the OOM culture among in the control
engineering community, which is still largely domi-
nated by block-oriented modelling, and by the
(mis)use of MatLab/Simulink for physical systems

modelling; this challenge is of paramount importance,
but it out of the scope of this paper. The second one,
instead, is to develop tools which allow to use EOOL
models and tools not only for simulation, but also for
the design of advanced control systems. The avail-
ability of such tools is crucial in order to narrow the
gap between the large body of highly sophisticated
control theory developed during the last 20 years, and
the application of this theory to real-life cases, be-
yond textbook-sized examples. This is the topic of the
present paper.

Given the background and the past experience of the
authors, the discussion might be biased towards the
Modelica language and related tools. However,
strictly object-oriented features such as inheritance,
encapsulation and hierarchical composition do not
play any significant role in the analysis and proposals
made within this paper, which essentially focuses on
transformations of flattened models. On the contrary,
the discussion is relevant for any equationbased mod-
elling language, provided that it is a-causal and it
allows symbolic manipulation of the equations by the
compiler.

The paper is structured as follows: Section 1 gives a
high-level view of the modelling activities required
for control system design, while the following Sec-
tion 2 discusses how currently available tools can
help the control engineer in his/her task, with particu-
lar reference to Modelica tools. Sections 3 and 4,
which are the core of the paper, propose several re-
search and development directions to substantially
increase the level of support to the control engineer,
willing to apply advanced control theory to real-life
problems. Section 5 concludes the paper with final
remarks.
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1 Therole of mathematical modelsin
control system design

The design of control systems always requires some
knowledge about the dynamic behaviour of the plant
under control. When the plant design is mature and
well-known, and the control system design is based
on Proportional-Integral-Derivative (PID) controllers,
the latter is often based on past experience and possi-
bly on some empirical measurements. In this case,
which covers the vast majority of installed industrial
controllers, no (explicit) dynamical modelling is needed.

On the other hand, in an increasing number of cases,
the performance of the control system is becoming a
key competitive factor for the success of innovative,
high-tech systems. To name a few examples, consider
high-performance mechatronic systems (such as ro-
bots), vehicles enhanced by active integrated stability,
suspension, and braking control, aerospace system,
advanced energy conversion systems. All these cases
possess at least one of the following features, which
call for some kind of mathematical modelling for the
design of the control system:

e closed-loop performance critically depends on
the dynamic behaviour, which is not well-known
in advance;

e the system is complex, made of many closely in-
teracting subsystems, so that the behaviour of the
whole system is more than just the sum of its parts;

e advanced control systems are required to obtain
competitive performance, and these in turn depend
on explicit mathematical models for their design;

e the system is very expensive and/or safety criti-
cal, requiring extensive validation of good con-
trol performance by simulation.

In most of these cases, two different classes of
mathematical models are derived: compact models
for control design and detailed models for system
simulation.

1.1  Compact modelsfor control design

Models belonging to this class are directly used for
controller design, and are usually formulated in state-
space form:

x(1) = f(x@),u(?), p,1)
() = g(x(2),u(t), p,1)
where x is the vector of state variables, u is the vec-

tor of system inputs (control variables and distur-
bances), y is the vector of system outputs, p is the

(1

vector of parameters, and ¢ is the continuous time. A
special case is that of linear, time-invariant models
(LTT), which can be described as:

(1) = Ax(t) + Bu(t)

o 2
y(t) = Cx(t) + Du(t)

or, equivalently, as a transfer function:
G(s)=C(sI-A)"'B+D 3)

In many cases, the dynamics of systems in the form
(1) is approximated by (2) via linearization around
some equilibrium point. There is also a vast body of
advanced control techniques which are based on
discrete-time models:

x(k +1) = f(x(k),u(k), p, k)
y(k) = g(x(k),u(k), p, k)

where the integer time step k& usually corresponds to
the sampling time 7, of a digital control system.

K

4)

Many techniques are available to transform (1) into (4).

These models must capture the fundamental dynam-
ics which is relevant for control system performance,
while remaining as simple as possible: most advanced
control design techniques start to become intractable
for systems of order greater than about ten. If the
models are simple enough, it is also sometimes possi-
ble to express the dependence of key dynamic fea-
tures (such as, e.g., the natural frequency and damp-
ing coefficient of an oscillating dynamics) from plant
design data. This can be very important to assess the
impact of physical system design decisions on con-
troller performance. For example, if the natural fre-
quency of the first mode of oscillation limits the con-
troller bandwidth, and it is found that this frequency
mainly depends on the stiffness of a certain mechani-
cal component, then it might be reasonable to change
the mechanical design of that component in order to
improve the overall performance.

In order to derive such simple models, it is usually
necessary to introduce many, sometimes drastic, sim-
plifying assumptions: all those phenomena that only
marginally affect the equilibrium values and/or the
control-relevant dynamics of the system are ne-
glected. This activity requires highly skilled and ex-
perienced modellers, with a good knowledge of con-
trol design techniques, as well as of domain-specific
strategies for model simplification.

12 Detailed modelsfor system simulation

At the other end of the modelling spectrum, detailed
simulation models can be found. Although it is al-
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ways necessary to make reasonable modelling as-
sumptions (a model is always a focused and limited
description of the physical world), simulation models
can include a lot more detail and second-order effects,
since modern CPUs and simulation environments can
easily handle complex systems with (tens of) thou-
sands of variables. It is well-known that OOM meth-
odologies and EOOLSs provide very good support for
the development of such models, thanks to equation-
based modelling, a-causal physical ports, aggregation
and inheritance. If the OOM model does not contain
discrete variables and events, then it is basically
equivalent to the set of DAEs:

F(x(2), x(2),u(?), (1), p,1) =0 &)

Many EOOLSs and tools also allow to describe hybrid
systems, with discrete variables, conditional equa-
tions or expressions, and events. For example, see [7,
8] and references therein for hybrid system descrip-
tions based on hybrid automata, or the Modelica
language specification [41], in particular Appendix C.
Although hybrid system control is an interesting and
emerging field, for the sake of conciseness this paper
will focus on purely continuous-time physical mod-
els, with application to the design of continuous-time
or sampled-time control systems.

These larger, more detailed models play a double
role, with respect to those described in the previous
sub-section. On one hand they allow to check how
good (or crude) the compact models is, compared to a
more detailed description, thus helping to develop
good compact models. On the other hand, they allow
to check the closed-loop performance of the con-
trolled system, once a controller design is available. It
is in fact well-known that validating the closed-loop
performance using the same simplified model that
was used for control system design is not a sound
practice; conversely, validation performed with a
more detailed model is usually deemed a good indica-
tor of the control system performance, whenever ex-
perimental validation is not possible for some reason.

2 Overview of current CACSD practice
with EOOLs
As of today, the practising control engineer already

gets much support from EOOL-based tools for his/her
control system design activities.

21 Support to control system synthesis

A typical starting point for the design of the control
system is the analysis of the linearized dynamics of

the plant, around one (or more) steady-state operating
conditions. If the EOOL tool only supports simula-
tion, then one can run open-loop simulations of the
plant model, subject to step or to, e.g., pseudo-
random binary sequence inputs, and then reconstruct
the dynamics by system identification procedures.

A more direct approach, supported by many tools, is
to directly compute the 4,B,C,D matrices of the
linearized system around specified equilibrium
points, using symbolic and/or numerical techniques.
The result is usually a high-order linear system,
which can then be reduced to a low-order system by
standard techniques for linear model order reduction,
such as, e.g., balanced truncation.

A non-trivial issue with both approaches is the com-
putation of the equilibrium point (what is sometimes
called DC analysis in the field of electrical circuit
simulation). In a typical setting, the desired steady-
state values of the outputs y are known, and the tool
must solve the steady-state initialization problem for
the system (5):

F(x,0,u,y,p,0)=0 (6)

in order to find out the corresponding equilibrium
values of the inputs # and of the states x . This prob-
lem can be numerically challenging, because it often
requires solving large systems of coupled nonlinear
equations by iterative methods, which might fail if
the iteration variables are not properly initialized.
Currently available OOM tools (and, in particular,
Modelica tools) are still far from providing general
robust solutions to this problem. A sub-optimal ap-
proach to find equilibrium points is to initialize sys-
tem (5) by giving tentative initial values to the state
variables (which makes the initialization problem
easier to solve) and then to simulate it until it reaches
a steady state. If the system is asymptotically stable
and the inputs # are known, this is relatively straight-
forward; otherwise, it is necessary to add suitable
feedback controllers to drive the outputs to the de-
sired values y and/or to stabilize the system. In both
cases, the simulation of this initialization transient
might fail for numerical reasons before reaching the
steady state, due to a bad choice of the initial states.

2.2  Closed-loop perfor mance assessment by
simulation

Regardless of the actual design methodology, once

the controller has been set up, an OOM tool can be

used to run closed-loop simulations, including both

the plant and the controller model. Many OOM tools
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provide model export facilities, which allow to con-
nect an OO plant model with only causal external
connectors (actuator inputs and sensor outputs) to a
causal controller model in a causal simulation envi-
ronment. From a mathematical point of view, this
corresponds to reformulating (5) in state space form
(1), by means of analytical and/or numerical trans-
formations.

2.3  Development of simplified models

The object-oriented approach, and in particular re-
placeable components, allows to define and to man-
age families of models of the same plant with differ-
ent levels of complexity, by providing more or less
detailed implementations of the same abstract inter-
faces. For example, consider a heat exchanger model:
the abstract interface has four fluid connectors, two
for the hot fluid inlet and outlet, and two for the cold
fluid inlet and outlet. The corresponding implementa-
tion might range from a very simple static model
based on log-mean temperatures, with a few algebraic
equations, up to a very detailed finite volume model
using nonlinear fluid properties and empirical correla-
tions for heat transfer, and with dozens of state vari-
ables and a few hundred algebraic equations.

This feature of OOM allows developing simulation
models with different degrees of detail (and CPU
load) throughout the entire life of an engineering
project, from preliminary design down to commis-
sioning and personnel training, within a coherent
framework. However, this activity is based on manual
work by the modeller, who needs to develop the dif-
ferent implementations explicitly. Moreover, it is
often not easy to obtain compact models such as (1),
because this requires applying simplifications that
may not fit well the abstract component boundaries.

24  Generation of real-time smulation code

An important step in the development of embedded
control systems is Hardware-In-the-Loop simulation
(HIL), where the real control hardware is tested by
connecting it to a realtime simulator, instead of the
real plant. Many currently available EOOL-based
tools support automatic generation of efficient real
time code starting from fairly large simulation models
in the form (5). A common strategy for this purpose is
to apply inline integration [12, 11] to (5), i.e. to sub-
stitute the derivatives with their approximation for-
mulae (e.g. Euler’s formula), and then solve the system
using all available numerical and symbolic techniques.

In order to provide real-time code which is fast

enough, it is usually important to reduce the model
complexity with respect to off-line simulation models
- this can be done by following the approach sketched
in Section 2.3.

25 Optimization

Some EOOL and tools support some kind of optimi-
zation, which might be useful for control system
design. For example, the gPROMS language [6] has
allowed declaring mixed-integer nonlinear optimiza-
tion problems for a long time. More recently, exten-
sions to the Modelica language were proposed to
formulate optimization problems [2].

26  Further perspectives

It is the authors’ view that EOOL-based tools should
support advanced control system design problems in
a much more direct way, by making extensive use of
control-oriented symbolic manipulation techniques.
Ideally, it would be good if the control engineer could
develop a detailed simulation model by using object
oriented tools and re-usable model libraries, then
automatically obtain simplified, compact models
which are already formulated as required by the spe-
cific control technique. The availability of such tools
might promote the application of advanced, model-
based techniques that are currently limited by the
model development process.

Being aware that this is a very long-term goal, which
might even require some kind of artificial intelli-
gence, some first steps in this direction are discussed
in the following sections, with particular reference to
the Modelica language and Modelica compliant tools.

3 Basic enabling technologies

The advanced, control-oriented features of future
EOOL tools need some basic enabling technologies
and methodologies to build upon. These are briefly
discussed in this section.

3.1 Open standardsfor model and data
exchange

Advanced applications of OOM to control system
design will most likely require using different special-
ized tools in a coordinated fashion, rather than relying
on one-fits-all comprehensive software tools. In fact,
during the last decades, the number and the quality of
simulation, design and analysis tools has increased
enormously: there is plenty of open and closed source
software for the simulation of physical systems, con-
trol synthesis, data analysis, test, validation, person-
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nel training via a graphical user interface, etc. Some
of these tools are developed for specific purposes,
while others are more general in scope (e.g., symbolic
manipulation tools, differential equation solvers, data
analysis packages). Unfortunately, all this software
development activity did not follow any standardisa-
tion process, leading to a great diversity in the repre-
sentation of the information. The definition of stan-
dard interfaces will be useful for the information
exchange between different applications; as a conse-
quence, by providing a representation for all the
stages of the model manipulation (starting from the
translation, going to the flattening, to the model order
reduction and so forth) it will be possible to make all
the applications interact at different levels, thus com-
bining positive effects from different applications and
obtaining better results.

Exchange formats for model equations and for simu-
lation data should probably be based on the XML
language, for several reasons:

e the tree structure of XML documents easily al-
lows to represent complex data structures, in-
cluding symbolic representations of equations;

e XML documents can be read with standard text-
editors and browsers, thus avoiding all the prob-
lem usually raised by obscure, ad-hoc binary
formats;

o there exists a large base of software (open source
and commercial) for the handling of XML files;

e by re-using this existing software, it is quite
straightforward to translate an XML document
representing a mathematical model into any other
equation-based language, and vice-versa;

e binary XML formats can be used to reduce the
verbosity of XML documents and the cost of
parsing them;

e there exist some languages (e.g. DTD and XSD)
to formally specify the structure of the informa-
tion the XML file must contain.

Such standard interfaces for flattened Modelica mod-
els and their corresponding simulation data are cur-
rently being investigated at Politecnico di Milano
using the OpenModelica compiler [16, 1] as a host
EOOL environment, and symbolic manipulation tools
such as Mathematica, Maple or Maxima as target
environments. If the model is purely continuous-time,
i. e., it is equivalent to the DAE (5), then MathML
[42] on one side, and ModelicaXML [35] on the other
side might constitute good starting points. If hybrid

models are considered, one may consider all the lan-
guages developed for the description of hybrid auto-
mata in recent years [8], even though the class of
hybrid systems, which can be described in Modelica
with when statements, is larger than just hybrid automata.

3.2 Model Order Reduction

Another key enabling technology is represented by
mixed numerical-symbolic Model Order Reduction
(MOR) techniques. These have already been success-
fully applied to the analysis of electrical circuit mod-
els, which are based on DAE models such as (5), see
[40, 17], and are currently available in commercial
tools such as Analog Insydes [13]. The MOR strate-
gies are based on the clever application of three fun-
damental steps:

e specify an allowed error bound, e.g. in terms of
percentage error of certain steady-state output
values corresponding to given constant inputs, or
in terms of maximum deviation of some outputs
from a reference trajectory obtained with given
input signals, or in terms of maximum error of
small-signal frequency responses around a cer-
tain operating point and within a given frequency
interval;

e derive a ranking of all terms in all equations, ex-
pressing how much each term has a significant
effect on the required modelling accuracy;

e remove all terms in ascending order, until the
specified error bound is reached.

Other MOR techniques exist to reduce large linear
systems, based on concepts such as modal analysis
and projection methods; see [38] for a comprehensive
overview.

The application of such MOR tools and techniques,
possibly with extended functionality and algorithms,
looks very promising not only for the simplification
of electrical circuit models, but also for the order
reduction of generic, nonlinear DAE models, ob-
tained from the flattening of generic EOOL models.
This kind of techniques should allow to automatically
obtain approximated compact models such as (1),
starting from much more detailed simulation models,
by formulating specific approximation bounds in
control-relevant terms (e.g., percentage errors of
steady-state output values, norm-bounded additive or
multiplicative errors of weighted transfer functions,
or [_-norm errors of output transients in response to
specified input signals). Given the ever-increasing
computation power that can be expected by Moore’s
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law, the future of these techniques for CACSD appli-
cations definitely appears bright.

3.3 Reliaeble steady-stateinitialization and
static model inversion

A reliable support to the control engineer’s activity
requires to improve the techniques to solve the
steady-state equations (6), which are usually the start-
ing point for any kind of analysis, including MOR. As
pointed out earlier, solving (6) requires iterative
methods which might fail if not properly initialized.
Troubleshooting can be very frustrating and time-
consuming, and calls for experts of both simulation
methods and domain-specific models. This is not
acceptable in the envisioned framework, which is
based on automatic manipulation by EOOL tools.

One option, which is currently being investigated at
Politecnico, is to introduce extensions to the Mode-
lica language to support homotopy methods, in a way
similar to the approach followed by the SPICE circuit
simulation program. The basic idea is that each model
has two versions: the “easy” one, for which it is eas-
ier to find a steady-state solution, and the “true” ver-
sion, which is the model to be actually used for simu-
lation. The two models share the same variables, but
use different equations. The system model obtained
by the aggregation of the “easy” models is repre-
sented by

F (x,x,y,u,p,t)=0 7
while the aggregation of the “true” models leads to
F(x,x,y,u, p,t)=0 ®)

The idea is now to first solve the initialization prob-
lem for (7), which should not give rise to significant
numerical problems. The solution to this simplified
problem constitutes the first guess for a new problem:

(-a)F,(x,0,u,y, p,0) + aF(x,0,u,y,p,0) (9)

which will be solved by varying & from 0 to 1 in
small steps, eventually finding the steady-state solu-
tion of system (8). In general, this approach should
help to reduce (and hopefully eliminate) the need to
manually set initial guess values for iteration vari-
ables of initialization problems.

4  New functionalitiesfor control system
design
4.1  Simplified symbolic transfer functions

In many interesting cases, the performance of the
control system is limited by the dynamic behaviour of

the controlled plant. For example, poorly damped
oscillations can limit the bandwidth of motion control
systems, as well as non-minimum phase behaviour.
The control engineer can gain a lot of useful insight
from approximated transfer functions, where the
dependence of the critical dynamic features from a
few physical parameters is clearly visible. For in-
stance, the natural frequency of a pair of complex
poles in a mechanical system might depend mainly on
the stiffness and on the mass of a certain physical
component, or, the time constant of a right-half-plan
zero in a fluid system might depend on the fluid ve-
locity in a certain point.

This is a first case where automatic MOR techniques
could prove extremely useful. Ideally, the user should
specify the steady-state operating point, the relevant
inputs and outputs, and some frequency-weighted
error bounds, and get low-order approximated trans-
fer functions of the linearized system, with approxi-
mated but explicit dependence of the transfer function
features (gains, poles and zeros) from the physical
model parameters. A suitable combination of EOOL
tools (equipped with model import/export interfaces)
with existing MOR tools like Analog Insydes [13]
could provide very interesting results in this direction
without too much effort.

4.2  Automatic derivation of LFT models

Once a model has been reduced to a low-order state-
space form by the combined application of symbolic
MOR techniques and clever model simplifications as
explained in Section 3.3, it might be useful to auto-
matically bring them in the form required for ad-
vanced control system design, using symbolic ma-
nipulation tools. Modern control theory provides
methods and tools in order to deal with design prob-
lems in which stability and performance have to be
guaranteed also in the presence of model uncertainty,
both for regulation around a specified operating point
and for gain scheduled control system design.

Most of the existing control design literature assumes
that the plant model is given in the form of a Linear
Fractional Transformation (LFT) (see, e.g., [46, 27]),
a modelling paradigm which is currently an active
research topic in the control engineering and system
identification communities. In the robust control
framework LFT models consist of a feedback inter-
connection between a nominal LTI 39 plant and a
(usually norm-bounded) operator which represents
model uncertainties, e. g., poorly known or time-
varying parameters, nonlinearities, etc. A generic
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such LFT interconnection is depicted in Figure 1,
where the nominal plant is denoted with P and the
uncertainty block is denoted with A. Note that this
representation is extremely general, and by no means
limited to uncertain LTI systems; in fact, it is possible
to describe any nonlinear DAE system by putting all
the nonlinear functions in the A block and by provid-
ing an LTI model with direct feedthrough terms to
describe the algebraic equations.

LFT models can be used for the design of robust and
gain scheduling controllers, but they can also serve as
a basis for structured model identification techniques,
where the uncertain parameters that appear in the
feedback blocks are estimated based on input/output
data sequences.

The process of extracting uncertain parameters from
the design model of the system to be controlled is a
highly complex one. Symbolic techniques play a very
important role in this process: the main use for such
techniques is to find, via suitable pre-processing
steps, equivalent representations of rationally de-
pendent parametric matrices, which automatically
lead to lower-order LFT representations. Tools al-
ready exist to perform this task [27].

The LFT modelling problem in its simplest form is
associated with the problem of designing a controller
for operation near a nominal operating point for the
system. The problem is then formulated on a local
linearised representation of the plant to be controlled
and is familiarly termed “pulling out the As”, i.e., it
consists of manually or symbolically manipulating
the linearised equations in order to separate the nomi-
nal part of the plant from the uncertain one, arranging
them in a suitable feedback interconnection. This
reformulation of the plant model lies at the vary basis
of modern robust control theory and is currently sup-
ported by a number of different symbolic manipula-
tion tools. A recent overview of the state-of-the-art in
this research area can be found in [18]. As an exam-
ple, consider a timeinvariant, nonlinear state-space
system in the form

x(2) = f (x(1),u(®), p)
y(0) = g(x(0),u(®), p)

where p denotes a vector of uncertain parameters,

(10)

and assume that the equilibrium condition x , u, y,
which solves the steady-state equations

0=7(x,u,p)

11
y=g(x,u,p) (b

i - P v
—_—

Figure 1. Block diagram of the typical LFT interconnection
adopted in the robust control framework.

is available. Defining now the deviation variables

Sx(t)=x(t)- % (12)
Su(t)=u(t)—u (13)
oyt =yt) -y (14)

it is possible to approximate the dynamics of (10)
with a the following linear, parameter-dependent
system

ox(t)= A(p)dx + B(p) du (15)
0y(t)=C(p)ox+ D(p)du
where the four matrices A4,B,C,D are the Jacobians
of the two functions f* and g:

Ap) =%, B(p)=2
C(p)=%, D(p)=%

Under suitable assumptions (such as that the state
space matrices are polynomial or rational functions of
the elements of p, see, e.g., [46]) it is possible to
transform the system description (15) into an LFT
representation (see, again, Figure 1). As mentioned
previously, converting (15) into an LFT with a A
block of minimum dimension is a non-trivial sym-
bolic manipulation problem.

An even more challenging formulation of the LFT
modelling problem is the one of simultaneously rep-
resenting in LFT form all the linearisations of interest
for control purposes of the given nonlinear plant.
Indeed, in many control engineering applications a
single control system must be designed to guarantee
the satisfactory closed-loop operation of a given plant
in many different operating conditions in the presence
of parametric and possibly non parametric uncer-
tainty. The gain scheduling approach to the problem,
which has been part of the engineering practice for
decades, can be roughly summarised as follows: find
one or more scheduling variables ¢ which can com-
pletely parametrise the operating space of interest
(e.g., the flight envelope in the case of aircraft con-
trol) for the system to be controlled; define a para-
metric family of linearised models for the plant asso-
ciated with the set of operating points of interest;
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finally, design a parametric controller which can both
ensure the desired control objectives in each operat-
ing point and an acceptable behaviour during (slow)
transients between one operating condition and the
other. Many design techniques are now available for
this problem (see, e.g., [5, 22, 37]), which can be
reliably solved, provided that a suitable model in
parameter-dependent form has been derived for the
system to be controlled. The goal here would be to
arrive at a representation of the dynamics of the
nonlinear system in the form depicted in Figure 2,
which is usually denoted as an LPV-LFT system,
where the LPV acronym stands for Linear Parameter-
Varying. The model structure now includes two feed-
back interconnections: the block A(p) takes into
account the presence of the uncertain parameter vec-
tor p, while the block ©(«ar) models the effect of the
varying operating point, parametrised by the vector of
time-varying parameters ¢ .

The state-of-the-art of modelling for gain scheduling
can be briefly summarised by defining two classes of
modelling approaches: analytical methods based on
the availability of (relatively) reliable nonlinear equa-
tions for the dynamics of the plant, from which suit-
able control-oriented representations can be derived
(see, e.g., [28] and the references therein); experimen-
tal methods based entirely on identification, i.e.,
aiming at deriving LPV models for the plant directly
from input/output data (see, among many others, [21,
45, 23]). The methods belonging to the first class aim
at developing LPV models for the plant to be con-
trolled by resorting to, broadly speaking, suitable
extensions of the familiar notion of linearisation,
developed in order to take into account off-
equilibrium operation of the system. As far as ex-
perimental methods are concerned, most LPV identi-
fication techniques are based on the assumption that
the identification procedure can rely on one global
identification experiment in which both the control
input and the scheduling variables are (persistently)
excited in a simultaneous way. This assumption may
not be a reasonable one in many applications, in
which it would be desirable to try and derive a pa-
rameter-dependent model on the basis of /ocal ex-
periments only, i.e., experiments in which the sched-
uling variable is held constant and only the control
input is excited. Such a viewpoint has been consid-
ered in [43, 34, 23], where numerical procedures for
the construction of parametric models for gain sched-
uling on the basis of local experiments and for the
interpolation of local controllers have been proposed.

To our best knowledge the only documented attempt
at deriving control-oriented LFT models automati-
cally from a nonlinear simulator is presented in [44],
where the focus was on the automatic generation of
LFT models for aerospace applications. Much re-
mains to be done. An EOOL-based CACSD tool
dealing with the generation of control-oriented LFT
models should allow to specify some error bounds for
the system approximation (with respect to steady-
state, transient, and frequency response), the choice
of input, output and scheduling variables, and the
choice of parameters to include in the LFT represen-
tation. Based on that, it should be able to automati-
cally compute the structure of the interconnections
defined in Figures 1 and 2 for the robust and gain-
scheduling control design problems, respectively, the
state-space matrices of the nominal part P of the
model (either as analytical expressions, if possible, or
at least as algorithms for their computation) and ana-
lytical or algorithmic representations of the feedback
blocks ©(«r) and A(p). Finally, it is apparent from
the short literature review presented above that cur-
rently only physical and black-box modelling meth-
ods are available, while no general purpose CACSD
tools capable of combining first principles models
and experimental data in a single control-oriented
model seem to exist. The convergence of the two
modelling approaches both in terms of methods and
tools would be a very desirable outcome of the re-
search in this field.

4.3  Automatic computation of inver se models
for robotic systems

The design of controllers for non-redundant robotic

manipulators with N degrees of freedom usually

starts from the equations of motion obtained from the

Euler-Lagrange equations [39]:

B(@)g+H(q,9)g+g(q)=7 (16)

v, =K(q) (17)
K

y, = 3 q (18)

where ¢ is the N-element vector of Lagrangian co-
ordinates, which usually correspond to the rotation
angles of the actuator motors, ¢ is the vector of the
corresponding generalized velocities, », describes
the position and orientation vector of the end effector,
v, contains the corresponding generalized velocities,
7 is the vector of generalized applied forces corre-
sponding to each degree of freedom (usually the
torques applied by rotating actuators), B(gq) is the
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inertia matrix, H(q,q) is the matrix corresponding to
the centripetal, Coriolis, and viscous friction forces,
while the vector g(g) accounts for the effects of the
gravitational field; all vectors have dimension N.

The classical approach to write (16) requires to com-
pute the so-called direct kinematics (DK), i.e. how
the values of ¢ and ¢ translate into the position and
motion of the robot’s end effector, then to compute
the Lagrange function, i.e. the difference between
kinetic and potential energy, and apply the Euler-
Lagrange equations. This can be done manually, or
using one of the specialized tools available for this
task. Equations (16)-(18) can then be used as a basis
for both controller design and system simulation.

Within an OOM approach, it is possible to save much
time by developing an object-oriented model using an
EOOL, e.g. using the Modelica MultiBody library
[33]. Due to the kinematic constraints imposed by the
joints, the original flattened model corresponds to an
index-3 DAE,

F(x,x,y,u)=0 (19)

which is mathematically equivalent to the Lagrange
model (16)-(18).

Currently available Modelica tools tackle the problem
by applying specialized algorithms, which exploit the
knowledge of the topology of the kinematic chain, as
well as standard techniques such as BLT partitioning,
tearing, dummy derivatives and symbolic solution of
equations [33]. From a conceptual point of view, a
change of state variables x allows to transform (19)
into an index-1 system

F(x,x, y,u)=0 (20)

where

e
X, q Yy

Eventually, efficient procedures are produced to solve
(20) for x and y given x and u, thus actually bring-
ing the system into state-space form:

x = f(x,u)

22
y=g(xu) @

This formulation can be used to solve simulation
problems, by linking it to any ODE/DAE solver.
However, there are several other interesting things
that could be done with (20), from a control engi-
neer’s perspective.

|

CT
_1",? q(}’—’ T q
L IK » FC 1—» R |4
1\*

Figure 3. Block diagram of computed torque control.

Robot trajectories are originally defined in terms of
end effector coordinates as functions of time (7). In
order to obtain the corresponding reference trajecto-
ries in Lagrangian coordinates for the low-level robot
joint controllers, (17)-(18) must be solved for ¢, ¢,
thus computing the so-called inverse kinematics (IK):

q"=K"'(y)) (23)
o (K,
q —[aqj » (24)

note that the Jacobian of K(q) is also needed to solve
(23), since analytical inverses cannot usually be ob-
tained. Furthermore, two interesting approaches to
model-based robot control are based on suitable ma-
nipulations of eq. (16): the pre-computed torque ap-
proach and the inverse dynamics approach [39].

The pre-computed torque approach is a feed-forward
compensation scheme, where the theoretical torque
required to follow the reference trajectory is directly
fed to the torque actuators (see Figure 3) in order to
obtain a good dynamic response to the set point
¥o(t). The CT block performs this task by solving
(16) for 7, given the reference trajectory and its de-
rivatives:

t=B(¢")§" +H(q",4")q" +g(q") (25)
A feedback controller (FC) is also included to deal

with uncertainties and disturbances.

Since the inertia matrix B is structurally non-
singular, it is always possible to solve (26) for v:

v=B"(q)(t - H(q,9)¢ - g(q)) (26)

Plugging v in the robot dynamics equation (16), one
obtains:

G=v 27)

The block diagram interpretation of these equations is
shown in Figure 4: thanks to the dynamic inversion
(D) block, the dynamic relationship between the
virtual input v and the Lagrangian positions and

L
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Figure 4. Block diagram of inverse dynamics control.

velocities ¢ and ¢ (represented by the dotted block)
is now described by a simple integrator and a double
integrator, respectively. It is then easy to tune a fixed-
parameter, linear feedback controller (FC) in order to
obtain the desired closed-loop dynamics.

Starting from the index-1 DAE robot model (20), it is
straightforward to derive the equations and then the
explicit algorithms to compute the DK, IK, CT, and
DI, by using the same techniques employed to bring
(20) into state-space form. The DK (17)-(18) is ob-
tained by solving (20) for ¥, (and possibly y,) given
q (and possibly ¢ ), while the IK is obtained by solv-
ing (20) for ¢ (and possibly ¢) given ¥, (and possi-
bly y,); the subset of required equations is found by
suitable analysis of the incidence matrix. The CT (25)
is obtained by solving (20) for 7 given ¢, ¢, and §.
Finally, the DI (26) is obtained by solving (20) aug-
mented with (26) 7 given v, g, and ¢. EOOL tools
should then be able to automatically generate the
code corresponding to the DK, IK, CT, and DI blocks
in two forms: as algorithms to compute the outputs
given the inputs (e.g., C code for direct inclusion in
the robot controller), as well as equationbased Mode-
lica blocks, which could be used for closedloop simu-
lation within a Modelica environment.

As a final remark, note that the method of inverse
dynamics is a special case of the much more general
theory of feedback linearization [20], whose goal is to
obtain a LTI dynamics made by pure integrators from
generic nonlinear systems, by applying suitable feed-
back actions as shown in Figure 4. It could also be
interesting to investigate the coupling between EOOL
tools and symbolic manipulation tools for the design
of such controllers.

4.4  Fast and compact modelsfor model
predictive control

The Model Predictive Control (MPC) approach [25,

36] is based on a few key ideas, that turn the control

problem into an optimization problem. The control

variable is a discretetime variable, that changes peri-

odically every T, seconds:

u(t)=u(k), kT <t<(k+1T (28)

At each time step k, an optimization problem is
solved, whose unknowns are the next values of the
control variable wu(k+i) over a finite horizon
1<i<n. The first sample u(k+1) is then applied to
the actuators at the next time step, the rest of the
values are discarded, and the process is repeated over and
over, thus implementing a receding horizon strategy.

There are different ways to formulate the MPC prob-
lem, depending on the specific technique used to
solve the problem. Generally speaking, the figure of
merit to be minimized is a quadratic function, which
suitably weights the future deviations of the con-
trolled variables from the set point and the intensity
of the control action, as well as any other problem-
specific performance index that has to be minimized,
e.g. the financial cost of running the process. The
constraints of the optimization problem are the dy-
namic relationship between the input and output vari-
ables, typically in the form (4), and possibly other
constraints, such as upper and lower bounds of the state,
control and output variables and of their rate of change.

The main advantage of MPC is its intrinsic ability to
deal with highly interacting multivariable systems
(many control inputs and controlled outputs), while
keeping into account operating constraints such as
actuator saturations or hard bounds on controlled
variables, and at the same time meeting some prob-
lem-specific optimality criterion. The main drawback
is the high computational load, since a (possibly non-
linear and non-convex) constrained optimization
problem must be solved at each sampling time; this
makes MPC suitable for systems with slow dynamics,
e. g. chemical plants, where there is plenty of time to
carry out the required computations in real time. This
limitation is likely to become less and less stringent
in the future, thanks to Moore’s law.

The second issue is the requirement that a suitable
plant model is available, as the control system per-
formance critically depends on the model quality.
Models for linear MPC can be obtained either by
linearization of analytical models, or by system iden-
tification from experimental and/or simulation data, e.
g. step responses; both cases are already supported by
current EOOL tools. Nonlinear MPC (NMPC) algo-
rithms are preferably based upon analytical models in
state-space form (1), which are derived from physical
firstprinciples models. The conversion to discrete-
time form (4) is often performed internally by the
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NMPC algorithm itself, by standard ODE integration
routines. This means that the interface between the
EOOL tool and the NMPC tool is similar to the one
used for simulation problems, i.e. the state-space
form (1), possibly augmented by the Jacobians of the
right-hand-sides of (1).

The main requirement for NMPC-oriented models is
that they must have the least possible number of state
and algebraic variables, in order to keep the complex-
ity of the optimization problem within acceptable
limits, and that they have good smoothness proper-
ties, in order to avoid convergence problems of the
iterative optimization algorithms. The development of
those models can be very time consuming, and re-
quire highly skilled manpower; it is apparent how
better tool support could be extremely useful in order
to reduce the development effort and cost.

The potential of OOM for MPC was first noted by
Maciejowski at the end of the ’90 [24]. There are
several reported case studies [14, 15, 3, 19], where
the model used in the NMPC algorithm was derived
from a Modelica model of the physical plant, using
the tool Dymola to produce the code corresponding to
the state-space form (1), i.e., the dsmodel.c code that
is usually linked to ODE/DAE solvers. In order to
derive suitably simplified models, the features of
Modelica discussed in Section 3.3 have been exten-
sively exploited. In general, this approach has proven
much more satisfactory than writing the C-code of the
model from scratch; however, it still requires a sub-
stantial investment of time and effort for each new
application.

The application of the automatic MOR techniques
described in section 4, possibly still combined with
some manual intervention in terms of replaceable
models, looks very promising in order to bring de-
tailed simulation models into a form which is suitable
for NMPC with a much more limited effort by the
developer.

Furthermore, [19] correctly points out that, although
the interface to NMPC algorithms is very similar to
the interface to ODE/DAE solvers, the former re-
quires some more flexibility. For example, advanced
NMPC schemes can provide on-line estimation of
uncertain parameters through the use of extended or
unscented Kalman filters. This means that some
model parameters are no longer constant throughout a
transient, so that the C-code obtained for simulation
purposes must be manually adapted. A better option
would be to implement a code export interface which

makes it possible to turn selected parameters appear-
ing in (5) (which are going to be estimated on-line)
into inputs, before transforming the system in state-
space form (1).

5 Conclusions

After a brief review of the different uses of models in
control system design, the current state of the art of
EOOL-based tools for CACSD has been reviewed:
apparently, currently available tools mainly focus on
simulation tasks. Several further directions for re-
search and development in EOOL tools where then
discussed, which go beyond the mere simulation
problem. Results in these directions could substan-
tially improve the level of support to the control en-
gineer willing to apply advanced, model-based con-
trol techniques to real-life problems, starting from
object-oriented models of the plant.
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