+++ Type-Based Structural Analysis for Modular Systems of Equations +++

Type-Based Structural Analysis for Modular Systems of Equations
Henrik Nilsson, University of Nottingham, UK, nhn@cs.nott.ac.uk

SNE Simulation Notes Europe SNE 19(1), 2009, 17-28, doi: 10.11128/sne.19.tn.09923

This paper investigates a novel approach to a type system for modular systems of equations; i.e., equation
systems constructed by composition of individual equation system fragments. The purpose of the type sys-
tem is to ensure, to the extent possible, that the composed system is solvable. The central idea is to attribute a
structural type to equation system fragments that reflects which variables occur in which equations. In many
instances, this allows over- and underdetermined system fragments to be identified separately, without first
having to assemble all fragments into a complete system of equations. The setting of the paper is equation-
based, non-causal modelling, specifically Functional Hybrid Modelling (FHM). However, the central ideas
are not tied to FHM, but should be applicable to equation-based modelling languages in general, like Mode-
lica, as well as to applications featuring modular systems of equations outside the field of modelling and simulation.

I ntroduction

An important question in the context of equation-
based modelling is whether or not the system of equa-
tions describing the modelled entity is solvable. In
general, this can only be answered by studying the com-
plete system of equations, and often not even then, except
by attempting to solve the equations through simulation.

This is problematic. Models are usually modular, i.e.
described by combining small systems of equations
into larger ones. Being able to detect problems with
individual parts or their combinations without first
having to put together a complete system model is
generally desirable. Moreover, a system may be
structurally dynamic, meaning that the system of
equations describing its behaviour changes over time.
This implies that the question of the solvability can-
not be addressed prior to simulation.

However, establishing that a system of equations
definitely is not solvable can be almost as helpful.
Fortunately there are criteria necessary (but not suffi-
cient) for solvability that can be checked more easily
and that are applicable to model fragments. A simple
example is that the number of variables (unknowns)
and equations must agree. For example, Modelica as
of version 3.0 [12] enforces this constraint for model
fragments (and thus for a model as a whole) so as to
enable early detection of common modelling mis-
takes. Keeping track of the variable and equation
balance is also the idea behind the structural con-
straint delta type system [2] with similar aims.

This paper is a preliminary investigation into an im-
proved type-based (and thus compile-time) analysis
for determining when (fragments of) systems of equa-
tions cannot be solved. The goal is to provide im-
proved precision compared with just counting vari-
ables and equations by attributing a structural type to
systems of equations reflecting which variables occur
in which equations. A type-based approach is adopted

as that is a natural way of ensuring that model frag-
ments can be checked in isolation. This is particularly
important for structurally dynamic systems where
parts of the system change over time. However, as
long as the types of the parts remain unchanged, and
are reasonably informative, a meaningful analysis can
still be carried out statically, at compile-time.

The development is carried out in the context of
Functional Hybrid Modelling (FHM) [14, 15], as this
provides a small and manageable modelling language
framework that helps keeping the focus on the es-
sence of the problem. FHM itself is still in an early
stage of development. However, the central ideas put
forward in this paper are not tied to FHM, but should
be applicable to equation-based modelling languages
like Modelica in general, as well as to applications
featuring modular systems of equations outside the
field of modelling and simulation. In effect, FHM is
mainly used as a convenient and concise notation for
modular systems of equations.

The rest of the paper is organised as follows. Sec-
tion 1 provides general background and discusses
related work. Section 2 provides an overview of FHM
in the interest of making this paper relatively self-
contained. Section 3 then develops the idea of struc-
tural types for modular systems of equations. As an
example, this is applied to a simple electrical circuit
in Section 4. Finally, Section 5 discusses future work
and Section 6 gives conclusions.

1 Background and related work

Object-oriented modelling languages like Modelica
[12] allow models to be developed in a modular fash-
ion: systems of equations describing individual com-
ponents are composed into larger systems of equa-
tions describing aggregates of components, and ulti-
mately into a complete model of the system under
consideration. As with software in general, such

L

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

T
N

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

modularity is key to addressing the complexity of
large-scale development as it allows large problems
to be broken down into smaller ones that can be ad-
dressed independently, enables reuse, etc.

Of course, it is possible that mistakes are made during
the development of a model. If so, it is desirable to
catch such mistakes early. In a modular setting, this
means checking whether a component in isolation is
inherently faulty, and whether two or more compo-
nents are being composed appropriately. As a result,
mistakes can be localised effectively, meaning it
becomes a lot easier to find and correct them. In con-
trast, mistakes that only become evident once a sys-
tem has been fully assembled are usually a lot harder
to pinpoint as the symptom in itself often is not
enough to suggest any particular part of the system as
the root of the problem. Even more problematic is a
situation where problems only reveal themselves in
use, as this means the system is unreliable.

A good way to catch errors early is to employ the
notion of fypes. An entity has some particular type if
it satisfies the properties implied by that type. A type
system then governs under which conditions typed
entities may be combined, and determines what prop-
erties the combined entity satisfies, i.e. its type. As a
simple example, consider the type Integer. If an
entity has type Integer, this means that this entity
satisfies the property of being an integer. Moreover, a
rule of the type system would establish that any two
entities satisfying the property of being integers can
be combined using arithmetic addition into a new
entity that also is an integer. This example is trivial,
but as we will see, it is possible to capture much more
complex properties through suitably defined types.

An important aspect of a type system is that it works
solely on the basis of the fypes of the combined enti-
ties, without referring to any specific entity instances.
This makes it possible to establish various properties
of a combined entity before knowing exactly what all
its parts are. This in turn allows for all manner of
useful parametrisations, systems with dynamically
evolving structure, etc.

This paper is concerned with equation systems prop-
erties for establishing whether a system can be solved
or not. One necessary but not sufficient condition for
solvability is the variable and equation balance: glob-
ally, the number of variables to solve for and the
number of equations must be equal. Languages like
Modelica naturally enforce this. Since version 3.0
[12], Modelica has adopted the even stricter criterion

that (in essence) variables and equations must be
locally balanced, i.e. balanced on a per component
basis. Thus, in a sense, the property of being balanced
is implicitly part of the type of a component in Mode-
lica 3.0, as all well-typed components are balanced.
Naturally, if all components of a model are locally bal-
anced, this implies that the model is globally balanced.
Of course, a locally imbalanced model might still be
globally balanced. To allow such models (without
deferring all checking until a model has been fully
assembled), it is necessary to explicitly make the
variable and equation imbalance part of the type of a
component. This was suggested by Nilsson et al. [14]
and, independently, by Broman et. al. [2], who devel-
oped the idea in detail by integrating the notion of a
“structural constraint delta” into the types of components.
Unfortunately, ensuring that the number of variables
and equations agree only gives relatively weak assur-
ances. As a simple example, consider the following
system of equations, where f, g, and i are known
functions, and x, y, and z are variables:

S(x,,2)=0
g(z2)=0
h(z)=0

The number of equations and variables agree. Yet it is
clear that we cannot hope to solve this system of
equations: x and y occur only in one equation, but
we need two equations to have a chance to determine
both of them. Moreover, z occurs alone in two of the
equations, meaning that it may be impossible to find a
value of z that satisfies them both. What we have in
this case is an underdetermined system of equations
for x and y (one equation, two variables), and an
overdetermined system of equations for z (two equa-
tions, one variable). Note that it was possible to es-
tablish the unsolvability of this system by just consid-
ering its structure: which variables occur in which
equations. This can be formalised through the notion
of a structurally singular system of equations:

Definition 1 (Structually singular system of egs.)
A system of equations is structurally singular iff it
is not possible to put the variables and equations in a
one-to one correspondence such that each variable
occurs in the equation it is related to.

We now simply observe that a system of equations
that is structurally singular is unsolvable.

Languages like Modelica ensure that models are not
structurally singular as simulation is not possible if

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

this is the case. However, in Modelica, this check is
not carried out on a per component basis, but only
once the system has been fully expanded into a “flat”
system of equations. To the best of this author’s
knowledge, this is also the case for all similar lan-
guages. As a result, if it turns out that the final model
is structurally singular, it can be very difficult to find
out what the origin of the problem is.

To help overcome this difficulty, Bunus and Fritzson
proposed a method to help localising the cause of any
structural singularity [3, 4]. Their idea is to view the
system of equations as a bipartite graph where the
variables constitute one set of nodes, the equations
the other set of nodes, and there is an edge between a
variable and an equation if the former occurs in the
latter. See Figure 1(a) and 1(b). They then use the
Dulmage and Mendelsohn canonical decomposition
algorithm [6] to partition the flat system of equations
into three parts: one overdetermined, one underde-
termined, and one where the variables and equations
match up. This information is then used to help diag-
nose the problem and suggest remedies.

Still, it would be an advantage if mistakes that inevi-
tably are going to lead to structural singularities can
be flagged up early, without first having to fully ex-
pand a model. This is true in particular for structur-
ally dynamic systems: since the system of equations
describing the behaviour of the system change over
time, there is no one fully expanded system in this
case. This is the kind of systems we ultimately hope
to address in the context of our work on Functional
Hybrid Modelling [14, 15].

This paper investigates an approach to early detection
of structural singularities. The basic idea is to attrib-
ute types to components such that these types charac-
terise the structure of the underlying system of equa-
tions used to represent a component, or more pre-
cicely, the structure of the equations that constitute its
interface. We refer to this as the structural type of the
component. The fundamental idea is similar to the
structural constraint delta approach suggested by
Broman et al.. However, the structural type is much
richer: instead of a single number reflecting the vari-
able and equation imbalance, the structural type de-
tails which variables occur in which equations. That
is, the structural type is essentially a bipartite graph as
in the work by Bunus and Fritzson, or it can be viewed as
an incidence matrix: see Figure 1(c).We will freely
switch between these two points of view in the following.

It turns out, though, that it often will be necessary to
approximate the information on which variables oc-

JIIII_.J'.FI.'.'.l = 0 (1)
glz,z) = 0 (2)

hy.z) = 0 (3)
(a) System of equations

xr]

Eq. 1 1- 51)
E¢ 1. 2 I o 1
Eq.3 0- 1 1

(¢) Incidence matrix

(b) Bipanite graph

Figure 1. A system of equations and its corresponding
structural representations.

cur in which equations. Thus the approach of this
paper is not a complete alternative to error diagnosis
on the final, flat system of equations as suggested by
Bunus and Fritzson, but rather complementary to it.

2 Functional hybrid modelling

Functional Hybrid Modelling (FHM) [14, 15] is a
generalisation of the central ideas of Functional Re-
active Programming (FRP) [18]. In FRP, a functional
programming language is extended with constructs
for reactive programming and causal, hybrid, model-
ling, specifically signals (time-varying values) and
functions on signals. This has proved to yield a very
flexible and expressive framework for many different
kinds of reactive and modelling applications [13, 9, 5,
8]. The FHM approach is similar, but relations on
signals are added to address non-causal modelling.

The salient features of FRP and FHM relevant for this
paper are covered in the rest of this section. The ideas
are illustrated with a simple circuit example. This
example is also used later in this paper. Note that
FHM is currently being developed: no complete im-
plementation exists yet. However, as explained ear-
lier, it provides a convenient setting for this work.

2.1 Fundamental concepts

FRP is a conceptual framework. A number of con-
crete implementations exists. Here, we will briefly
consider Yampa [13], which is most closely related to
FHM. Yampa is based on two central concepts: sig-
nals and signal functions. A signal is a function from
time to a value; conceptually:

Signal a = Time — «

(The conceptual nature of this definition is indicated
by =. — is the infix type constructor for function
types.) Time is continuous, and is represented as a
non-negative real number. The type parameter o

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

T
N

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

specifies the type of values carried by the signal. For
example, the type of a varying electrical voltage
might be Signal Voltage.

A signal function is a function from Signal to Signal:
SF o p ~ Signal o — Signal

When a value of type SF a S is applied to an input
signal of type Signal a, it produces an output signal of
type Signal B. Signal functions are first class entities
in Yampa. Signals, however, are not: they only exist
indirectly through the notion of signal function. Addi-
tionally, signal functions satisfies a causality require-
ment: at any point in time, the output must not de-
pend on future input (this is temporal causality, a
notion distinct from the notion of causality in “non-
causal modelling.”)

The output of a signal function at time ¢ is uniquely
determined by the input signal on the interval [0,¢]. If
a signal function is such that the output at time ¢ only
depends on the input at the very same time instant ¢,
it is called stateless. Otherwise it is stateful.

2.2 First-classsignal relations

A natural mathematical description of a continuous
signal function is that of an ODE in explicit form. A
function is just a special case of the more general
concept of a relation. While functions usually are
given a causal interpretation, relations are inherently
non-causal. Differential Algebraic Equations (DAEs),
which are at the heart of non-causal modelling, ex-
press dependences among signals without imposing a
causality on the signals in the relation. Thus it is
natural to view the meaning of a DAE as a non-causal
signal relation, just as the meaning of an ODE in
explicit form can be seen as a causal signal function.
Since signal functions and signal relations are closely
connected, this view offers a clean way of integrating
non-causal modelling into an Yampa-like setting.

Similarly to the signal function type SF of Yampa
(Section 2.1), the type SR a stands for a relation on a
signal of type a. Like signal functions, signal rela-
tions are first class entities, as will become clear in
the following. Specific relations use a more refined
type; e.g., for the derivative relation der we have the
typing:
der :: SR (Real, Real)

Since a signal carrying pairs is isomorphic to a pair of
signals, we can understand der as a binary relation on
two real-valued signals. Signal relations are con-
structed as follows:

sigrel pattern where equations

The pattern introduces signal variables that at each
point in time are bound to the instantaneous value of
the corresponding signal. Given a pattern p of type ¢,
p :: t, we have:

sigrel p where...:: SR ¢

Consequently, the equations express relationships
between instantaneous signal values. This resembles
the standard notation for differential equations in
mathematics. For example, consider x"= f(y), which
means that the instantaneous value of the derivative
of (the signal) x at every time instant is equal to the
value obtained by applying the function f to the
instantaneous value of y.

There are two styles of basic equations:

e =e
sr Qe

where e; are expressions (possibly introducing new
signal variables), and sr is an expression denoting a
signal relation. We require equations to be well-typed.
Given ¢; :: t;, this is the case iff 1, =, and s7 :: £5.
The first kind of equation requires the values of the
two expressions to be equal at all points in time. For
example:

fx=gy
where f'and g are ordinary, pure functions (we follow
standard functional programming practice and denote
ordinary function application simply by juxtaposi-
tioning, without any parentheses.)
The second kind allows an arbitrary relation to be
used to enforce a relationship between signals. The
symbol ¢ can be thought of as relation application;
the result is a constraint which must hold at all times.
The first kind of equation is just a special case of the
second in that it can be seen as the application of the
identity relation. Thus, with I denoting the identity
relation, an equation e; = e, could also be written I ¢
(e1, ey). For another example, consider a differential
equation like x'= f(x). Using the notation above,
this equation can be written:

der O (x,fxy)
where der is the relation relating a signal to its de-

rivative. For notational convenience, we will often
use a notation closer to standard mathematical practice:

derx=fxy

The meaning is exactly as in the first version. Thus,
in the second form, der is not a pure function operat-

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

R1 Hgy R2 Uy

O~ o [

-
s
Figure 2. A simple electrical circuit.

ing only on instantaneous signal values. It is a (state-
ful) signal function operating on the underlying signal.

We illustrate the ideas above by modelling the elec-
trical circuit in Figure 2 (adapted from [11]). The type
Pin is a record type describing an electrical connec-
tion. It has fields v for voltage and i for current.
twoPin :: SR (Pin, Pin, Voltage)
twoPin = digre (p, n, u) where
u=pv-—ny
pitni=0
resistor :: Resistance — SR (Pin, Pin)
resistor r = sigrel (p, n) where
twoPin ¢ (p, n, u)
r¥pi=u
inductor :: Inductance — SR (Pin, Pin)
inductor [= sigrel (p, n) where
twoPin O (p, n, u)
[*der pi=u
capacitor :: Capacitance — (Pin, Pin)
capacitor ¢ = Sigrel (p, n) where
twoPin O (p, n, u)
c*deru=p.i

The resistor, inductor and capacitor models are de-
fined as extensions of the twoPin model. This is ac-
complished using functional abstraction rather than
any Modelica-like class concept. Note how param-
eterized models are defined through functions return-
ing relations, e.g. resistor. Since the parameters (like
r of resistor) are normal function arguments, not
signal variables, their values remain unchanged
throughout the lifetime of the returned relations (in
Modelica terms, they are parameter variables). As signal
relations are first class entities, signal relations can be
parameterized on other signal relations in the same way.

To assemble these components into the full model, a
Modelica-inspired connect-notation is used as a con-
venient abbreviation for connection equations. In
FHM, this is just syntactic sugar that is expanded to

basic equations: equality constraints for connected
potential quantities and a sum-to-zero equation for
connected flow quantities. In the following, connect
is only applied to Pin records, where the voltage field
is declared as a potential quantity whereas the current
field is declared as a flow quantity.

We assume that a voltage source model vSourceAC
and a ground model ground are available in addition
to the component models defined above. Moreover,
we are only interested in the total current through the
circuit, and, as there are no inputs, the model thus
becomes a unary relation:

simpleCircuit :: SR Current

simpleCircuit = sigrel i where
resistor 1000 O (rIp, rin)
resistor 2200 O (r2p, r2n)
capacitor 0.00047 ¢ (cp, cn)
inductor 0.01 ¢ (Ip, In)
vSourceAC 12 ¢ (acp, acn)
ground O gp

connect acp rlp r2p

connect rin cp

connect r2n Ip

connect acn cn In gp

i=ripi+r2pi

There is no need to declare variables like rip, rin:
their types are inferred. Note the signal relation ex-
pressions like resistor 1000 to the left of the signal
relation application operators ¢.

As an illustration of signal relation application, let us
expand resistor 1000 ¢ (rIp, rin) using the defini-
tions of twoPin and resistor. The result is is the fol-
lowing three equations, where ul is a fresh variable:

ul =ripn—rinyvy
ripi+rini=0
1000 * rip.i=ul

2.3 Dynamicstructure
Yampa can express highly structurally dynamic sys-
tems. Ultimately, we hope to integrate as much of that
functionality as possible into FHM. As a basic exam-
ple, switching among two different sets of equations
as a Boolean signal changes value might be expressed
as follows:
switch b
when False
equations,
when True
equations,

L

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

T
N

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

If the type system approach outlined in this paper is
to work for FHM, we need to consider how to handle
such constructs from a type perspective. This is done
in Section 3.4. There are many other outstanding prob-
lems related to implementation of structurally dynamic
systems. But those are outside the scope if this paper.

3 Structural typesfor signal relations

We now define the notion of structural type and show
how it enables structural analysis to be carried out in
a modular way, without having to first expand out
signal relations to “flat” systems of equations. The
key difficulty is abstraction of structural types, and
consequently the section mostly focuses on that aspect.

3.1 Thestructural type
In essence, a signal relation is an encapsulated sys-
tem of equations. When a signal function is applied,
these equations impose constraints on signals in
scope at the point of application through the variables
of the signal relation interface. A larger system of
equations is thus formed, composed from equations
contributed by each applied signal relation.
Let us consider a simple example:
foo :: SR (Real, Real, Real)
foo =sigrel (xi, x,, x3) where
fixixax3=0
fixaxs =0
Let us assume a context with five variables, u, v, w, x,
v, and let us apply foo twice in that context:

foo O (u, v, w)
food(w,u+x,v+y)
The result, obtained by substituting the variables u, v,

w, x, y into the equations of foo, is the following sys-
tem of equations:

fiuvw =0
fHvw =0
Siwutx)(vty) =0
Hutx)v+y) =0

Note that each application of foo contributed two
equations to the composed system, each for a subset
of the variables to the right of the relation application
operator Q.

As discussed in Section 1, the aim is now to analyse
the structure (which variables occur in which equa-
tions) of the composed system in order to identify
situations that definitely will result in over- or under-
determined systems of equations.

However, for a variety of reasons, it is not desirable
to assume that this can be done by simply unfolding
the applied relations as was done above. In the con-
text of FHM, what goes to the left of ¢ is a signal
relation expression that may involve parameters that
are not known at compile time, thus preventing the
expression from being evaluated statically. Or the
exact contribution of the applied signal relation might
not be known for other reasons, for example due to sepa-
rate compilation or because it is structurally dynamic.

Thus, we are only going to assume that the #ype of the
applied signal relation is known. To enable structural
analysis, the type of signal relations is enriched by a
component reflecting its structure.We refer to this as
the structural type of the signal relation.

Definition 2 (Structural type of system of equations)
The structural type of a system of equations is the
incidence matrix of that system. It has one row for
each equation, and one column for each variable in
scope—only “unknown” signal variables are of in-
terest here, not parameters or “known” (input) signal
variables. An occurrence of a variable in an equation
is indicated by 1, a non-occurrence by 0.

Note that Definition 2 concerns systems of equations.
For a signal relation, i.e. an encapsulated system of
equations, the structural type is limited to the equa-
tions contributed by the signal relation and the vari-
ables of its interface. If the interface includes records
of signal variables, like Pin of the simple circuit ex-
ample in Section 2.2, then each field counts as an
independent variable. We defer a precise definition
until section 3.3.

As an example, consider the signal relation foo above.
Its type, including the structural part, is:

1 11
foo :: SR(Real, Real, Real)
011
3.2 Composition of structural types
Now let us consider composition of structural types.
The overall structural type for a sequence of equa-
tions is obtained by simply joining the incidence
matrices for the individual equations as the same set
of variables is in scope across all equations.
The structural type for a basic equation of the form
e1=e
is a single-row matrix indicating which variables
occurs in expressions e; and e,.

The structural type for the second form of equation,

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

signal relation application, is more interesting. The
general form of this kind of equation is:

sr (61, €2, .uuy e,‘)

where e, e, ..., e; are expressions over the signal
variables that are in scope. These expressions and
their relation to the variables in scope can also be
represented by an incidence matrix, with one row for
each expression and one column for each variable.
The incidence matrix of the signal relation applica-
tion is then obtained by Boolean matrix multiplica-
tion—which is understood as Boolean conjunction, A
(logical “and”), and addition as Boolean disjunction,
v (logical “or”’)—of the structural type of the applied
signal relation and the incidence matrix of the right-
hand side expressions.

Returning to the example from the previous section,
the incidence matrix of the right-hand side of the
application

foo O (u, v, w)
in a context with five signal variables u, v, w, x , y is

y

o o ~ v
S = O T
- o o=
S O O

0
0
0

(where the columns have been labelled for clarity). Mul-
tiplying the structural type of foo with this matrix yields:

u v w x y

L f(toooo ”1vlvlvo"oy

(011)01000{01100
00100

Similarly, for foo ¢ (w, u +x, v+ y), we obtain
uvwxyuvwxy

11 (001 00 L1111

[011}01010(1101j
00101

The complete incidence matrix for the two applica-
tions of foo is thus

u v w x y
1 1
0

1

1

_—— O O
—_— = O O

1
1
1
1

S = =

Compare with the fully expanded system of equations
in the previous section.

3.3 Abstraction over structural types

In the previous section, we saw how to obtain the
overall structural type of a composition of signal
relations given the structural types of the involved
signal relations. The next step is to consider how to
encapsulate a system of equations in a signal relation.
It is often the case that the set of variables in the in-
terface of a signal relation, the interface variables is a
proper subset of the variables that are in scope. A
signal relation may thus abstract over a number of
local variables. This, in turn, means that a number of
the equations at hand must be used to solve for the
local variables: the local variables are not going to be
in scope outside the signal relation, and thus it is not
possible to add further equations for them later.

The available equations are thus going to be parti-
tioned into local equations, those that are used to
solve for local variables, and interface equations,
those that are contributed to the “outside” when the
signal relation is applied. This immediately presents
an opportunity to detect instances of over- and under-
determined systems of equations for the local vari-
ables on a per signal relation basis. However, it also
presents a very hard problem as the partitioning is not
uniquely determined, which in general implies that a
signal relation does not have unique best structural type.

To illustrate, consider encapsulating the example
from the previous section in a signal relation where
only the variables u and y appear in the interface:
bar=digrel (u, y) where
foo O (u, v, w)
food(w,utx,v+y)
Recall the incidence matrix of the encapsulated system:

Y

=
—_ = = =

wox
1 0
1 0
11
01

— - O O

Three of the underlying equations are needed to solve
for the local variables v, w, and x , the remaining one
is the interface equation. But the only equation that
cannot be chosen as the interface equation is number
2, as no interface variable occurs in this equation.
Projecting out the columns for the interface variables
for the the incidence matrices for the three possible
choices of interface equation yields

uw'y uw .y uy

(1o (11 (11

L

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

LY

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

The last two possibilities are equivalent, so this
leaves us with two possible structural types: the sig-
nal relation bar can either provide a single equation
in which the first variable of the interface occurs, or it
can provide an equation in which both interface vari-
ables occurs, depending on the chosen equation parti-
tioning in bar.

A modelling language compiler will decide on a spe-
cific partitioning. But this choice is typically dictated
by intricate numerical considerations and often also
by the usage context. As it is essential that type
checking is compositional, it is clear that the parti-
tioning must be done independently of usage context.
And to ensure that the type system is independent of
arbitrary implementation choices, as well as reasona-
bly easy to understand for the end user, it is clear that
the partitioning should not depend on low-level nu-
merical considerations either.

There are two approaches for dealing with the situa-
tion. One is to accept that a signal relation can have
more than one structural type. This paper does not
explore that avenue as there is a risk that it would
lead to a combinatorial explosion of possibilities to
consider. Still, it should not be ruled out. The other
approach is to decide on a suitable notion of “best”
structural type. Then, if a signal relation has more
than one possible structural type, choose the best one,
if this is a uniquely determined choice, otherwise ap-
proximate all best types with a type that is better than
them all, but still as informative as possible, and take this
approximation as the structural type of the signal relation.

We are going to adopt a notion of “best” that reflects
the observation that an equation is more useful the
more variables that occur in it (as this gives more
flexibility when choosing which equation to use to
solve for which variable). We are further going to
assume that an implementation is free to make such a
best choice. The latter might not be the case, but we
should then keep in mind that the objective of the
type system is not to guarantee that a system of equa-
tions can be solved, but to detect cases where a sys-
tem of equations definitely cannot be solved. Assum-
ing a freedom of choice is thus a safe approximation.

Definition 3 (Subsumed variable)
Let ¥, and ¥, be sets of variables. V, is subsumed
by V, iff ¥ \V, =@.

Definition 4 (Subsumed structural type)
Let s, and s, be structural types. s, is subsumed by s,
iff there exists a permutation of the rows of the inci-

dence matrix for s, such that the variables of each
row of the incidence matrix for s, are subsumed by
the variables of the corresponding row of the permuted
incidence matrix for s,. The subsumed relation on
structural types is denoted by the infix symbol <.

Definition 5 (Best structural types)
Let S be a set of structural types. The best structural
types in S'is the set

{s|se SA—(Is’e S:5<s)}

Returning to the signal relation bar above, we find
that it actually has a single best structural type since

u 'y u 'y
(1 0)<(1 1)

The complete type of bar is thus:
bar :: SR(Real,Real)(1 1)

As an example of a case where there is not any best
type, consider

10 1 00 1
s = , 8, =
{100) (111)

Note that s, £5,and s, £s,. Neither is better than the
other, and the best structural types of § = {s,,s,} is S.

What is needed if there is more than one best type is
to find an approximation in the form of an upper
bound that subsumes them all. Clearly such a bound
exists: just take the incidence matrix with all 1s, for
example. That corresponds to an assumption that each
equation can be used to solve for any variable, mean-
ing that we are back to the approach of counting
equations and variables. However, to avoid loosing
precision unnecessarily, a smallest upper bound
should be chosen. As the following example shows,
there may be more than one such bound, in which
case one is chosen arbitrarily.

Consider the two structural types:

1100 01 01
001 1) {1 001

Upper bounds can be constructed by taking the union
of the first incidence matrix and all possible row
permutations of the second one. As there are only two
rows, we get two upper bounds:

1101 1101
1o1 1) o111

Neither is smaller than the other. However, they are
both as small as possible, as removing a single 1 from

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

any matrix means it will not subsume one or the other
of the original matrices. Thus, in general, the least
upper bound of structural types under the subsumed
ordering is not uniquely determined.

We can now give a definition of the structural type of
a signal relation:

Definition 6 (Structural type of a signal relation)
The structural type of a signal relation with a body
of m equations over n variables, of which i vari-
ables occur in the interface, if that type exists, is an
(m—(n—1))Xi incidence matrix that is a least upper
bound of the structural types of all possible choices
of interface equations.

The following algorithm determines the structural
type of a signal relation when one exists, or reports an
error otherwise. We claim this without proof, leaving
that as future work:

Arguments

1. Structural type s for the system of equations of
the body of the signal relation in the form of an
mxn incidence matrix (m equations, n vari-
ables).

2. The set V of variables, |V | = n, and a mapping
from variables to the corresponding column
number of the incidence matrix.

3. The set I of interface variables of the signal relation.

Result
o If successful, an (m—(n—|I|))x|I| incidence
matrix representing the structural type of the signal
relation.
e Otherwise, an indication of the problem(s): un-
der- or overdetermined system of local equations;
overdetermined system of interface equations.

Algorithm
1. Let L = \J be the set of local variables. Parti-

tion s into three parts:

e s, : rows corresponding to equations over va-
riables in L only, the a priori local equations;

e s,: rows corresponding to equations over va-
riables in / only the a priori interface equations;

e s, : remaining rows, corresponding to equa-
tions over mixed interface and local variables.

Let m,, m,, m,, be the number of rows of s,,

s;, and s,, respectively. (Note that the a priori

1

. Choose k rows from s,, in all possible ways [)24]

local equations can only be used to solve for lo-
cal variables, whereas the a priori interface equa-
tions can only be used to solve for interface vari-
ables.)

. Let k= ‘L‘ —m, . k is the number of equations in

addition to local ones that are needed to solve for
all local variables.
a. If k<0, report “overdetermined local sys-
tem of equations”.
b. If k>m,,, report “underdetermined local
system of equations”.

. Initialise S, to &

m

possibilities, m,, = k). For each such choice:

a. Partition s,, into s, containing the } chosen
rows and s, containing the remaining rows.

b. Consider s, and s, restricted to the local
variables L as a bipartite graph and compute
a maximum matching using the standard
augmenting path algorithm [1, pp. 246-250].
Check if the size of the matching is equal to
| L|. If yes, this means that each variable in
L can be paired with a row from s, or s, in
which it occurs, which is a necessary condi-
tion for using the equations corresponding to
the rows from s, or s, to solve for the local
variables.

c. Consider s, and s, restricted to the interface
variables I as a bipartite graph and compute
a maximum matching using the standard
augmenting path algorithm. Check if the size
of the matching is equal to the number of
rows of s, and s,, i.e. m, +m, —k. If yes,
then this means that all equations corre-
sponding to the rows of s, and s, can be
used simultaneously to solve for one of the
interface variables. This is a necessary con-
dition for ensuring that the interface equa-
tions contributed by the signal relation does
not constitute an overdetermined system.

d. If both checks above passed, then this par-
ticular choice of j rows is valid.

e. For each valid choice, add s, restricted to
the variables 7 to S, .

5. If §, =, it is not possible to solve for the local

variables and/or the interface equations contrib-
uted by the signal relation are going to be over-
determined. Report the problem.

h
i

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

LY

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

6. Determine the best structural types S,. of S,.
7. Let s, be a least upper bound of S,..

8. The incidence matrix obtained by joining s, and
s,- is the structural type of the signal relation, i.e.
a least upper bound of the structural types of all
possible choices of interface equations.

3.4 Sructurally dynamic systems

To conclude the development, we briefly consider
how to handle structurally dynamic systems, for ex-
ample of the type illustrated in section 3.3. Clearly,
the structural types of the equations in the different
branches could be different. However, at any point in
time, the choice of which equations that are active is
determined by the condition of the switch-construct.
Thus, the structural type of the entire switch-
construct is the greatest lower bound of the structural
types of the branches, as that is the only thing which
is guaranteed at all points in time. One may also want
to impose additional consistency constraints between
the branches to avoid unpleasant surprises at run-
time, e.g. due to the system of equations all of a sud-
den becoming overdetermined. But this has not yet
been investigated.

3.5 Implementation

The algorithm for computing the structural type for a
signal relation has been prototyped in Haskell. It
implements all aspects of the described algorithm,
except that it has not been verified whether the com-
putation of upper bounds indeed yields one of the
least upper bounds. The time complexity of the algo-

rithm is a concern. For example, the [m,’(”] possible

partitionings of the mixed equations that need to be
investigated could, in adverse circumstances, be a
large number. However, there may be ways to exploit
more of the structure of the equations in order to limit
the number of alternatives to consider. It is also easy
to check how many partitioning there are before start-
ing to enumerate them, and if they are judged to be
too many, one can simply default to a safe over ap-
proximation of the type.

4 Structural typesfor asimple
electrical circuit

As an example, let us apply the structural type system

developed in section 3 to the simple electrical circuit

from section 2.2.

Let us first consider the resistor. Recall that Pin is a

record of two fields v and i, and that the signal rela-

tion interface thus consists of four variables: p.v, p.i ,
n.v, and n.i:

resistor :: Resistance — SR (Pin, Pin)
resistor r = sigrél (p, n) where
twoPin ¢ (p, n, u)
r¥pi=u

Before approximation, the two possible structural
types for resistor are

0101 01 01
[0100]’[101oj
reflecting a choice between using u = p.v - n.vor r *
p.i = u for solving for the local variable u. (The equa-
tion u = p.v - n.v is contributed by twoPin. However,
note that only its structural type is of interest here,

not the exact equation.) This gets approximated with
a least upper bound to:

0101

(1 11 oj
Of course, resistor cannot provide a single equation
in which all of p.v, p.i , and n.v occur. But as the
equation can only be used to solve for one of the
variables, and as an equation can be provided for

either two of the variables or the third, this is not too
bad. Let us now consider inductor :

inductor :: Inductance — SR (Pin, Pin)
inductor [=sigrel (p, n) where
twoPin ¢ (p, n, u)
[*der pi=u
The possible structural types before approximation
are the same as for resistor, but this time reflecting a
choice between using # = p.v — n.v or p.i= _[p.i'dt,

where p.i is the state derivative, for solving for the
local variables. Note that the equation / * p.i’= u is
local, as neither the state derivative nor u occurs in
the interface of inductor. After approximation, the
structural type of inductor becomes the same as that
of resistor . The case for capacitor is also very simi-
lar, and both the possible structural types prior to
approximation and the final structural type are again
the same. For a final example, suppose a mistake has
been made in the definition of simpleCircuit: instead of

connect rin cp
connect r2n Ip
the equations read

connect r2n Ip
connect r2n Ip

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

Note that the number of equations and variables re-
main exactly the same in the two cases (each connect
above is expanded to one equality constraint and one
sum-to-zero equation). The structural type checking
algorithm presented in this paper correctly reports
that simpleCircuit is a locally underdetermined sys-
tem. If only variables and equations had been
counted, this error would not have been detected.

5 Futurework

It should be emphasised that what has been presented
in the present paper is only a preliminary investiga-
tion into the basics of a type-based structural analysis
for modular systems of equations. It is not yet yet a
full-featured type system. In particular, we have only
considered the structural aspect in isolation, and to
that end it was tacitly assumed that the structural
types of composed signal relations were known, ena-
bling the overall structural type of signal relations to
be computed in a bottom-up manner.

However, FHM aims at treating signal relations as
first class entities. One consequence of this is that
signal relations can be parametrised, including on
other signal relations. In FHM, a parametrised signal
relation is simply a function that computes a signal
relation given values of the parameters, which could
include other signal relations. The question then is
how to determine the structural type of any signal
relation parameters.

One option would be to insist that the structural types
of signal relation parameters is always declared. This
could be cumbersome, but there is always the possi-
bility of making a permissible (imprecise) default
assumption in the absence of explicit declarations.
Another option might be to try to infer suitable struc-
tural constraints for the parameters from how they are
being used in Hindley-Milner fashion. A third option
would be to move to a framework of dependent types
[17, 16] where types are indexed by (can depend on)
terms. In our case, the incidence matrices that repre-
sent the structural type would be considered term-
level data, and the output structural type of a paramet-
rised signal relation is then allowed to depend on the
input structural type(s), or even the values of other
parameters, meaning that the output structural type
will be given as a function of the parameter values.

Incidentally, Modelica effectively also provides pa-
rametrised signal relations through its mechanism of
replaceable components. Here the problem is ad-

dressed by syntactically requiring a default value for
the replaceable component, which is used for type
checking, and additionally insisting that any replace-
ment conforms with the type of the default value in
such a way that the result after any replacement is
still guaranteed to be well-typed.

Another aspect that was not considered is how to
handle equations on arrays. If the sizes of the arrays
are manifestly known, it would be possible to con-
sider an array equation simply as a shorthand notation
for equations between the individual elements. But
that is not very attractive, and it would inevitably lead
to unwieldy structural types, bloated with lots of
repetitive information. And, of course, if the array
sizes are not manifest but parameters of the relation,
it would be even more problematic. The most feasible
approach is likely to restrict array equations in such a
way that each such equation can be considered a
single equation for the purpose of the structural types.
Again, moving to a setting of dependent types might
be helpful, as the type checking depends on term-
level data, i.e. the sizes of the arrays. Dependent type
systems supporting explicitly sized data has been
studied extensively. One good example is Dependent
ML [19, 20].

We would also like to integrate checking of physical
dimensions [10] into the FHM type system. We ob-
serve that this is another reason to look closer at de-
pendent types since the types become dependent on
term-level data. For example, if an entity with a di-
mension type is subject to iterated multiplication, the
resulting dimension depends on how many times the
multiplication was iterated.

Finally, there are usability aspects that needs to be
considered. While the type errors that are reported
should be attributed fairly precisely to the component
that is faulty, it is not clear how to phrase the error
messages such that the problem becomes evident to
the end user. Also, we need to keep in mind the con-
servative nature of the type system: there is no guar-
antee that further errors will not be discovered when a
complete system of equations has been assembled.
Combining the approach developed here with that of
Bunus and Fritzson [3, 4] might help on both counts.

6 Conclusions

This paper presented a preliminary investigation into
type system for modular systems of equations. The
setting of the paper is equation-based, non-causal

h
i

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

T
N

+++ Type-Based Structural Analysis for Modular Systems of Equations +++

modelling, but the central ideas should have more
general applicability. The paper showed how attribut-
ing a structural type to equation system fragments
allows over- and underdetermined system fragments
to be identified separately, without first having to
assemble all fragments into a complete system of
equations. The central difficulty was handling ab-
straction of systems of equations. The paper pre-
sented an algorithm for determining the best possible
type for an abstracted system, although this may
involve approximation.

It should be emphasised that was has been presented
is not yet a complete type system. The paper only
considers the structural aspect, and it was tacitly
assumed that these structural types essentially could
be determined in a straightforward bottom-up man-
ner. The goal of treating signal relations as first class
entities raises a number of further challenges, some of
which were discussed in Section 5.

Acknowledgements

This work was supported by EPSRC grant
EP/D064554/1. The author wishes to thank the
anonymous referees for many useful suggestions that
helped improve the paper.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman. Data Structures and
Algorithms. Addison-Wesley, 1983.

[2] D. Broman, K. Nystrém, P. Fritzson. Determining over- and
under-constrained systems of equations using structural con-
straint delta. In GPCE ’06: Proc. 5th Int. Conference on
Generative Programming and Component Engineering, pp.
151-160, Portland, Oregon, USA, 2006. ACM.

[3] P. Bunus, P. Fritzson. 4 debugging scheme for declarative
equation based modeling languages. In Proc. 4th Int. Sym-
posium on Practical Aspects of Declarative Languages
(PADL 2002), vol. 2257 of Lecture Notes in Computer Sci-
ence, pages 280— 298, Portland, OR, USA, January 2002.
Springer-Verlag.

[4] P. Bunus, P. Fritzson. Methods for structural analysis and
debugging of Modelica models. In Proc. 2nd Int. Modelica
Conference, pp. 157- 165, Oberpfaffenhofen, Germany,
March 2002.

[5] A. Courtney, H. Nilsson, J. Peterson. The Yampa arcade. In
Proc. 2003 ACM SIGPLAN Haskell Workshop (Haskell’03),
pp. 7-18, Uppsala, Sweden, August 2003. ACM Press.

[6] A. L. Dulmage, N. S. Mendelsohn. Coverings of bipartite
graphs. Canadian Journal of Mathematics, 10:517-534,
1958.

[7]1 H. Elmgqvist. A Structured Model Language for Large Con-
tinuous Systems. PhD thesis TFRT-1015, Department of
Automatic Control, Lund Institute of Technology, 1978.

(8

=

G. Giorgidze, H. Nilsson. Switched-on Yampa: Declarative
programming of modular synthesizers. In P. Hudak, D.S.

Warren, eds., Practical Aspects of Declarative Languages
(PADL) 2008, vol. 4902 of Lecture Notes in Computer Sci-
ence, pp. 282-298, San Francisco, CA, USA, January 2008.
Springer-Verlag.

—
O
—

P. Hudak, A. Courtney, H. Nilsson, J. Peterson. Arrows, ro-
bots, and functional reactive programming. In J. Jeuring,
S.P. Jones, eds., Advanced Functional Programming, 4th In-
ternational School 2002, vol. 2638 of Lecture Notes in Com-
puter Science, pages 159—-187. Springer-Verlag, 2003.

[10

[t

A. Kennedy. Dimension types. In Proc. Sth European Sym-
posium on Programming, no. 788 in Lecture Notes in Com-
puter Science. Springer-Verlag, 1994.

[11] Modelica Association. Modelica — A Unified Object--
Oriented Language for Physical Systems Modeling: Tutorial
version 1.4, December 2000.

Modelica Association. Modelica — A Unified Object--
Oriented Language for Physical Systems Modeling: Lan-
guage Specification Version 3.0, September 2007.

[12

—

[13] H. Nilsson, A. Courtney, J. Peterson. Functional reactive
programming, continued. In Proc. 2002 ACM SIGPLAN
Haskell Workshop (Haskell’02), pp.51-64, Pittsburgh, Penn-
sylvania, USA, Oct. 02. ACM Press.

H. Nilsson, J. Peterson, P. Hudak. Functional hybrid model-
ing. In Proc. PADL’03: 5th Int. Workshop on Practical As-
pects of Declarative Languages, vol. 2562 of Lecture Notes
in Computer Science, pages 376-390, New Orleans, Lousi-
ana, USA, January 2003. Springer-Verlag.

H. Nilsson, J. Peterson, P. Hudak. Functional hybrid model-
ing from an object-oriented perspective. In P. Fritzson, F.
Cellier, and C. Nytsch-Geusen, eds., Proc. 1st Int. Workshop
on Equation-Based Object-Oriented Languages and Tools,
no. 24 in Linképing Electronic Conference Proceedings,
pages 71-87. Linkoping University Electronic Press, 2007.

[14

=

[15

[}

[16] B.C. Pierce. Types and Programming Languages. MIT Press,
2002.

S. Thompson. Type Theory and Functional ProgramPro-
gramming. Addison-Wesley, 1991.

[17

—

[18

[t

Zhanyong W., P. Hudak. Functional reactive programming
from first principles. In Proc. PLDI’01: Symposium on Pro-
gramming Language Design and Implementation, pp. 242—
252, June 2000.

Hongwei Xi, F. Pfenning. Eliminating array bound checking
through dependent types. In Proc. ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, pp. 249-257, Montreal, June 1998.

Hongwei Xi, F. Pfenning. Dependent types in practical pro-
gramming. In Proc. ACM SIGPLAN Symposium on Princi-
ples of Programming Languages, pages 214-227, San Anto-
nio, January 1999.

[19

—

[20

[l

Corresponding author : Henrik Nilsson,
School of Computer Science
University of Nottingham, United Kingdom,
nhn@cs.nott.ac.uk

Accepted EOOLT 2008, June 2008

Received: September 5, 2008
Accepted: November 29, 2008

