+++ High-Order Acausal Models +++

High-Order Acausal Models
David Broman, Peter Fritzson, Linkdping University, Sweden, {davbr, petfr}@ida.liu.se

SNE Simulation Notes Europe SNE 19(1), 2009, 5-16, doi: 10.11128/sne.19.tn.09921

Current equation-based object-oriented (EOQO) languages typically contain a number of fairly complex lan-
guage constructs for enabling reuse of models. However, support for model transformation is still often lim-
ited to scripting solutions provided by tool implementations. In this paper we investigate the possibility of
combining the well known concept of higher-order functions, used in standard functional programming lan-
guages, with acausal models. This concept, called Higher-Order Acausal Models (HOAMs), simplifies the
creation of reusable model libraries and model transformations within the modeling language itself. These
transformations include general model composition and recursion operations and do not require data repre-
sentation/reification of models as in metaprogramming/metamodeling. Examples within the electrical and
mechanical domain are given using a small research language. However, the language concept is not limited
to a particular language, and could in the future be incorporated into existing commercially available EOO languages.

I ntroduction

Modeling and simulation have been an important
application area for several successful programming
languages, e.g., Simula [6] and C++ [24]. These lan-
guages and other general-purpose languages can be
used efficiently for discrete time/event-based simula-
tion, but for continuous-time simulation, other spe-
cialized tools such as Simulink [15] are commonly
used in industry. The latter supports causal block-
oriented modeling, where each block has defined in-
put(s) and output(s). However, during the past two
decades, a new kind of language has emerged, where
differential algebraic equations (DAEs) can describe
the continuous-time behavior of a system. Moreover,
such languages often support hybrid DAEs for modeling
combined continuous-time and discrete-time behavior.

These languages enable modeling of complex physi-
cal systems by combining different domains, such as
electrical, mechanical, and hydraulic. Examples of
such languages are Modelica [10, 17], Omola [1],
gPROMS [3, 20], VHDLAMS [5], and y (Chi) [13, 27].

A fundamental construct in most of these languages is
the acausal model. Such a model can encapsulate and
compose both continuous-time behavior in form of
DAEs and/or other interconnected sub-models, where
the direction of information flow between the sub-
models is not specified. Several of these languages
(e.g., Modelica and Omola) support object-oriented
concepts that enable the composition and reuse of a-
causal models. However, the possibilities to perform
transformations on models and to create generic and
reusable transformation libraries are still usually li-
mited to tool-dependent scripting approaches [7, 11,
26], despite recent development of metamodeling/me-
taprogramming approaches like MetaModelica [12].

In functional programming languages, such as Has-

kell [23] and Standard ML [16], standard libraries
have for a long time been highly reusable, due to the
basic property of having functions as first-class val-
ues. This property, also called higher-order functions,
means that functions can be passed around in the
language as any other value.

In this paper, we investigate the combination of
acausal models with higher-order functions. We call
this concept Higher-order Acausal Models (HOAMs).

A similar idea called first-class relations on signals
has been outlined in the context of functional hybrid
modeling (FHM)[18]. However, the work is still at an
early stage and it does not yet exist any published
description of the semantics. By contrast, our previ-
ous work’s main objective has been to define a formal
operational semantics for a subset of a typical EOO
language [4]. From the technical results of our earlier
work, we have extracted the more general ideas of
HOAM, which are presented in this paper in a more
informal setting.

An objective of this paper is to be accessible both to
engineers with little functional language program-
ming background, as well as to computer scientists
with minimal knowledge of physical acausal model-
ing. Hence, the paper is structured in the following
way to reflect both the broad intended audience, as
well as presenting the contribution of the concept of
HOAMs:

e The fundamental ideas of traditional higher-order
functions are explained using simple examples.
Moreover, we give the basic concepts of
acausalmodels when used for modeling and
simulation (Section 1).

e We state a definition of higher order acausal
models (HOAMs) and outline motivating exam-
ples. Surprisingly, this concept has not been

L

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

T
N

+++ High-Order Acausal Models +++

widely explored in the context of EOO-
languages (Section 1).

e The paper gives an informal introduction to
physical modeling in our small research language
called Modeling Kernel Language (MKL) (Sec-
tion 2).

e We give several concrete examples within the
electrical and mechanical domain, showing how
HOAMs can be used to create highly reusable
modeling and model transformation/composition
libraries (Section 3).

Finally, we discuss future perspectives of higher-
order acausal modeling (Section 4), and related work
(Section 5).

1 Thebasicidea of high-order

In the following section we first introduce the well
established concept of anonymous functions and the
main ideas of traditional higher-order functions. In
the last part of the section we introduce acausal mod-
els and the idea of treating models with acausal con-
nections to be higher-order.

11 Anonymousfunctions

In functional languages, such as Haskell [23] and
Standard ML [16], the most fundamental language
construct is functions. Functions correspond to partial
mathematical functions, i.e., a function f:4— B
gives a mapping from (a subset of) the domain A4 to
the codomain B.

In this paper we describe the concepts of higher-order
functions and models using a tiny untyped research
language called Modeling Kernel Language (MKL).
The language has similar modeling capabilities as
parts of the Modelica language, but is primarily
aimed at investigating novel language concepts,
rather than being a full-fledged modeling and simula-
tion language.

In this paper an informal example-based presentation
is given. However, a formal operational semantics of
the dynamic elaboration semantics for this language
is available in [4]. In MKL, similar to general pur-
pose functional languages, functions can be defined
to be anonymous, i.e., the function is defined without
an explicit naming. For example, the expression

func (x) {x*x}

is an anonymous function that has a formal parameter
x as input parameter and returns x squared. Formal
parameters are written within parentheses after the

func keyword, and the expression representing the
body of the function is given within curly parenthe-
ses; in this case {x*x}. An anonymous function can
be applied by writing the function before the argu-
ment(s) in a parenthesized list, e.g. (3):

func (x) {x*x} (3)

- 3*3

-9
The lines starting with a left arrow (-) show the
evaluation steps when the expression is executed.
However, it is often convenient to name values. Since
anonymous functions are treated as values, they can
be defined to have a name using the def construct in
the same way as constants.

def pi = 3.14

def power2 = func(x){x*x}
Here, both pi and function power2 can be used
within the defined scope. Hence, the definitions can
be used to create new expressions for evaluation, for
example:

power2 (pi)

-~ power2(3.14)
- 3.14 * 3.14
- 9.8596

12 Higher-order functions

In many situations, it is useful to pass a function as an
argument to another function, or to return a function
as a result of executing a function. When functions
are treated as values and can be passed around freely
as any other value, they are said to be first-class citi-
zens. In such a case, the language supports higher-
order functions.

Definition 1 (Higher-order function)
A higher-order function is a function that

1. takes another function as argument, and/or

2. returs a function as the result

Let us first show the former case where functions are
passed as values. Consider the following function
definition of twice, which applies the function £ two
times on y, and then returns the result.
def twice = func(f,y){
£(£(y))

The function twice can then be used with an arbi-
trary function f, assuming that types match. For ex-
ample, using it in combination with power?2, this func-
tion is applied twice.

+++ High-Order Acausal Models +++

"Static” semantics | compile lime “Dynamic” semantics | run time

EQO

model » Hybrid DAE » | Executable Simulation

Elaboration Equalion Simwation | Result
Transformation &
Code genarabion

Figure 1. Outline of typical compilation and simulation
process for an EOO language tool.

twice (power2,3)

- power2 (power2 (3))

- power2 (3*3)

- power2(9)

~ 9%9

- 81
Since twice can take any function as an argument,
we can apply twice to an anonymous function,
passed directly as an argument to the function twice.

twice (func (x) {2*x-3},5)

- func (x) {2*x-3} (func (x) {2*x-3} (5))

- func (x) {2*x-3} (2%5-3)

- fune (x) {2*x-3} (7)

- 2%7-3

-1
Let us now consider the second part of Definition 1,
i.e., a function that returns another function as the result.
In mathematics, functional composition is normally
expressed using the infix operator °. Two functions
f:X—>Y and g:Y —>Z can be composed to go f:
X — Z, by using the definition (go f)(x) = g(f(x)).
The very same definition can be expressed in a lan-
guage supporting higher-order functions:

def compose = func(g,f) {
func (x) { g(£(x)) }
bi

This example illustrates the creation of a new anony-
mous function and returning it from the compose
function. The function composes the two functions
given as parameters to compose. Hence, this example
illustrates both that higher-order functions can be
applied to functions passed as arguments (using for-
mal parameters £ and g), and that new functions can
be created and returned as results (the anonymous
function). To illustrate an evaluation trace of the com-
position function, we first define another function add7.

def add7 = func (x) {7+x};

and then compose power2 and add7 together, form-
ing a new function foo:

def foo = compose (power2, add7);
— def foo = func(x){power2(add7 (x))};

Note how the function compose applied to power2
and add7 evaluates to an anonymous function. Now,

the new function foo can be applied to some argu-
ment, e.g.
1 foo(4)
- funec (x) {power2 (add7 (x)) } (4)
- power2 (add7 (4))
- power2 (7+4)
- power2(11)
o 11%11
- 121

~N N LN

The simple numerical examples given here only show
the very basic principle of higher-order functions. In
functional programming other more advanced usages,
such as list manipulation using functions map and
fold, are very common.

1.3 Elaboration and simulation of acausal models

In conventional object-oriented programming lan-
guages, such as Java or C++, the behavior of classes
is described using methods. On the contrary, in equa-
tion-based object-oriented languages, the continuous-
time behavior is typically described using differential
algebraic equations and the discrete-time behavior
using constructs generating events. This behavior is
grouped into abstractions called classes or models (Mo-
delica) or entities and architectures (VHDL-AMS). From
now on we refer to such an abstraction simply as models.

Models are blue-prints for creating model! instances
(in Modelica called components). The models typi-
cally have well-defined interfaces consisting of ports
(also called connectors), which can be connected to-
gether using connections. A typical property of EOO-
languages is that these connections usually are acausal,
meaning that the direction of information flow be-
tween model instances is not defined at modeling time.

In the context of EOO languages, we define acausal
(also called non-causal) models as follows:

h
i

Definition 2 (Acausal model)
An acausal model is an abstraction that encapsulates
and composes

1. continuous-time behavior in form of differential
algebraic equations (DAEs).

2. other interconnected acausal models, where the
direction of information flow between sub-
models is not specified.

In many EOO languages, acausal models also contain
conditional constructs for handling discrete events.
Moreover, connections between model instances can
typically both express potential connections (across)
and flow (also called through) connections generating

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

LY

+++ High-Order Acausal Models +++

sum-to-zero equations. Examples of acausal models
in both MKL and Modelica are given in Figure 2 and
described in Section 2.1.

A typical implementation of an EOO language, when
used for modeling and simulation, is outlined in Fig-
ure 1. In the first phase, a hierarchically composed
acausal model is elaborated (also called flattened or
instantiated) into a hybrid DAE, describing both con-
tinuous-time behavior (DAEs) and discrete-time
behavior (e.g., when-equations). The second phase
performs equation transformations and code genera-
tion, which produces executable target code. When
this code is executed, the actual simulation of the
model takes place, which produces a simulation re-
sult. In the most common implementations, e.g., Dy-
mola [7] or OpenModelica [26], the first two phases
occur during compile time and the simulation can be
viewed as the run-time. However, this is not a neces-
sary requirement of EOO languages in general, espe-
cially not if the language supports structurally dyna-
mic systems (e.g., Sol [29], FHM [18], or MosiLab [8]).

1.4 Higher-order acausal models

In EOO languages models are typically treated as
compile time entities, which are translated into hybrid
DAESs during the elaboration phase. We have previ-
ously seen how functions can be turned into first-
class citizens, passed around, and dynamically cre-
ated during evaluation. Can the same concept of
higher-order semantics be generalized to also apply to
acausal models in EOO languages? If so, does this
give any improved expressive power in such general-
ized EOO language?

In the next section we describe concrete examples of
acausal modeling using MKL. However, let us first
define what we actually mean by higher-order acausal
models.

Defintion 3 (Higher-order acausal model (HOAM))
A higher-order acausal model is an acausal model,
which can be

1. parametrized with other HOAMs.

2. recursively composed to generate new HOAMs.

3. passed as argument to, or returned as result from
functions.

In the first case of the definition, models can be pa-
rametrized by other models. For example, the con-
structor of a automobile model can take as argument
another model representing a gearbox. Hence, differ-
ent automobile instances can be created with different

gearboxes, as long as the gearboxes respect the inter-
face (i.e., type) of the gearbox parameter of the auto-
mobile model. Moreover, an automobile model does
not necessarily need to be instantiated with a specific
gearbox, but only specialized with a specific gearbox
model, thus generating a new more specific model.

The second case of Definition 3 states that a model
can reference itself; resulting in a recursive model
definition. This capability can for example express
models composed of many similar parts, e.g., discre-
tization of flexible shafts in mechanical systems or
pipes in fluid models.

Finally, the third case emphasizes the fact that
HOAMs are first-class citizens, e.g., that models can
be both passed as arguments to functions and created
and returned as results from functions. Hence, in the
same way as in the case of higher-order functions,
generic reusable functions can be created that perform
various tasks on arbitrary models, as long as they
respect the defined types (interfaces) of themodels’
formal parameters. Consequently, this property en-
ables model transformations to be defined and exe-
cuted within the modeling language itself. For exam-
ple, certain discretizations of models can be imple-
mented as a generic function and stored in a standard
library, and then reused with different user defined
models.

Some special and complex language constructs in
currently available EOO languages express part of the
described functionality (e.g., the redeclare and for-
equation constructs in Modelica). However, in the
next sections we show that the concept of acausal
higher-order models is a small, but very powerful and
expressive language construct that subsumes and/or
can be used to define several other more complex
language constructs. If the end user finds this more
functional approach of modeling easy or hard de-
pends of course on many factors, e.g., previous pro-
gramming language experiences, syntax preferences,
and mathematical skills. However, from a semantic
point of view, we show that the approach is very
expressive, since few language constructs enable rich
modeling capabilities in a relatively small kernel
language.

2 Basic physical modelingin MKL

To concretely demonstrate the power of HOAMs, we
use our tiny research language Modeling Kernel Lan-
guage (MKL). The higher-order function concept of
the language was briefly introduced in the previous

+++ High-Order Acausal Models +++

wi, def Circuit = model() {
def wl = Wire();

def w2 Wire();

def w3 = Wire();

def w4 = Wire();
Resistor(wl,w2,10);
Capacitor (w2,w4,0.01);
Resistor (wl,w3,100);
Inductor (w3,w4,0.1);
VSourceAC (wl,w4,220) ;
Ground (w4) ;

R=10 R=100

VA=220
w2 w3

C=0.01 L=0.1

wd

-

Figure 2. Model of a simple electrical circuit. (a) graphical model of the circuit,
(b) corresponding MKL model definition, (c) Modelica model of the same circuit.

section. In this section we informally outline the basic
idea of physical modeling in MKL; a prerequisite for
Section 3, which introduces higher-order acausal mo-
dels using MKL.

21 Asmple€lectrical circuit

To illustrate the basic modeling capabilities of MKL,
the classic simple electrical circuit model is given in
Figure 2. Part (a) shows the graphical layout of the
model, (b) shows the corresponding textual model
given in MKL. For clarity to the readers familiar with
the Modelica language, we also compare with the
same model given as Modelica textual code (c).

In MKL, models are always defined anonymously. In
the same way as for anonymous functions, an
anonymous model can also be given a name, which is
in this example done by giving the model the name
circuit. The model takes zero formal parameters,
given by the empty tuple (parenthesized list) to the
right of the keyword model. The contents of the model is
given within curly braces. The first four statements
define four new wires, i.e., connection points from
which the different components (model instances) can
be connected. The six components defined in this cir-
cuit correspond to the layout given in Figure 2a. Con-
sider the first resistor instantiated using the following:

Resistor(wl, w2, 10);

The two first arguments state that wires wl and w2
are connected to this resistor. The last argument ex-
presses that the resistance for this instance is 10 Ohm.
Wire w2 is also given as argument to the capacitor,
stating that the first resistor and the capacitor are
connected using wire w2. Modeling using MKL dif-
fers in several ways compared to Modelica (Fig-
ure 2¢). First, models are not defined anonymously in

model Circuit

R=10) ;
C=0.01);
R=100) ;
=0.1);
(VA=220) ;

Resistor R1(
Capacitor C(
Resistor R2(
Inductor L(L
VsourceAC AC
Ground G;

equation

h
i

Modelica and are not treated as
firstclass citizens. Second, the
way acausal connections are de-
fined between model instances
differs. In MKL, the connection
(in this electrical case a wire), is

end Circui

connect (AC.p, R1.p)i created and then connected to
connect (R1.n, C.p

p

) . o
connect (C.n, AC.n): the model instances by giving it
connect (R1.p, R2.p); as arguments to the creation of
)

(
(
(
(
connect (R2.1, L.p); sub-model instances. In Mode-
connect (L.n, C.n);

(

t

connect (AC.n, G.pi; lica, a special connect-equation
i construct is defined in the lan-
guage. This construct is used to
define binary connections be-
tween connectors of sub-model
instances. From a user point of view, both approaches
can be used to express acausal connections between
model instances. Hence, we let it be up to the reader
to judge what the most natural way of defining inter-
connections is. However, from a formal semantics
point of view, in regards to HOAMs, we have found it
easier to encode connections using ordinary parame-
ter passing style.

2.2 Connections, variables and flow nodes

The concept of wire is not built into the language.
Instead, it is defined using an anonymous function,
referring to the built-in constructs var () and £low():

def Wire = func () {
(var (), flow())
}i

Here, a function called Wire is defined by using the
anonymous function construct func. The definition
states that the function has an empty formal parame-
ter list (i.e., takes an empty tuple () as argument) and
returns a tuple (var(),flow()), consisting of two
elements. A tuple is expressed as a sequence of terms
separated by commas and enclosed in parentheses.

The first element of the defined tuple expresses the
creation of a new unknown continuous-time variable
using the syntax var (). The variable could also been
assigned an initial value, which is used as a start
value when solving the differential equation system.
For example, creating a variable with initial value 10
can be written using the expression var (10). Vari-
ables defined using var() correspond to potential
variables, i.e., the voltage in this example.

The second part of the tuple expresses the current in
the wire by using the construct £1low (), which creates

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

T
N

+++ High-Order Acausal Models +++

a new flow-node. This construct is the essential part
in the formal semantics of [4]. However, in this in-
formal introduction, we just accept that Kirchhoff’s
current law with sum to zero at nodes is managed in a
correct way.

In the circuit definition (Figure 2b) we used the syn-
tax Wire (), which means that the function is invoked
without arguments. The function call returns the tuple
(var(),flow()). Hence, the Wire definition is used
for encapsulating the tuple, allowing the definition to
be reused without the need to restate its definition
over and over again.

2.3 Modelsand equations systems
The main model in this example is already given as
the Circuit model. This model contains instances of
other models, such as the Resistor. These models are
also defined using model definitions. Consider the
following two models:
def TwoPin = model((pv,pi), (nv,ni),v) {
vV = pv - nv;
0 = pi + ni;

}i

def Resistor = model (p,n,R) {

def (_,pi) = p;

def v = var();

TwoPin(p,n,v) ;

R¥pi=v;

bi

In the same way as for Circuit, these sub-models are
defined anonymously using the keyword model fol-
lowed by a formal parameter and the model’s content
stated within curly braces. A formal parameter can be
a pattern and pattern matching is used for decompos-
ing arguments. Inside the body of the model, defini-
tions, components, and equations can be stated in any
order within the same scope.
The general model TwoPin is used for defining com-
mon behavior of a model with two connection points.
TwoPin is defined using an anonymous model, which
here takes one formal parameter. This parameter
specifies that the argument must be a 3-tuple with the
specified structure, where pv, pi, nv, ni, and v are
pattern variables. Here pv means positive voltage,
and ni negative current. Since the illustrated lan-
guage is untyped, illegal patterns are not discovered
until run-time.

Both models contain new definitions and equations.
The equation v = pv - nv; in TwoPin states the
voltage drop over a component that is an instance of

TwoPin. The definition of the voltage v is given as a
formal parameter to TwoPin. Note that the direction of
the causality of this formal parameter is not defined at
modeling time.

The resistor is defined in a similar manner, where the
third element R of the input parameter is the resis-
tance. The first line def (_,pi) = p; is an alterna-
tive way of pattern matching where the current pi is
extracted from p. The pattern _ states that the
matched value is ignored. The second row defines a
new variable v for the voltage. This variable is used
both as an argument to the instantiation of TwoPin
and as part of the equation R*pi=v; stating Ohm’s
law. Note that the wires p and n are connected di-
rectly to the TwoPin instance.

The inductormodel is defined similarly to the Resis-
tor model:

def Inductor = model(p,n,L){

def (_,pi) = p;

def v = var(0);

TwoPin(p,n,v) ;

L*der (pi) = v;

bi

The main difference to the Resistor model is that
the Inductor model contains a differential equation
L*der (pi) = v;, where the pi variable is differenti-
ated with respect to time using the built-in der opera-
tor. The other sub-models shown in this example
(Ground, VSourceAC, and Capacitor) is defined in a
similar manner as the one above.

24 Executing the model

Recall Figure 1, which outlined the compilation and
simulation process for a typical EOO language. When
a model is evaluated (executed) in MKL, this means
the process of elaborating a model into a DAE.
Hence, the steps of equation transformation, code
generation, and simulation are not part of the cur-
rently defined language semantics. These latter steps
can be conducted in a similar manner as for an ordi-
nary Modelica implementation. Alternatively, the
resulting equation system can be used for other pur-
poses, such as optimization [14]. In the next section
we illustrate several examples of how HOAMs can be
used. Consequently, these examples concern the use
of HOAMs during the elaboration phase, and not
during the simulation phase. Further discussion on
future aspects of HOAMs during these latter phases is
given in Section 4.

+++ High-Order Acausal Models +++

3 Examplesof higher-order modeling

In Definition 3 (Section 1.4) we defined the meaning
of HOAMs, giving three statements on how HOAMs
can be used. This section is divided into sub-sections,
where we exemplify these three kinds of usage by
giving examples in MKL.

3.1 Parameterization
A common goal of model design is to make model
libraries extensible and reusable. A natural require-
ment is to be able to parameterize models with other
models, i.e., to reuse a model by replacing some of
the submodels with other models. To illustrate the
main idea of parameterized acausal models, consider
the following oversimplified example of an automo-
bile model, where we use Connection() with the
same meaning as the previous Wire():
def Automobile = model (Engine, Tire){

def cl1 = Connection();

def c2 = Connection();

Engine(cl);

Gearbox (c1,c2) ;

Tire(c2); Tire(c2); Tire(c2); Tire(c2)

}i

In the example, the automobile is defined to have two
formal parameters; an Engine model and a Tire
model. To create a model instance of the automobile,
the model can be applied to a specific engine, e.g., a
model EngineVé and some type of tire, e.g. TireTypeA:

Automobile (EngineVé, TireTypeA) ;

If later on a new engine was developed, e.g., Engi-
neVs, a new automobile model instance can be cre-
ated by changing the arguments when the model
instance is created, e.g.,

Automobile (EngineVs, TireTypeA) ;

Hence, new model instances can be created without
the need to modify the definition of the Automobile
model. This is analogous to a higher-order function
which takes a function as a parameter.

In the example above, the definition of Automobile
was not parametrized on the Gearbox model. Hence,
the Gearbox definition must be given in the lexical
scope of the Automobile definition. However, this
model could of course also be defined as a parameter
to Automobile.

This way of reusing acausal models has obvious
strengths, and it is therefore not surprising that con-
structs with similar capabilities are available in some
EOO languages, e.g., the special redeclare con-

struct in Modelica. However, instead of creating a
special language construct for this kind of reuse, we
believe that HOAMs can give simpler and a more
uniform semantics of a EOO language.

3.2 Recursively defined models

In many applications it is enough to hierarchically
compose models by explicitly defining model in-
stances within each other (e.g., the simple Circuit
example). However, sometimes several hundreds of
model instances of the same model should be con-
nected to each other. This can of course be achieved
manually by creating hundreds of explicit instances.
However, these results in very large models that are
hard to maintain and get an overview of.

One solution could be to add a loop-construct to the
EOO language. This is the approach taken in Mode-
lica, with the for-equation construct. However, such
an extra language construct is actually not needed to
model this behavior. Analogously to defining recur-
sive functions, we can define recursive models. This
gives the same modeling possibilities as adding the
for-construct. However, it is more declarative and we
have also found it easier to define a compact formal
semantics of the language using this construct.
Consider Figure 3 which shows a Mechatronic model,
i.e., a model containing components from both the
electrical and mechanical domain. The left hand side
of the model shows a simple direct current (DC)
motor. The electromotoric force (EMF) component
converts electrical energy to mechanical rotational
energy. If we recall from Section 1, the connection
between electrical components was defined using the
Wire definition. However, in the rotational mechani-
cal domain, the connection is instead defined by us-
ing the angle for the potential variable and the torque
for flow. The rotational connection is defined as follows:

def RotCon = func(){(var(), flow())};

In the middle of the model in Figure 3 a rotational
body with Inertia J=0.2 is defined. This body is
connected to a flexible shaft, i.e., a shaft which is
divided into a number of small bodies connected in
series with a spring and a damper in parallel in be-
tween each pair of bodies. N is the number of shaft
elements that the shaft consists of. A model of the
mechatronic system is described by the following
MKL source code.

def MechSys = model () {
def cl = RotCon();
def c2 = RotCon();

h
i

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

T
N

+++ High-Order Acausal Models +++

DCMotor (cl) ;
Inertia(cl,c2,0.2);
FlexibleShaft (c2,RotCon(),120);

}i

The most interesting part is the definition of the com-
ponent FlexibleShaft. This shaft is connected to the
Inertia to the left. To the right, an empty rotational
connection is created using the construction Rot-
Con(), resulting in the right side not being connected.
The third argument states that the shaft should consist
of 120 elements.

Can these 120 elements be describedwithout the need
of code duplication? Yes, by the simple but powerful
mechanism of recursively defined models. Consider
the following self-explanatory definitions of
ShaftElement:

def ShaftElement = model (ca,cb) {
def cl = RotCon();
Spring(ca,cl,8);
Damper (ca,cl,1.5);
Inertia(cl,cb,0.03);

}i
This model represents just one of the 120 elements
connected in series in the flexible shaft. The actual
flexible shaft model is recursively defined and makes
use of the ShaftElement model:

defrec FlexibleShaft = model(ca,cb,n){
if (n==1)
ShaftElement (ca, cb)
else(
def cl = RotCon();
ShaftElement (ca,cl);
FlexibleShaft (cl,cb,n-1);

bi
}i
The recursive definition is analogous to a standard
recursively defined function, where the if-expression
evaluates to false, as long as the count parameter n is
not equal to 1. For each recursive step, a new connec-
tion is created by defining c1, which connects the
shaft elements in series.

When the MechSys model is elaborated using our
MKL prototype implementation, it results in a DAE
consisting of 3159 equations and the same number of
unknowns. It is obviously beneficial to be able to
define recursive models in cases such as the one
above, instead of manually creating 120 instances of
a shaft element.

However, it is still a bit annoying to be forced to write
the recursive model definition each time one wants to
serialize a number of model instances. Is it possible to
capture and define this serialization behavior once
and for all, and then reuse this functionality?

3.3 Higher-order functionsfor generic model
transformation

In the previous section we have seen how models can
be reused by applying models to other models, or to
recursively define models. In this section we show
that it is indeed possible to define several kinds of
model transformations by using higher-order func-
tions. These functions can in turn be part of a model-
ing language’s standard library, enabling reuse of
model transformation functions.

Recall the example from Section 1.2 of higher-order
functions returning other anonymously defined func-
tions. Assume that we want to create a generic func-
tion, which can take any two models that have two
ports defined (Resistor, Capacitor, ShaftElement
etc.), and then compose them together by connecting
them in parallel, and then return this new model:
def composeparallel = func(M1,M2){
model (p,n) {
M1l (p,n);
M2 (p,n);
}
bi
However, our model Resistor etc. does not take two
arguments, but 3, where the last one is the value for
the particular component (resistance for the Resis-

ChMof
Note that the last ele- - DEARY Shaft elements: 1..N
ment of the shaft is con- . et Mty I " spang ;
J=02 | ® -

nected to the second port wVoliage n e | (3 " |
of the FlexibleShaft | Source e s e === - . I=== :
model, since the shaft L V=60 ' : T Damper |
element created when ; oz | .| e

, R K Ground | e |
the if-expression is e m e e e e e e I

evaluated to true takes

Figure 3. A mechatronic system with a direct current (DC) motor to the left and a flexible

parameter cb as an ar-
gument.

shaft to the right. The flexible shaft consists of 1 to NV elements, where each element includes
an inertia, a spring, and a damper.

+++ High-Order Acausal Models +++

tor, inductance for the Inductor etc.). Hence, it is
convenient to define a function that sets the value of
this kind of model and returns a more specialized
model:

def set = func(M,val) {
model (p,n) {
M(p,n,val);
}

}i
For example, a new model Foo that composes two

other models can be defined as follows:

def Foo = composeparallel (set (Resistor, 100),
set (Inductor, 0.1));

A standard library can then further be enhanced with
other generic functions, e.g., a function that composes
two models in series:

def composeserial = func(M1,M2,Con) {
model (p,n) {
def w =

M1 (p,w);

M2 (w,n) ;

Con() ;

}
}i

However, this time the function takes a third argu-
ment, namely a connector, which is used to create the
connection between the models created in series.
Since different domains have different kinds of con-
nections (Wires, RotCon etc.), this must be supplied
as an argument to the function. These connections are
defined as higher-order functions and can therefore
easily be passed as a value to the composeserial
function.

We have now created two simple generic functions
which compose models in parallel and in series.
However, can we create a generic function that takes
a model M, a connector C, and an integer n, and
then returns a new model where n number of models
M has been connected in series, using connector C?
If this is possible, we do not have to create a special
recursive model for the FlexibleShaft, as shown in
the previous section.

Fortunately, this is indeed possible by combining a
generic recursive model and a higher-order function.
First, we define a recursive model recmodel:

defrec recmodel = model (M,C,ca,cb,n){
if (n==1)
M(ca,cb)
elsef
def cl1 = C();
M(ca,cl);
recmodel (M, C,cl,cb,n-1);

}i

Note the similarities to the recursively defined model
FlexibleShaft. However, in this version an arbitrary
model M is composed in series, using connector pa-
rameter C. To make this model useful, we encapsulate
it in a higher order function, which takes a model M, a
connector C, and an integer number n of the number
of wanted models in series as input:

def serialize = func(M,C,n)
model (ca, cb) {
recmodel (M, C,ca,cb,n);

}
}i
Now, we can once again define the mechatronic sys-
tem given in Figure 3, but this time by using the ge-
neric function serialize:

def MekSys2 = model () {
def cl = RotCon();
def c2 = RotCon();
DCMotor (cl) ;
Inertia(cl,c2,0.2);
def FlexibleShaft =

serialize(ShaftElement,RotCon,120);

FlexibleShaft (c2,RotCon()) ;

bi
Even if the serialize function might seem a bit com-
plicated to define, the good news is that such func-
tions usually are created by library developers and not
end-users. Fortunately, the end-user only has to call
the serialize function and then use the newly created
model. For example, to create a new model, where 50
resistors are composed in series is as easy as the fol-
lowing:

def ResS50=serialize(set(Resistor,100),Wire,50)

4 Future perspectives of higher-order
modeling

Our current design of higher-order acausal modeling
capabilities as presented here is restricted to execut-
ing during the compiler (or interpreter) model elabo-
ration phase, i.e., it cannot interact with run-time
objects during simulation. However, removing this
restriction gives interesting possibilities for run-time
higher-order acausal modeling:

e The run-time results of simulation can be used in
conjunction with models as first-class objects in
the language, i.e., run-time creation of models,
composition of models, and returning models.
This is also useful in applications such as model-
based optimization or modelbased control, influ-
enced by results from (on-line) simulation of
models, e.g., [9].

h
i

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

LY

+++ High-Order Acausal Models +++

e Structural variability [8, 18, 19, 29] of models
and systems of equations means that the model
structure can change at run-time, e.g., change in
causality and/or number of equations. Run-time
support for higher-order acausal model can be
seen as a general approach to structurally variable
systems. These ideas are discussed in [18, 19] in
the context of Functional Hybrid Modeling (FHM).

These run-time modeling facilities provide more
flexibility and expressive power but also give rise to
several research challenges that need to be addressed:

e How can static strong type checking be preserved?

e How can high performance from compile-time
optimizations be preserved? One example is in-
dex reduction, which requires symbolic manipu-
lation of equations.

e How can we define a formal sound semantics for
such a language?

Another future generalization of higher-order acausal
modeling would be to allowmodels to be propagated
along connections. For example, a water source could
be connected to a generic flow connection structure
with unspecified media. The selection of a media of
type water in the source would automatically propa-
gate to other objects.

5 Redated work

The main emphasis of this work is to explore the
language concept of HOAMs in the context of EOO
languages. In the following we briefly discuss three
aspects of work which is related to this topic.

51 Functional Hybrid Modeling

As mentioned in the introduction, our notation of
HOAMs has similarities to first-class relations on
signals, as outlined in the context of Functional Hy-
brid Modeling (FHM) [18, 19]. The concepts in FHM
are a generalization of Functional Reactive Program-
ming (FRP) [28], which is based on reactive pro-
gramming with causal hybrid modeling capabilities.
Both FHM and FRP are based on signals that concep-
tually are functions over time. While FRP supports
causal modeling, the aim of FHM is to support
acausal modeling with structurally dynamic systems.
However, the work of FHM is currently at an early
stage and no published formal semantics or imple-
mentation currently exist.

HOAMs are similar to FHM’s relations on signals in
the sense that they are both first-class and that they
can recursively reference themselves. In this paper we

have showed how recursion can be used to define
large structures of connected models, while in [19]
ideas are outlined how it can be used for structurally
dynamic systems.

One difference is that FHM’s relations on signals are
as its name states only relations on signals, while
MKL acausal models can be parameterized on any
type, e.g., other HOAMs or constants. By contrast,
FHM’s relation on signals can be parameterized by
other relations or constants using ordinary functional
abstraction, i.e., free variables inside a relation can be
bound by a surrounding function abstraction. There
are obvious syntactic differences, but the more spe-
cific semantic differences are currently hard to com-
pare, since there are no public semantic specification
available for any FHM language.

The work with MKL has currently focused on formal-
izing a kernel language for the elaboration process of
typical EOO languages, such as Modelica. Hence, the
formal semantics of MKL defined in [4] investigates
the complications when HOAMs are combined with
flow variables, generating sum-to-zero equations.
How this kind of issue is handled in FHM is currently
not published.

5.2 Metaprogramming and metamodeling

The notion of higher-order models is related to, but
different ~ frommetamodeling andmetaprogram-
ming.Ametaprogram is a programthat takes other
programs/models as data and produces pro-
grams/models as data, i.e., meta-programs can ma-
nipulate object programs [21]. A metamodel may also
have a subset of this functionality, i.e., it may specify
the structure of other models represented as data, but
not necessarily be executable and produce other mod-
els. Staged metaprogramming can be achieved by quot-
ing/unquoting operations applied in two or more stages,
e.g., as in MetaML [25] and Template Haskell [22].
We have earlier developed a simple metaprogram-
ming facility for Modelica by introducing quot-
ing/unquoting mechanisms [2], but with limited abil-
ity to perform operations on code. A later extension
[12] introduced general metaprogramming operations
based on pattern-matching and transformations of
abstract-syntax tree representations of models/pro-
grams similar to those found in many functional pro-
gramming languages.

By contrast, the notion of higher-order models in this
paper allows direct access to models in the language,
e.g., passing models to models and functions, return-
ing models, etc, without first representing (or view-

+++ High-Order Acausal Models +++

ing, reifying) models as data. This allows more inte-
grated access to such facilities within the language
including integration with the type system. Moreover,
it often implies simpler usage and increased re-use
compared to what is typically offered by metapro-
gramming approaches.

Metaprogramming, on the other hand, offers the pos-
sibility of greater generality on the allowed opera-
tions on models, e.g., symbolic differentiation of
model equations, and the possibility of compile-time
only approaches without any run-time penalty.

We should also mention the common usage of inter-
pretive scripting languages, e.g., Python, or add-on
interpretive scripting facilities using algorithmic parts
of the modeling language itself such as in Open-
Modelica [12] and Dymola [7]. This works in prac-
tice, but is less well integrated and typically a bit ad
hoc. This either requires two languages (e.g., Python
and Modelica), or a separate interpretive implementa-
tion of a subset of the same language (e.g., Modelica
scripting) which often give some differences in se-
mantics, ad hoc restrictions, and inconsistent or par-
tially missing integration with a general type system.

5.3 Modelicaredeclare and for equations

Modelica [17] provides a powerful facility called
redeclaration, which has some capabilities of higher
order models. Using redeclare, models can be passed
as arguments to models (but not to functions using
ordinary argument passing mechanisms e.g., at run-
time), and returned from models in the context of
defining a new model. For example:

model RefinedResistorCircuit =
GenericResistorCircuit (
redeclare model ResistorModel=TempResistor);

Redeclaration can also be used to adapt a model when
it is inherited:

extends GenericResistorCircuit
(redeclare model ResistorModel=TempResistor)

Redeclare is a compile-time facility which operates
during the model elaboration phase. Moreover, using
redeclare it is not possible to pass a model to a func-
tion, or to return a model from a function. Redeclara-
tion is similar to C++ templates and Java Generics in
that it allows passing types/models, but ismore
closely integrated in the language since it part of the
class/model concept rather than being a completely
separate feature. The Modelica redeclare can be seen
as a special case of the more general concept of
higher-order acausal models.

Modelica also provides the concept of for-equations
to express repetitive equations and connection struc-
tures. Since iteration can be expressed as recursion,
also for models as shown in Section 3.2, the concept
of for-equations can be expressed as a special case of
the more general concept of recursive models in-
cluded in higher-order acausal models.

Even though EOO languages, such as Modelica, does
not support HOAMs at the syntax level, HOAMs can
still be very useful as a semantic concept for describ-
ing a precise formal semantics of the language. Lan-
guage constructs, such as for-equations, can then be
transformed down to a smaller kernel language. Hav-
ing a small precisely defined language semantics can
then make the language specification less ambiguous,
enable better formal model checking possibilities, as
well as providing more accurate model exchange.

6 Conclusions

We have in this paper informally presented how the
concept of higher-order functions can be combined
with acausal models. This concept, which we call
higher-order acausal models (HOAMs), has been
shown to be a fairly simple and yet powerful con-
struct, which enables both parameterized models and
recursively defined models. Moreover, by combining
it with functions, we have briefly shown how it can
be used to create reusable model transformation func-
tions, which typically can be part of a model lan-
guage’s standard library. The examples and the im-
plementation were given in a small research language
called Modeling Kernel Language (MKL), and it was
illustrated how HOAMs can be used during the elabo-
ration phase. However, the concept is not limited to
the elaboration phase, and we believe that future
research in the area of HOAMs at runtime can enable
both more declarative expressiveness as well as sim-
plified semantics of EOO languages.

Acknowledgements

We would like to thank Jeremy Siek and the anony-
mous reviewers for many useful comments on this
paper. This research work was funded by CUGS (the
National Graduate School in Computer Science,
Sweden) and by Vinnova under the NETPROG Safe
and Secure Modeling and Simulation on the GRID
project.

References

[1] M. Andersson. Object-Oriented Modeling and Simulation
of Hybrid Systems. PhD thesis, Dept. Automatic Control,
Lund Institute of Technology, Sweden, December 1994.

h
i

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

T
N

+++ High-Order Acausal Models +++

[2] P. Aronsson, P. Fritzson, L. Saldamli, P. Bunus, K.
Nystrom. Meta Programming and Function Overloading
in OpenModelica. In Proc. 3™ Int. Modelica Conference,
pages 431-440, Linkoping, Sweden, 2003.

[3] P.I. Barton. The Modelling and Simulation of Combined
Discrete/Continuous Processes. PhD thesis, Dept.
Chemical Engineering, Imperial Collage of Science,
Technology and Medicine, London, UK, 1992.

[4] D. Broman. Flow Lambda Calculus for Declarative
Physical Connection Semantics. Technical Reports in
Computer and Information Science No. 1, LIU Electronic
Press, 2007.

[5] E. Christen, K. Bakalar. VHDL-AMS - A Hardware De-
scription Language for Analog and MixedSignal Applica-
tions. 1IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 46(10):1263—
1272, 1999.

[6] O.-J. Dahl, K. Nygaard. SIMULA: an ALGOL-based
simulation language. Communications of the ACM,
9(9):671-678, 1966.

[7] Dynasim. Dymola — Dynamic Modeling Laboratory
(Dynasim AB). http://www.dynasim.se/ [Last accessed:
April 30, 2008].

[8] C. Nytsch-Geusen et. al. MOSILAB: Development of a
Modelica based generic simulation tool supporting model
structural dynamics. In Proc. 4™ Int. Modelica Confer-
ence, Hamburg, Germany, 2005.

[9] R. Franke, M. Rode, K. Kriiger. On-line Optimization of
Drum Boiler Startup. In Proc. 3™ Int. Modelica Confer-
ence, pp. 287-296, Link6ping, Sweden, 2003.

[10] P. Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley-IEEE Press, New
York, USA, 2004.

[11] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K.
Nystrom, L. Saldamli, D. Broman, A. Sandholm. Open-
Modelica - A Free Open-Source Environment for System
Modeling, Simulation, and Teaching. In IEEE Int. Sym-
posium on Computer-Aided Control Systems Design,
Munich, Germany, 2006.

[12] P. Fritzson, A. Pop, P. Aronsson. Towards Comprehen-
sive Meta-Modeling and Meta-Programming Capabilities
in Modelica. In Proc. 4™ Int. Modelica Conference, pages
519-525, 2005.

[13] G. Fabian. 4 Language and Simulator for Hybrid Sys-
tems. PhD thesis, Inst. for Programming research and Al-
gorithmics, Technische Universiteit Eindhoven, Nether-
lands, 1999.

[14] J. Akesson. Languages and Tools for Optimization of
Large-Scale Systems. PhD thesis, Dept. Automatic Con-
trol, Lund Institute of Technology, Sweden, November 2007.

[15] MathWorks. The Mathworks — Simulink — Simulation
and Model-Based Design. http://www.mathworks.
com/products/simulink/ [Last accessed: Nov. 8, 2007].

[16] R. Milner, M. Tofte, R. Harper, D. MacQuee. The Defini-
tion of Standard ML - Revised. The MIT Press, 1997.

[17] Modelica Association. Modelica — A Unified Object-
Oriented Language for Physical Systems Modeling —

Language Specification Version 3.0, 2007. Available
from: http://www.modelica.org.

[18] H. Nilsson, J. Peterson, P. Hudak. Functional Hybrid
Modeling. In Practical Aspects of Declarative Languages:
5™ Int. Symposium, PADL 2003, vol. 2562 of LNCS,
pages 376-390, New Orleans, Lousiana, USA, January
2003. Springer-Verlag.

[19] H. Nilsson, J. Peterson, P. Hudak. Functional Hybrid
Modeling from an Object-Oriented Perspective. In Proc.
1*" Int. Workshop on Equation-Based Object-Oriented
Languages and Tools, pages 71-87, Berlin, Germany,
2007. Linkdping University Electronic Press.

[20] M. Oh, C.C. Pantelides. A modelling and Simulation
Language for Combined Lumped and Distributed Pa-
rameter Systems. Computers and Chemical Engineering,
20(6-7):611-633, 1996.

[21] T. Sheard. Accomplishments and research challenges in
meta-programming. In Proc. Workshop on Semantics,
Applications, and Implementation of Program Generation,
vol 2196 of LNCS, pages 2-44. SpringerVerlag, 2001.

[22] T. Sheard, S.P. Jones. Template metaprogramming for
Haskell. In Haskell ’02: Proc. 2002 ACM SIGPLAN
workshop on Haskell, pages 1-16, New York, USA,
2002. ACM Press.

[23] S.P. Jones. Haskell 98 Language and Libraries — The Re-
vised Report. Cambridge University Press, 2003.

[24] B. Stroustrup. 4 history of C++ 1979-1991. In HOPLIL:
The second ACM SIGPLAN conference on History of
programming languages, pages 271-297, New York,
USA, 1993. ACM Press.

[25] W. Taha, T. Sheard. MetaML and multi-stage program-
ming with explicit annotations. Theoretical Computer
Science, 248(1-2):211-242, 2000.

[26] The OpenModelica Project. www.openmodelica.org
[Last accessed: May 8, 2008].

[27] D.A. van Beek, K.L. Man, MA. Reniers, J.e. Rooda,
R.R.H Schiffelers. Syntax and consistent equation se-
mantics of hybrid Chi. The Journal of Logic and Alge-
braic Programming, 68:129-210, 2006.

[28] Zhanyong W., P. Hudak. Functional reactive program-
ming from first principles. In PLDI ’00: Proc. ACM
SIGPLAN 2000 conference on Programming language
design and implementation, pages 242-252, New York,
USA, 2000. ACM Press.

[29] D. Zimmer. Enhancing Modelica towards variable struc-
ture systems. In Proc. 1% Int. Workshop on Equation-
Based Object-Oriented Languages and Tools, pages 61—
70, Berlin, Germany, 2007. Linkdping University Elec-
tronic Press.

Corresponding author : David Broman,
Department of Information and Computer Science,
Linkoping University, Sweden
davbr@ida.liu.se

Accepted EOOLT 2008, June 2008
Received: September 20, 2008
Accepted: December 11, 2008

