
S I M U L AT I O N
NEWS EUROPE

Journal on Developments and
Trends in Modelling and Simulation

Special Issue

Volume 18 Number 2 August 2008, ISSN 0929-2268

ARGESIM

SNE
Special Issue:

Object-oriented and Structural-dynamic

Modeling and Simulation II

+++ Editorial Contents +++
SN

E
18

/2
, A

ug
us

t
20

08

2

Editorial SNE Special Issue
Object-oriented and Structural-dynamic Modelling and Simulation II

The SNE special issues on Object-oriented and Structural-
dynamic Modelling and Simulation emphasize recent develop-
ments in languages and tools for object-oriented modelling of
complex systems and on approaches, languages, and tools for
structural-dynamic systems.
Computer aided modelling and simulation of complex systems,
using components from multiple application domains, have in
recent years witnessed a significant growth of interest. In the last
decade, novel equation-based object-oriented (EOO) modelling
languages, (e.g. Modelica, gPROMS, and VHDL-AMS) based on
acausal modelling using equations have appeared. These lan-
guages allow modelling of complex systems covering multiple
application domains at a high level of abstraction with reusable
model components.
This need and interest in EOO languages additionally raised the
question for modelling approaches and language concepts for
structural dynamic systems. Appropriate control structures like
state charts in EOO languages also allow composition of model
components ‘in serial’ – an interesting new strategy for modelling
structural- dynamic systems.
There exist several different communities dealing with both
subjects, growing out of different application areas. Efforts for
bringing together these disparate communities resulted in a new
workshop series, EOOLT workshop series, and established spe-
cial sessions on structural-dynamic modelling and simulation
(SDMS) within simulation conferences. In August 2007, the 1st

International Workshop on Equation-Based Object-Oriented
Languages and Tools – EOOLT 2007 – took place in Berlin,
followed by the 2nd workshop EOOLT 2008 in Cyprus, July 2008,
and a special session at EUROSIM 2007 Congress (September
2007, Ljubljana) focused on structural dynamic modelling (EU-
ROSIM 2007- SDMS Special Session), to be continued at
MATHMOD 2009 in Vienna.
SNE 17/2, the SNE special issue on Object-oriented and Struc-
tural-dynamic Modelling and Simulation – I presented selected
contributions from EOOLT 2007 and from EUROSIM 2007 –
SDSM. This SNE special issue Object-oriented and Structural-
dynamic Modelling and Simulation – II - SNE 18/2 - continues
with overview, state-of-the-art, and development of object-
oriented and structural-dynamic modelling and simulation with
further four contributions from EUROSIM 2007 – SDSM and
with three contributions from EOOLT 2008.
The first two contributions investigate and describe structural-
dynamic changes by means of hybrid automata and UML state
charts, resp., trying to combine continuous and discrete world
views (‘Discrete Hybrid Automata Approach to Structural and
Dynamic Modelling and Simulation’, G. Mušic and B. Zupancic;
‘Modeling of Structural-dynamic Systems by UML Statecharts in
AnyLogic’, N. Popper et al).
The paper ‘Classical and Statechart-based Modeling of State
Events and of Structural Changes in the Modelica Simulator
Mosilab’ by G. Zauner et al. compares classical IF- and WHEN –
clause constructs with state charts for modelling state events, with
examples in a Java-based simulator.
The fourth and the fifth paper, ‘Numerical Solution of Continuous
Systems with Structural Dynamics’ by O. Enge-Rosenblatt, and
‘Selection of Variables in Initialization of Modelica Models’ by

M. Najafi’ discuss algorithmic and numerical aspects in handling
structural changes and variable initialising, resp.
The sixth contribution ‘Introducing Messages in Modelica for
Facilitating Discrete-Event System Modeling’ by V. Sanz under-
lines that the Modelica approach is also suited for discrete-event
modelling. The issue concludes with the contribution ‘Multi-
Aspect Modeling in Equation-Based Languages’ by D. Zimmer,
addressing general topics and further developments.
It is intended to publish related contributions from EOOLT 2008
and from MATHMOD 2009 SDMD special session in coming
regular issues of SNE.
The editors would like to thank all authors for their co-operation
and for their efforts, e.g. for sending revised versions of their
contributions for SNE, and hope, that the selected papers present
a good overview and state-of-the-art in object-oriented and struc-
tural-dynamic modelling and simulation.

Peter Fritzson, Linköping University, Sweden
François Cellier, ETH Zurich, Switzerland
Christoph Nytsch-Geusen, University of Fine Arts,
 Berlin, Germany
Peter Schwarz, Fraunhofer EAS – Dresden, Germany
Felix Breitenecker, Vienna Univ. of Technology, Austria
Borut Zupancic, Univ. Ljubljana, Slovenia

Proceedings EUROSIM 2007 - 6th EUROSIM Congress on Modeling
and Simulation, B. Zupancic, R. Karba, S. Blazic (Eds.); ARGESIM /
ASIM, Vienna (2007), ISBN: 978-3-901608-32-2;

Proceedings of the 2nd International Workshop on Equation-Based
Object-Oriented Languages and Tools – EOOLT 2008, P. Fritzson, F.
Cellier, Ch. Nytsch-Geusen (eds), Linköping University Electronic
Press 2008, ISSN (online): 1650-3740; www.ep.liu.se/ecp/024/

Contents

Editorial, Call for papers.. 4
Discrete Hybrid Automata Approach to

Structural Dynamic Modelling and Simulation
Gašper Muši , Borut Zupan i ... 5

Modeling of Structural-dynamic Systems by
UML Statecharts in AnyLogic
Daniel Leitner et al. ... 12

Classical and Statechart-based Modeling of State Events
and of Structural Changes in the Modelica Simulator
Mosilab
Günther Zauner, Florian Judex, Peter Schwarz 17

Numerical Simulation of Continuous Systems
with Structural Dynamics
O. Enge-Rosenblatt, J. Bastian, C. Clauß, P. Schwarz 24

Impressum ... 32
Selection of Variables in Initialization of Modelica Models

Mosoud Najafi.. 33
Introducing Messages in Modelica for Facilitating

Discrete-Event System Modeling
Victorino Sanz, Alfonso Urquia, Sebastian Dormido 42

Multi-Aspect Modeling in Equation-Based Languages
Dirk Zimmer .. 54

+++ Editorial Cal l for Contr ibutions SNE 19/2 +++
SN

E
18

/2
, A

ug
us

t
20

08

4

Dear Readers,
Due to the big interest in object-oriented and structural-dynamic modelling we decided to continue in 2008 with
this subject, publishing this year a further SNE Special Issue ‘Object-oriented and Structural-dynamic Modelling
and Simulation II’ – SNE 18/2. SNE 17/2, ‘Object-oriented and Structural-dynamic Modelling and Simulation I’,
contained revised and/or extended versions from contributions to EOOLT 2007 workshop and from EUROSIM
2007 special session on structural-dynamic systems . This issues continues with further contributions from EU-
ROSIM 2007 special session on structural-dynamic systems, and from EOOLT 2008 workshop- all fulfilling the
editorial policy of SNE Special Issues. Further contributions, which were suggested as candidates (e.g. from
Modelica Conference 2008) will be published in regular SNE issues (SNE 18/3-4, SNE 19/1) – so that the subject
‘Object-oriented and Structural-dynamic Modelling and Simulation’ has become an emphasis for SNE in the
years 2007, 2008, and 2009.
 The already announced SNE Special Issue on ‘Verification and Validation’ is postponed to 2009, to appear with
new title “Quality Aspects in Modeling and Simulation’ (SNE 19/2).
I would like to thank all authors and people who helped in managing this SNE Special Issue, especially the
Guest Editors, Peter Schwarz (Fraunhofer EAS, Dresden, Germany), Borut Zupancic (Univ. Ljubljana, Slove-
nia), Peter Fritzson (Linköping University, Sweden), François Cellier (ETH Zurich, Switzerland), and David
Broman, (Linköping University, Sweden).

Felix Breitenecker, Editor-in-Chief SNE; Felix.Breitenecker@tuwien.ac.at

Call for Contributions
SNE Special Issue 2009 “Quality Aspects in Modeling and Simulation“

Simulation is an important method which helps to
take right decisions in system planning and operation.
Building high-quality simulation models and using
the right input data are preconditions for achieving
significant and usable simulation results. For this
purpose, a simulation model has to be well-defined,
consistent, accurate, comprehensive and applicable.

The ASIM-Working Group Simulation in Production
and Logistics accommodates the increased signifi-
cance of quality aspects in simulation studies and will
publish the forthcoming special issue in the Simula-
tion News Europe (SNE). Papers on one or more of
the following topics will be welcome:

Quality Aspects in Simulation Studies
Procedure Models and Methods for Information
and Data Acquisition
Procedure Models for Verification and Validation
Verification and Validation Techniques
Certification and Accreditation

Model Management and Documentation Aspects
Statistical Significance of Simulation Results
Case Studies and Practical Experiences

The guest editors of this SNE Special Issue, Sigrid
Wenzel (University Kassel), Markus Rabe (Fraun-
hofer Institute IPK, Berlin), and Sven Spieckermann
(SimPlan AG, Maintal) invite for submitting a contri-
bution.

Contributions should not exceed 8 pages (template
provided at ASIM Webpage, ww.asim-gi.org, Menu
International) and should be mailed directly to the
editors not later than April 15, 2009. Contributions
will be peer reviewed.

Sigrid Wenzel
Dept. of Mechanical Engineering, University of Kassel

Kurt-Wolters-Strasse 3, D-34125 Kassel, Germany
sigrid.wenzel@uni-kassel.de

+++ Discrete Hybrid Automata Approach to Structural Dynamic Model l ing +++ t

5

N
SN

E 18/2, A
ugust 2008

Discrete Hybrid Automata Approach to Structural Dynamic
Modelling and Simulation

Gašper Muši , Borut Zupan i , University of Ljubljana, Slovenia, gasper.music@fe.uni-lj.si

The paper presents the discrete hybrid automata (DHA) modelling formalism and related HYSDEL model-
ling language. The applicability of the framework in the context of modelling of structural-dynamic systems
is discussed. High level and partially modular modelling capabilities of HYSDEL are presented and the pos-
sibility of modelling structural-dynamic systems is shown and illustrated by a simple example. To model
structural dynamics, standard HYSDEL list structures are employed, and additional dynamic modes are in-
troduced when state re-initializations are necessary at mode switching. For the derived DHA models an effi-
cient simulation algorithm is presented. The main features of the framework are compared to characteristics
of other modelling and simulation tools capable of capturing structural dynamics. Although DHA modelling
framework only permits the simulation of a corresponding maximal state space model, and the simulation
precision is limited, it offers other advantages, e.g. straightforward translation of the model to various opti-
mization problems that can be solved by standard linear or quadratic programming solvers.

Introduction
Hybrid systems were recognized as an emerging
research area within the control community in the
past decade. With improvements to the control
equipment the complexity of modern computer-
control systems increases. Various aspects of discrete-
event operation, such as controller switching, chang-
ing operating modes, communication delays, and
interactions between different control levels within
the computercontrol systems are becoming increas-
ingly important. Hybrid systems, defined as systems
with interacting continuous and discrete-event dy-
namics, are the most appropriate theoretical frame-
work to address these issues.

Mathematical models represent the basis of any sys-
tem analysis and design such as simulation, control,
verification, etc. The model should not be too com-
plicated in order to efficiently define system behav-
iour and not too simple, otherwise it does not corre-
spond to the real process and the behaviour of the
model is inaccurate. Many modelling formalisms for
hybrid systems were proposed in the engineering
literature [1, 2, 3] and each class of models is usually
appropriate only for solving a certain problem.
A common approach to analyse the behaviour of the
developed model is to apply simulation and observe
the response in the time domain. When hybrid models
are dealt with, a number of problems must be re-
solved, such as detection of state-events, generated
when a predefined boundary in the state-space is
reached by the state trajectory, or a proper treatment
of discontinuities, such as re-initialization of the state

at the so-called state jumps, etc. A number of related
simulation techniques and tools has been developed
that deal successfully with these problems. One of the
most challenging issues from the simulation view-
point is a proper treatment of state dependent changes
in the model structure during the simulation run. This
means that in dependency of events, which are trig-
gered from the state of the model or its environment,
the number and types of equations can change during
the simulation. These changes are often designated by
a term model structural dynamics.

In the paper an approach is presented, where the sys-
tem is modelled as a discrete hybrid automaton
(DHA) using a HYSDEL (HYbrid System DEscrip-
tion Language) modelling language [4, 5]. Using an
appropriate compiler, a DHA model described by the
HYSDEL modelling language can be translated to
different modelling frameworks, such as mixed logi-
cal dynamical (MLD), piecewise affine (PWA), linear
complementarity (LC), extended linear complemen-
tarity (ELC) or max-min-plus-scaling (MMPS) sys-
tems [6]. The system described as an MLD system [7]
can be effectively simulated using an additional in-
formation from the HYSDEL compiler. The approach
was applied to a simple example of a structural-
dynamic system, which illustrates the applicability of
the framework.

1 Discrete hybrid automata
According to [4] a Discrete hybrid automaton (DHA)
is the interconnection of a finite state machine (FSM),
which provides the discrete part of the hybrid system,

+++ Discrete Hybrid Automata Approach to Structural Dynamic Model l ing +++
SN

E
18

/2
, A

ug
us

t
20

08
tN

6

with a switched affine system (SAS) providing the
continuous part of the hybrid dynamics. The interac-
tion between the two is based on two connecting
elements: the event generator (EG), which extracts
logic signals from the continuous part, and mode
selector, which defines the mode (continuous dynam-
ics) of the SAS based on logic variables (states, in-
puts and events). The DHA system is shown on fig-
ure 1.

A switched affine system (SAS) represents a sampled
continuous system that is described by the following
set of linear affine equations:

() () ()(1) () ()r i k r i k r i kx k A x k B u k f (1a)

() () ()() () ()r i k r i k r i ky k C x k D u k g (1b)

where 0k represents the independent variable
(time step) (0 {0,1,...} is a set of nonnegative
integers) rn

r rx is the continuous state vector,
rm

r ru is the continuous input vector,
rp

r ry is the continuous output vector,
{ , , , , , }i i i i i i iA B f C D g is a set of matrices of suitable
dimensions, and ()i k is a variable that selects the
linear state update dynamics. A SAS of the form (1)
changes the state update equation when the switch
occurs, i.e. ()i k changes. An SAS can be also
rewritten as the combination of linear terms and if-
then-else rules. The state-update function (1a) can
also be written as:

1 1 1
1

() () () 1
()

0 otherwise
r rA x k B u k f i k

z k (2a)

 …

() () ()
()

0 otherwise
s r s r s

s

A x k B u k f i k s
z k (2b)

1
(1) ()

s

r i
i

x k z k (2c)

An event generator (EG) generates a logic signal
according to the satisfaction of linear affine con-
straints:

() ((), (),)e H r rk f x k u k k (3)

where 0: {0,1} er r nn m
Hf is a vector

of descriptive functions of a linear hyperplane. The
relation Hf for time events is modeled as
[() 1]i

e k []s ikT t , where sT is the sampling
time, while for threshold events is modeled as
[() 1]i

e k [() ()]T T
i r i r ia x k b u k c , where ia , ib ,

ic represent the parameters of a linear hyperplane.
i

e denotes the i -th component of a vector ()e k .

A finite state machine (FSM) is a discrete dynamic
process that evolves according to a logic state update
function:

(1) ((), (), ())b B b b ex k f x k u k k (4)

where bx {0,1} bn
b is the Boolean state, bu

{0,1} bm
b is the Boolean input, ()e k is the input

coming from the EG, and :B b b bf is a
deterministic logic function. An FSM may have also
associated Boolean output:

() ((), (), ())b B b b ey k g x k u k k (5)

where by {0,1} bp
b .

A mode selector (MS) selects the dynamic mode ()i k
of the SAS according to the Boolean state ()bx k , the
Boolean inputs ()bu k and the events ()e k using the
Boolean function :M b bf . The output
of this function

() ((), (), ())M b b ei k f x k u k k (6)

is called the active mode.

2 HYSDEL modelling language
DHA models can be built by using the HYSDEL
modelling language [4], which was designed particu-
larly for this class of systems. The HYSDEL model-
ling language allows the description of hybrid dy-
namics in textual form. The HYSDEL description of
hybrid systems represents an abstract modelling step.
Once the system is modelled as DHA, i.e. described
by HYSDEL language, the model can be translated
into an MLD model using an associated HYSDEL
compiler. At this point, we will give just a brief intro-
duction into the structure of a HYSDEL list.

A HYSDEL list is composed of two parts: the INTER-
FACE, where all the variables and parameters are de-
clared, and the IMPLEMENTATION, which consists of
specialised sections, where the relations between the
variables are defined.

Figure 1. A discrete hybrid automation (DHA)

+++ Discrete Hybrid Automata Approach to Structural Dynamic Model l ing +++ t

7

N
SN

E 18/2, A
ugust 2008

The AD section allows the definition of Boolean vari-
ables and is based on the semantics of the event gen-
erator (EG), i.e. in the AD section the e variables are
defined. The LOGIC section allows the specification of
arbitrary functions of Boolean variables. Since the
mode selector is defined as a Boolean function, it can
be defined in this section. The DA section defines the
switching of the continuous variables according to if-
then-else rules depending on Boolean variables, i.e.
part of switched affine system (SAS), namely iz vari-
ables (see Equation (2)) are defined. The CONTINUOUS
section defines the linear dynamics expressed as
difference equations, i.e. defines the remaining Equa-
tion (2c) of the SAS. The LINEAR section defines
continuous variables as an affine function of continu-
ous variables, which in combination with the DA and
the CONTINUOUS section enables more flexibility when
modelling SAS. The AUTOMATA section specifies the
state transition equations of the finite state machine
(FMS) as a Boolean function (4), i.e. defines Boolean
variables bx . The MUST section specifies constraints
on continuous and Boolean variables, i.e. defines the
sets r , b , r and b .

For more detailed description on the functionality of
the modelling language HYSDEL and the associated
compiler (tool HYSDEL), the reader is referred to
[4, 5].

3 Structural-dynamic systems and
HYSDEL

In general, discontinuities are modelled in HYSDEL
by the use of auxiliary variables. Two types of such
variables exist: Boolean or discrete () and continu-
ous (z).

3.1 Modelling of discontinuities
Discrete auxiliary variables may be defined based
on continuous variables in the AD section of the
HYSDEL list, which has the following syntax:

AD{ ad-item+ }

and each ad-item is one of the following:

var = affine-expr <= real-number ;
var = affine-expr >= real-number ;

The affine expression is a linear affine combination of
real variables

0 1 1 2 2 n na a x a x a x (7)

where ia is a function of parameters, and ix are real

(state, input, output, and auxiliary) variables [5]. The
 variables defined in such a way represent outputs

of the event generator (EG) in Fig. 1.

Continuous auxiliary z variables are defined in the
DA section of the HYSDEL list, which has the fol-
lowing syntax:

DA{ da-item+ }

and each da-item is one of the following:

var = { IF Boolean-expr THEN affine-expr };
var = { IF Boolean-expr THEN affine-expr

ELSE affine-expr };

if the ELSE part is omitted, it is assumed to be 0.

The z variables defined this way can be used to
implement switching dynamic part (SAS) of the HDA
in figure 1. Using this approach, also the changes in
the model structure can be easily implemented.

The actual continuous dynamic of the system is im-
plemented in discretized form in the CONTINUOUS
section, which has the following syntax:

CONTINUOUS{ cont-item+ }

and each cont-item is one of the following:

var = affine-expr ;

Typically, a list of such cont-items looks like:

x1 = z11 + z12 + ... + z1m ;
x2 = z21 + z22 + ... + z2m ;
...
xn = zn1 + zn2 + ... + znm ;

where n is the number of states and m the number of
dynamical nodes. Auxiliary variables 11z to n mz are
defined within the DA section.

When the mode is not active the ijz variables can be
zero or may be held at any other value, depending on
the problem.

The conditions related to reset of the state at switch-
ing or other similar conditions can be easily taken
into account if a new mode is defined, which is active
only at a single sampling instant.

With regard to structural changes, it is obvious that
the states can not be created or deleted during the
simulation run but can only be held ’inactive’ when
they are not required. Therefore the simulation runs
by employing a corresponding maximal state space
model.

+++ Discrete Hybrid Automata Approach to Structural Dynamic Model l ing +++
SN

E
18

/2
, A

ug
us

t
20

08
tN

8

3.2 Example
To illustrate the HYSDEL modelling of structural-
dynamic systems a simple example will be shown. A
system under consideration has two dynamic modes,
the first one being active when the system output is
below 0.5 and the second one when the output is
above 0.5.

In the first mode the system dynamics is described by
0.5 0.5y y u (8)

where u is the input to the system and y is the sys-
tem output.

The second mode is described by
2y y y u (9)

The system is written in the state space form by as-
signing the state variables 1x y and 2x y , and
discretized at the sampling time 0.1ssT . Then the
first mode is described by:

1 1
1 11 1 11 1

1

(1) () ()
() ()

x k a x k b u k
y k x k

 (10)

and the second mode by
2 2 2

1 111 12 11
2 2 2

2 221 22 21

1

2

(1) ()
()

(1) ()

()
() 1 0

()

x k x ka a b
u k

x k x ka a b

x k
y k

x k

 (11)

Equations (10) and (11) are coded in the IMPLEMENTA-
TION part of HYSDEL list as follows:

1 IMPLEMENTATION {
2 AUX {
3 BOOL d, df;
4 REAL z1, z21, z22; }
5 AD {
6 d = x1 <= limit;
7 df = a11_1*x1 + b11_1*u >= limit; }
8 DA {
9 z1 = {IF d THEN

 a11_1*x1 + b11_1*u
10 ELSE

 a11_2*x1 + a12_2*x2 + b11_2*u};
11 z21 = {IF ˜d THEN

 a21_2*x1 + a22_2*x2 + b21_2*u};
12 z22 = {IF d & df THEN

 (a11_1 - a11_2)/a12_2*x1 +
 (b11_1 - b11_2)/a12_2*u}; }

13 CONTINUOUS {
14 x1 = z1;
15 x2 = z21 + z22; }
16 OUTPUT {
17 y = x1; }
18 }

The limit parameter is set to 0.5, while other parame-
ters are obtained by discretization procedure. It can be
observed that an additional dynamic mode is intro-
duced, which is active when 1x is below the limit but
the value of 1x in the next time step exceeds the limit.
This way the time of mode switching is predicted and

2x is set to the value which causes a smooth transi-
tion to the new mode (both y and y are continuous).
Both 21z and 22z are forced to zero when correspond-
ing modes are inactive.

4 Simulation
Once a DHA system is modelled by the HYSDEL
modelling language, the companion HYSDEL com-
piler generates the equivalent MLD model [4]. In [7]
the authors proposed discrete-time hybrid systems
denoted as mixed-logical dynamical (MLD) systems:

1 2 3(1) () () () ()x k Ax k B u k B k B z k (12a)

1 2 3() () () () ()y k C x k D u k D k D z k (12b)

2 3 1 4 5() () () ()E k E z k E u k E x k E (12c)

where [,] {0,1} br nn
r bx x x is a vector of con-

tinuous and logic states, [,] {0,1} br mm
r bu u u

are continuous and logic inputs, [,]r by y y rp

{0,1} bp are continuous and logic outputs, {0,1} br ,
rrz auxiliary logic and continuous variables,

respectively, and A , 1B , 2B , 3B , C , 1D , 2D , 3D , 1E ,
…, 5E are matrices of suitable dimensions. Inequali-
ties (12c) can also contain additional constraints on
the variables (states, inputs and auxiliary variables).
This permits the inclusion of additional constraints
and the incorporation of heuristic rules into the
model.

4.1 The structure of an MLD form
Hybrid systems consist of continuous and logic vari-
ables. Relations between latter can be described by
propositional calculus [7]. Propositional calculus
enable statements to be combined in compound
statements by means of connectives: “ ” (and), “ ”
(or), “ ” (not), etc. Each compound statement can
be translated into a conjunctive normal form (CNF)
or product of sums (POS) of the following form

1()
j j

m
j i P i NX X (13)

where jP and jN are sets of indices of literals iX and
inverted literals iX . By associating logical (binary)
variables {0,1}i with each propositional variable

iX then the compound statement (13) can be equiva-

+++ Discrete Hybrid Automata Approach to Structural Dynamic Model l ing +++ t

9

N
SN

E 18/2, A
ugust 2008

lently translated into a following set of integer linear
inequalities:

1 1

1 (1)

1 (1)
m m

i i
i P i N

i i
i P i N

 (14)

This translation technique can be adopted to model
logic parts of processes, logic constraints of the plant
and heuristic knowledge about plant operation, as
integer linear inequalities.

A/D interface: Propositional variable X , defined
by statement [() 0]rX f x , i.e. [(0)]rf x
[1], can be can be translated into the following set
of mixed-integer inequalities

() (1)
() ()

r

r

f x M
f x m

 (15)

where is a small positive real number and M and
m are constants defined by max ()rM f x and

min ()rM f x .

D/A interface: In this case the results of logical
events define values of continuous variables. The
most common D/A interface is the IF-THEN-ELSE
construct, IF X THEN 1()rz f x ELSE 2 ()rz f x ,
which can be translated into the following set of
mixed-integer inequalities:

2 1 2

1 2 2

1 2 1

2 1 1

() ()
() ()

()(1) ()
()(1) ()

r

r

r

r

m M z f x
m M z f x

m M z f x
m M z f x

 (16)

where z is an auxiliary continuous variable defined
by auxiliary logical variable associated to literal
X . iM and im are defined as in Equation (15).

Linear part enables to define linear relations as a
system of inequalities and is defined as

()
()
r

r

z f x
z f x

 (17)

Continuous dynamical part is described by linear
difference equations (discrete time domain) as fol-
lows

(1) () ()
() () ()

r r r r r

r r r r r

x k A x k B u k
y k C x k D u k

 (18)

By considering Equations (14,15,16,17,18) the mixed
logical dynamical (MLD) system is derived and is

presented by Equation (12). For more detailed de-
scription of the MLD structure the reader is referred
to [4, 7].

4.2 Simulation of an MLD system
Using the current state ()x k and input ()u k , the time
evolution of (12) is determined by solving ()k and

()z k from inequalities (12c), and then updating
(1)x k and (1)y k from equalities (12a) and (12b),

respectively. The MLD system (12) is assumed to be
completely well-posed, i.e. for a given state ()x k and
input ()u k the inequalities (12c) have a unique solu-
tion for ()k and ()z k . Obtaining the values of the
auxiliary variables ()k and ()z k presents a bottle-
neck in a simulation of a hybrid system modelled as
an MLD system.
The variables ()k and ()z k are defined by the sys-
tem of inequalities (12c) and can be computed by
defining and solving a mixed integer problem. It has
to be pointed out that in this case the optimization is
only used to find a feasible solution. Because the
system is well posed the solution is unique and only
one solution to the system of inequalities exists,
which does not depend on the cost function. The
disadvantage of this approach is the usage of the
mixed integer optimization algorithms, which can be
time consuming or even not able to find a feasible
solution because of numerical sensitivity.
One of the reasons why the optimization approach is
time consuming lies in the branch and bound nature
of the underlying algorithm and in the fact that, once
that the delta variables have been fixed, the inequali-
ties (16) are actually equalities, i.e. 1()rz f x or

2 ()rz f x .

To overcome the problem, which appears when using
optimization approach, a special algorithm was de-
veloped. It is based on the knowledge of transforma-
tion procedure from DHA into MLD form and is able
to compute values of ()k and ()z k “explicitly”, i.e.
without iterations. Such approach is of course much
faster. The algorithm involves a direct 1E , …, 5E
matrix manipulation.

The algorithm abstracts the inequalities (12c) into
sets based on an origin of a certain row. The result are
six sets: AD set containing the inequalities from AD
part of a system, LOGIC set containing the inequalities
of logical relations, LINEAR set containing the linear
relations, DA set containing inequalities from DA part
of a system, LOGIC MUST set containing all logical

+++ Discrete Hybrid Automata Approach to Structural Dynamic Model l ing +++
SN

E
18

/2
, A

ug
us

t
20

08
tN

10

constraints and CONTINUOUS MUST set containing all
continuous constraints. The following algorithm ex-
ploits the definition of the variables ()k and ()z k to
define them:

1. Given ()x k and ()u k .
2. Repeat

a. Define ()AD k variables for which all right
hand side variables are defined.

b. Define ()LO k variables for which all right
hand side variables are defined.

c. Define ()LIz k variables for which all right
hand side variables are defined.

d. Define ()DAz k variables for which all right
hand side variables are defined.

3. Until all () () () T
AD LOk k k and ()z k

() () T
LI DAz k z k are defined.

4. Check logical constraints
5. Check continuous constraints
6. If all containts are fulfilled define ()k , ()z k ,

new state (1)x k and output ()y k else return er-
ror.

All the computation is based on direct 1E , …, 5E
matrix manipulation and does not rely on any mixed
integer solver but relies on additional information
provided by the HYSDEL tool, such as row origin
information (AD, DA...). A similar algorithm is im-
plemented in the HYSDEL tool, version 2.0.5 [4, 5].

4.3 Example
The described simulation algorithm is applied to the
example model introduced in section 3.2. A periodic
pulse signal with the amplitude 1 is defined as an
input to the system and simulation results are shown
in Fig. 2 and 3.

It can be observed that dynamics is changed when the
system output crosses the boundary at 0.5. The chan-
ge in the dynamics can be seen if the shapes of the
rising and falling responses are compared. It can also
be observed that 2x state is initialized to the appropri-
ate value whenever the second dynamic mode is en-
tered. This value guarantees a smooth transition to the
new mode. On the contrary, 2x is switched to zero
when the second mode is exited, because it is not
needed anymore.

5 Comparison to other tools
A number of simulation techniques and tools has been
developed in recent years that deal successfully with
hybrid phenomena. Structural-dynamics as an impor-
tant part of hybrid dynamics can be seen in one of the
two distinct ways. In one way, state events can be
seen as a mechanism that switches on and off alge-
braic conditions, which freeze certain states for cer-
tain periods. In another way, local model with fixed
state spaces are controlled by a global model. Follow-
ing this, two different approaches for simulating
structural-dynamic systems are developed: the maxi-
mal state space approach and the hybrid decomposi-
tion approach [8].

Most currently available simulation tools follow the
maximal state space model approach, e.g. Modelica,
VHLD-AMS, Dymola. Matlab incorporates a simula-
tion tool Simulink, which also works with a maximal
state space. Simulink supports triggered sub-models,
which can be executed only at event occurrences.
Recent versions also include support for Statechart-

Figure 2. Simulated response (1x y)

Figure 3. Simulated response (2x)

+++ Discrete Hybrid Automata Approach to Structural Dynamic Model l ing +++ t

11

N
SN

E 18/2, A
ugust 2008

based description of state-machines and discrete-
event simulation by SimEvents Blockset, based on
the entity concept. On the other hand, Simulink can
not deal with Differential-Algebraic Equations
(DAEs).

At the moment, the developments of hybrid decom-
position approach are mainly focused on various
extensions of Modelica. One of such extensions,
which closely follows all basic principles of the hy-
brid decomposition approach, is a modelling descrip-
tion language Mosila (Modelling and Simulation
Language). In Mosila, dynamical object structures are
introduced to represent variable models. Objects
represent state attributes and behaviour in a form of
equations, and the equation system may be changed
when a structural change is triggered. A correspond-
ing simulator MOSILAB has been successfully ap-
plied to simulation of a number of case studies [9].

The DHA modelling and simulation approach pre-
sented in this paper belongs to the group of maximal
state space model approaches. Since it operates in
discrete-time, it is less elaborated from the simulation
viewpoint. State and time events may be detected
with a limited precision that is mainly influenced by
the chosen sampling-time. On the other hand, the
description has a sound theoretical framework and
models can be converted to other formal descriptions
of hybrid systems. This enables analytical exploration
of important system properties, e.g. stability. Fur-
thermore, the models converted to the MLD form can
be used for defining various optimization problems
that can be solved by standard linear or quadratic
programming solvers.

6 Conclusions
The discrete hybrid automata (DHA) modelling for-
malism and related HYSDEL modelling language can
be applied also to modelling and simulation of struc-
turaldynamic systems. The modelling is simple and
requires only the description of the switching bounda-
ries in the state space and a discretization of the cor-
responding dynamics. The coding into HYSDEL list
is straightforward and could also be automated based
on a higher level description of the model. The simu-
lation is fast and relatively simple. Compared to other
tools the accuracy of simulation is limited, but on the
other hand, the underlying DHA description can be
easily transformed to other descriptions of hybrid
systems and also used as a basis for analysis and
optimization.

References
[1] P. J. Antsaklis. A brief introduction to the theory and

applications of hybrid systems. Proceedings of the
IEEE, 88(7):879–887, 2000.

[2] S. Engell, G. Frehse, E. Schnieder. Modelling, Analy-
sis and Design of Hybrid Systems. Lecture Notes in
Control and Information Sciences.

[3] G. Labinaz, M.M. Bayoumi, K. Rudie. A survey of
modeling and control of hybrid systems. Annual Re-
views in Control, 21:79–92, 1997.

[4] F. D. Torrisi, A. Bemporad. Hysdel - a tool for gener-
ating computational hybrid models for analysis and
synthesis problems. IEEE Transactions on Control
Systems Technology, 12:235–249, 2004.

[5] F. D. Torrisi, A. Bemporad, G. Bertini, P. Hertach, D.
Jost, D. Mignone. HYSDEL 2.0.5 - User Manual.
Automatic Control Laboratory, ETH, Zürich, Switzer-
land, 2002.

[6] W. P. M. H. Heemels, B. De Schutter, A. Bemporad.
Equivalence of hybrid dynamical models. Automatica,
37(7):1085–1091, 2001.

[7] Bemporad, M. Morari. Control of systems integrating
logic, dynamic, and constraints. Automatica,
35(3):407–427, 1999.

[8] F. Breitenecker, N. Popper. Structure of simulation
systems for structural-dynamic systems. In Proceed-
ings of the First Asia International Conference on
Modelling & Simulation (AMS’07), pages 574–579,
2007.

[9] Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schneider,
P. Schwarz, M. Vetter, C. Wittwer, A. Holm, T.
Nouidui, J. Leopold, G. Schmidt, U Doll, A Mattes.
Mosilab: Development of a modelica based generic
simulation tool supporting model structural dynamic.
In Proceedings of the 4th International Modelica Con-
ference, pages 527–535, 2005. Proc. EUROSIM 2007
(B. Zupan i , R. Karba, S. Blaži) 9-13 Sept. 2007,
Ljubljana, Slovenia ISBN

Corresponding author: Gašper Muši
University of Ljubljana
Faculty of Electrical Engineering
1000 Ljubljana, Trzaška 25, Slovenia
gasper.music@fe.uni-lj.si

Accepted EUROSIM 2007, June 2007
Received: September 20, 2007
Revised: June 12, 2007
Accepted: July 10, 2007

+++ Modeling of Structural-dynamic Systems by UML Statecharts in AnyLogic +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

12

Modeling of Structural-dynamic Systems by UML Statecharts in
AnyLogic

Daniel Leitner, Johannes Kropf, Günther Zauner, TU Vienna, Austria, dleitner@osiris.tuwien.ac.at
Yuri Karpov, Yuri Senichenkov, Yuri Kolesov, XJ Technologies St. Petersburg, Russia

With the progress in modeling dynamic systems new extensions in model coupling are needed. The models
in classical engineering are described by differential equations. Depending on the general conditions of the
system the description of the model and thereby the state space is altered. This change of system behavior
can be implemented in different ways. In this work we focus on AnyLogic and its ability to switch between
different sets of equations using UML statecharts. Different possibilities of the coupling of the state spaces
are compared. This can be done either using a parallel model setup, a serial model setup, or a combined
model setup. The analogies and discrepancies can be figured out on the basis of three classical examples. The
first is the constrained pendulum as defined in ARGESIM comparison C7, where the dimension of the state
space is unaltered. Second is the free pendulum on a string, where the dimension of the state space changes.
The third example is a thermal storage model at which between different accuracies of the discretization is
switched.

Introduction
In this work three different structural dynamic sys-
tems are under investigation. The models are imple-
mented in AnyLogic using its UML statecharts repre-
sentation for discrete event based changes of their
governing differential equations and their state
spaces. In the first part AnyLogic will be described,
and then the different models will be presented. After
that different methods of solutions are introduced
with a special focus on how UML statecharts can be
used to control the model structure. With these meth-
ods implementations for AnyLogic of the structural
dynamic systems are given. As a conclusion the bene-
fits and drawbacks of the hybrid simulator are exam-
ined.

AnyLogic is a multiparadigm simulator supporting
Agent Based modeling as well as Discrete Event
modeling, which is flowchart-based, and System
Dynamics, which is a stock-and-flow kind of descrip-
tion. Due to its very high flexibility AnyLogic is
capable of capturing arbitrary complex logic, intelli-
gent behaviour, spatial awareness and dynamically
changing structures. It is possible to combine differ-
ent modeling approaches which make AnyLogic a
hybrid simulator. AnyLogic is highly object oriented
and based on the Java programming language. To a
certain degree this ensures a compatibility and reus-
ability of the resulting models.

The development of AnyLogic in the last years has
been towards business simulation. In version 6 of

AnyLogic it is possible to calculate typical problems
from engineering, but there are certain restrictions.
For example the integration method cannot be chosen
freely and there is no state event finder.

When a model starts, the equations are assembled
into the main differential equation system (DES).
During the simulation, this DES is solved by one of
the numerical methods built in AnyLogic. AnyLogic
provides a set of numerical methods for solving ordi-
nal differential equations (ODE), algebraic-
differential equations (DAE), or algebraic equations
(NAE).

AnyLogic chooses the numerical solver automatically
at runtime in accordance to the behaviour of the sys-
tem. When solving ordinal
differential equations, it starts
integration with forth-order
Runge-Kutta method with
fixed step. Otherwise, Any-
Logic plugs in another solver,
the Newton method. This
method changes the integra-
tion step to achieve the given
accuracy.

1 Modeling
In this section three different
models will be explained.
They have in common that
discrete events change the

Figure 1. Force diagram
of a simple gravity

pendulum

+++ Model ing of Structural-dynamic Systems by UML Statecharts in AnyLogic +++ t

13

N
SN

E 18/2, A
ugust 2008

model structure. In the first model the state space is
not altered, thus the process can be described as pa-
rameter event that occur at a discrete time point. In
the second and third model this is not possible be-
cause the dimension of the state space changes. This
change of model structure and its implementation
using UML statecharts in AnyLogic shall be investi-
gated.

1.1 Constrained pendulum
A classical and simple nonlinear model in simulation
techniques is the so called constrained pendulum.
This model has been presented in the definition of
ARGESIM comparison C7, full solutions in Any-
Logic can be found in [1] or [2]. There is no exact
analytical solution to this problem Therefore the re-
sults must be obtained by numerical methods. In this
section a description of the model shall be given.

The motion of the pendulum is given by
sin()ml mg d l (1)

where denotes the angle measured in counter-
clockwise direction from the vertical position and
is the angular velocity. The parameter m is the mass
and l is the length of the pendulum. The damping is
realized with the constant d .

In the case of a constrained pendulum a pin is fixed at
a certain position given by the angle p and the
length pl . If the pendulum is swinging it may hit the
pin. In this case the pendulum swings on with the
position of the pin as the point of rotation and the
shortened length

s pl l l . (2)

In ARGESIM comparison C7, the initial values of
two experiments are predetermined:

1. The first example is given by
/ 6, 0, 0.2, /12pd (3)

2. The second example is given by
/ 6, 0, 0.1, /12pd (4)

Both examples have the general parameters:
1.02, 1, 0.7 (0.3), 9.81p sm l l l g (5)

1.2 Free pendulum on a string
The second example is a slightly more complicated
pendulum. The massive bob of the pendulum is fixed
on a string. In case of a rollover of the pendulum it

can start to fall freely until the constraints of the
string apply again. This can happen if the pendulum
swings higher than 2 and the centrifugal force is
smaller than the gravitational force, see figure 1. Thus
the model has two different states: the normal pendu-
lum movement normal and the free fall fall. The
pendulum movement is given in equation 1. The
equations of free fall are given by

0
y

x

v g
v

 (6)

1.3 Solar system heating
The third example is motivated by the work of
Nytsch-Geusen, who describes a complex energy
system [3]. In this work only a small subsystem will
be investigated, which can demonstrate the abilities
of AnyLogic to deal with structural dynamics.

A one dimensional thermal storage model shall be
calculated with different accuracies that are depend-
ent of the gradient of the temperature in the storage
system. This happens for example when hot water
enters the storage system. The effect is realized by
using to different systems with different thermal lay-
ering as presented in figure 2.

The example demonstrates not only the dynamics but
although AnyLogic’s ability to connect with external
solvers which happens in this example because spe-
cialized finite element method (FEM) solvers are
needed for the calculations.

2 Solution approaches
New advantages in computer numerics and the fast
increase of computer capacity lead to necessity of
new modeling and simulation techniques. In many
cases of modern simulation problems state events
have to be handled. There exist different categories of

Figure 2. Structural variable storage model, which uses a
different number of zones in dependency of the current

thermal layering.

+++ Modeling of Structural-dynamic Systems by UML Statecharts in AnyLogic +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

14

structural dynamic systems which should be focused
on and solved. The first class of hybrid systems are
the one, where the state space dimension does not
change during the whole simulation time and also the
system equations stay the same. Only so called pa-
rameter events occur at discrete time points. These
are the more or less simplest form of state events.
AnyLogic does not differ between different types of
events. The implementation of parameter events and
state space changes does not differ, making AnyLogic
a truly hybrid simulation environment.

AnyLogic supports the usage of UML statecharts [4].
This is a very intuitive and convenient way to de-
scribe a system which contains multiple discrete
states. In the combination with dynamical equations
this approach enables a simple implementation of
structural dynamics. The dynamic equations or pa-
rameters are dependent of the discrete state of the
model. On the other hand the transitions of the states
are influenced by the dynamic variables, see [5].

The different kinds of description will be explained
by means of the constrained pendulum. In this case
the states are normally swinging (state long) or
swinging with shortened length around the pin (state
short). The discrete state of the model depends on the
angle and the pins angle p . The state alters the
model parameters or the models set of equations, see
figure 3.

2.1 Switching states
When the state of a system changes, often the state
space of the model stays unchanged, thus the same set
of differential equation can be used for different
states. In this situation only certain parameters must
be changed when a state is entered.

In case of the constrained pendulum the differential
equation for movement stays the same for both states
long and short. If the state changes the parameter
length and angular velocity are updated before the
calculation can continue, see figure 4.

2.2 Switching models
Often the previous approach is not possible. Some-
times situation occur where the state space of the
model changes, thus a simple change of parameters is
not possible. Normally the whole set of differential
equations, thus the complete model, must be
switched. In many simulation environments this ap-
proach can lead to complications.

In case of the constrained pendulum two differential
equations are set up describing the movement of the
pendulum. One describes the normal pendulum the
other one the shortened pendulum. Which equation is
set to be active is determined by the state diagram.
When the states are switched the initial values must
be passed on. The current equation must be activated
and the other one must be frozen, see figure 5.

3 Constrained pendulum
The implementation of the constrained pendulum has
been done in two different ways. In the first approach
only the parameter states have been switched corre-
sponding to section 3.1, in the second approach the
whole differential equation is switched corresponding
to section 3.2. Both examples from chapter 2.1 have
been simulated using both approaches. The results in
AnyLogic are identical in both methods because the
times of the state transitions are the same.

In the first approach the model consists of two ordi-
nary differential equations describing the movement

Figure 4. The parameters of the model are changed by an

UML statechart

Figure 3. UML statechart controlling the pendulum.

Figure 5. The differential equations of the system are
switched in dependence of the UML state diagram

+++ Model ing of Structural-dynamic Systems by UML Statecharts in AnyLogic +++ t

15

N
SN

E 18/2, A
ugust 2008

of the pendulum. The differential equations are real-
ized in AnyLogic using two stock variables, the angle

 and the angular velocity . In these equations
four parameters are used: length l , mass m , damping
d and gravity g . Further a state diagram with states
long and short and two transitions are used to update
the equations. When the state changes, the length l
and angular velocity are updated. The results cal-
culated by AnyLogic 6 are plotted in figures 6 and 7.

The second approach uses two separate models. The
implemented model consists of two times two ordi-
nary differential equations, thus four stock variables
(1 , 2 , 1 , 2). Both equations have four parame-
ters separately: length l , mass m , damping d and
gravity g . A state diagram is implemented analog to
the first approach. If the state changes the right dif-
ferential equations are activated and their initial val-
ues are set, while the other differential equation is
frozen.

4 Pendulum on a string
When implementing the pendulum on a string in Any-
Logic, to totally different submodels must be consid-
ered:

1. The pendulum is described by the formula given
by equation 1. The equation is realized in Any-
Logic with the use of two stock variables, the
angle and the angular velocity . Further the

four parameters describe the pendulum, length l ,
mass m , the damping factor and gravity g .

2. The equations of free fall uses a completely dif-
ferent state space. The stock variables x and y
describe the position of the massive bob. In ver-
tical direction another stock variable xv is
needed because in this direction exists accelera-
tion due to gravity. The vertical acceleration is
described with a parameter ya . In horizontal di-
rection a parameter yv is sufficient.

Which model is active is controlled by an UML state-
chart, see figure 8. Therefore two different states are
needed, the state pendulum for the first submodel and
the state fall for the second submodel. Two transitions
control the state of the system. The condition of the
transition from state pendulum to state fall is given by

2 r g (7)

expressing that the pendulum begins to fall when the
gravity force is larger than the centrifugal force. The
condition of the transition from state fall to state
pendulum is naturally given by the constraint of the
pendulum length, thus

2 2x y l (8)

When a state is entered all initial values for the sys-
tem must be calculated from the previous submodel.
When switching from pendulum to fall following
initial values are preset:

cos()
sin()

sin()
cos()

y

x

y

a g
v l
v l
x l
y l

 (9)

In the case of the transition fall to pendulum follow-
ing initial values are chosen:

Figure 6. The angle (red, inner graph) and the angular
velocity (blue) of the constrained pendulum (example 1)

Figure 7. The angle (red, inner graph) and the angular
velocity (blue) of the constrained pendulum (example 2)

Figure 8. UML statechart controlling the pendulum on a
string.

+++ Modeling of Structural-dynamic Systems by UML Statecharts in AnyLogic +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

16

arcsin

cos() sin()x y

x
l

v v
 (10)

The example show the possibilities of UML state-
charts controlling the model structure. The main
benefit of this kind of representation is the that model
is clearly arranged and dependencies are shown in an
intuitive way.

5 Solar heating system
The UML statechart in figure 9 controls the two dif-
ferent components of the problem, which solve the
thermal model with a different number of nodes.

In the original solution the model is linked to external
simulation software for numerical FEM calculations.
In AnyLogic this link to external code can be estab-
lished easily. The reason for that is that AnyLogic can
be extended by arbitrary Java code. This make it
possible to either start applications or to communicate
with external code via the Java Native Interface (JNI).

JNI is a programming framework that allows Java
code to call and be called by native applications and
libraries written in other languages such as C or C++.
With JNI it is possible to export and import parame-
ters using a predetermined interface. In the case of
C++ this interface look like

1 // C++ code
JNIEXPORT void JNICALL Java_ClsName_MethodName
 (JNIEnv *env, jobject obj, jstring javaStr)

2 {
// For example a string is imported from AnyLogic
const char *nativeString =

 env->GetStringUTFChars(javaString, 0);
3

// Do something with the nativeString
4

// Don’t forget to release the string
5 env->ReleaseStringUTFChars
6 (javaString, nativeString);
7 }

6 Conclusion
AnyLogic is a hybrid simulator which supports a
multitude of different modeling approaches, particu-
larly UML statecharts, System Dynamics, Agent
Based simulation and Dynamic Systems. In this work
it has been focused on UML statecharts in combina-
tion with Dynamic Systems for the description of
structural dynamic systems. In theory all different
approaches can be freely combined.

AnyLogic is feasible tool to create UML statecharts
and can handle structural dynamic systems in an very
intuitive way. AnyLogic works strictly object oriented
and translates the models to Java code and further
Java code is used within the models. This ability of
AnyLogic makes it easy to extend and thus applicable
to a huge range of applications.

The main scope of AnyLogic version 6 is business
simulation. For engineering application it is a draw-
back that the integration method cannot be chosen
freely. Further there is no state event finder which can
lead to a significant reduction of the step size in the
temporal domain.

References
[1] A. Filippov and A. Kornev. C7 constrained pendulum

anylogic: Hybrid modeling approach model level.
Simulation News Europe, 32, 2001.

[2] F. Judex. C7 constrained pendulum anylogic: Hybrid
approach. Simulation News Europe, 35, 2002.

[3] Ch. Nytsch-Geusen et al. Advanced modeling and
simulation techniques in Mosilab—a system develop-
ment case study. Proceedings of the 5th international
modelica conference, 2006.

[4] A V. Borshchev, Y. B. Kolesov, and Y. B. Sen-
ichenkov. Java engine for UML based hybrid state
machines. Winter Simulation Conference, 2000.

[5] A. Borshchev. Anylogic 4.0: Simulating hybrid sys-
tems with extended uml-rt. Simulation News Europe,
31:15–16, 2001.

Corresponding author: Daniel Leitner
Vienna University of Technology
Department of Analysis and Scientific Computing
Wiedner Hauptstraße 8-10, 1040 Wien, Austria
dleitner@osiris.tuwien.ac.at

Accepted EUROSIM 2007, June 2007
Received: September 21, 2007
Revised: May 15, 2008
Accepted: June 10, 2008

Figure 9. UML statechart controlling the accuracy of the
thermal layers.

+++ Class ical/Statechart-based Model ing of State Events and Structural Changes +++ t

17

N
SN

E 18/2, A
ugust 2008

Classical and Statechart-based Modeling of State Events and of
Structural Changes in the Modelica Simulator Mosilab

Günther Zauner, dieDrahtwarenhandlung Simulation Services Vienna, Austria
Florian Judex, Vienna University of Technology, Austria

Peter Schwarz, Fraunhofer Institute for Integrated Circuits Dresden, Germany

Mosilab (MOdelling and SImulation LABoratory) a new simulation system developed by Fraunhofer under-
stands Modelica, offers different modeling approaches, and supports structural dynamic systems. This will
be discussed on the basis of a main example, the classical constrained pendulum. We show how the solution
can be done using only standard Modelica components, where the benefits are and which kind of switching
the states can be done. As we will see there is no possibility to define separate submodels with different state
space dimensions and switch between these systems during one simulation run.

The next point of view lies on an extension of the Modelica framework. The most important new feature of
this model description language is the definition of a statechart framework. With this construction the next
three solutions of the constrained pendulum are done. The first approach is mathematically similar to the
Modelica solution and defines poor parameter events within the statechart construct. This approach cannot
handle events of higher order. The second approach for the model is done with two different submodels, one
for the case that the rope of the pendulum is short and one for the case it is long. In the statechart the two
models are then connected and disconnected to the main program and thereby switched between active and
off. A third approaches with only one submodel but two instances of the system will conclude our model in-
spection.

We focus on how the numerical approaches are done in general and where are the benefits comparing to the
other solutions. A final step is to look at the numerical quality of the output of the different approaches. This
is done by validation with another example for which an analytical solution exists.

General
In the last decade a broad amount of knowledge in
model description theory and modeling and simula-
tion techniques, which could not be solved with the
older systems, have their renaissance. Increasing
power of computers and better algorithms lead to
advanced modeling environments. One benefit are the
customer friendly interfaces.

Nevertheless, these advanced modeling environments
ask for well educated experts in the field of simula-
tion. In nowadays definition of a project it is very
often important to model a part of a system in detail,
but when the system switches to another state the
description is done imprecisely. Another often needed
approach is that a state event makes restrictions to the
actual model which leads to a change in the degree of
freedom. Both here explained cases result in a change
in the state space dimension or even a parameter
change for the given system.

The new generation of simulation systems handles
this challenge with different methods. One approach

is to define a discrete class, where state event han-
dling is done (e.g. ACSL), others restrict their system.
They allow only parameter changing state events (e.g.
Dymola/Modelica) or to blow up the whole system. A
third class, which we will focus on in a selected ex-
ample, is simulators with an implemented state ma-
chine. This group of simulators can handle state
events of both sorts: the classical ones where the
dimension of the state space remains the same and the
hybrid switch between separate models.

1 The simulation environment
MOSILAB (MOdeling and SImulation LABoratory)
[1] is a simulator developed by Fraunhofer-Instituts
FIRST, IIS/EAS, ISE, IBP, IWU and IPK within the
research project GENSIM [2]. It is a generic simula-
tion tool for modeling and simulation of complex
multidisciplinary technical systems. The simulation
environment supports the procedures modeling, simu-
lation and post processing. The model description in
MOSILAB is done in the Modelica [3] standard.
Additional features are implemented to assure high

+++ Class ical/Statechart-based Model ing of State Events and Structural Changes +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

18

flexibility during modeling the concept of structural
dynamics. This is done by extending the Modelica
standard with state charts to control dynamic models.

The resulting model description language is called
MOSILA [4]. The textual editor in which the model
setup is done is expanded by the component diagram
as in other Modelica simulators. But there exits an-
other graphical layer which supports state chart defi-
nition by using UML diagrams (Unified Markup
Language). This is one main benefit compared to
some other tools, because the event handling can be
done intuitively and the thereby defined program
code can be modified and extended in the textual
layer as well. Moreover, simulator coupling with
standard tools (e.g. MATLAB/Simulink, FEMLAB)
is realized. Features for coupling a new simulator
with MATLAB are in general used for optimization.
The included MATLAB algorithms can be used and
so, the system runs in co-simulation, whereby the
model is defined intuitively in Modelica standard
with additional states and the optimization routine is
started in MATLAB/Simulink.

Mosilab offers a list of explicit and implicit integra-
tion methods for solving the defined system of DAEs
(Differential Algebraic Equations). The default
method is the IDA Dassl routine. This method is
capable to handle stiff systems. The other imple-
mented methods are Explicit Euler, Implicit Euler,
Implicit Trapeze and Explicit Trapeze.

2 Modeling
In this section three different models will be ex-
plained in detail. The first one, the constrained pendu-
lum, is used to show the high flexibility of Mosilab
and to represent the different ways of implementing a
state event. The second is a linear model [6] for
which an analytical solution exists and which is used
to show the mathematical correctness of the imple-
mented solution algorithms.

The third one gives an overview about advanced
modeling and simulation with Mosilab/Modelica, it is
a model of the free pendulum. Out of the given model
definition we will see that a pure Modelica solution is
not possible any more, because the dimension of the
state space changes. This happens when a statechart is
inevitable in Mosilab.

2.1 Constrained pendulum
The constrained pendulum is a classical nonlinear
model in simulation techniques. To make the problem

easier than it is in real life, we assume the mass m is
large enough so that, as an approximation, we state
that all the mass is contained at the bob of the pendu-
lum (that is the mass of the rigid shaft of the pendu-
lum is assumed negligible). This model has been
presented in the definition of ARGESIM comparison
C7 [5]. There is no exact analytical solution to this
problem. Therefore, the results have to be obtained by
numerical methods. In this section a description of
the model will be given.

sin()ml mg d l (1)

Hereby denotes the angle in radiant measured in
counter clockwise direction from the vertical posi-
tion. The parameters in the model are the mass m and
the length of the rope l . The damping is realized with
the constant d . In Mosilab it is an important differ-
ence, if the modeler is using constant or parameter!

As it is a constrained pendulum a pin is fixed at a
certain position. This position is given by the angle
angle p and the length pl . Every time when the rope
of the pendulum hits the pin the length of the pendu-
lum has to be shortened. In this case the pendulum
swings on with the position of the pin as the point of
rotation and the shortened length

s pl l l (2)

We will focus on the first example defined in the
ARGESIM comparison C7, where the following
parameters, constants, and initial values are defined:

start start

1.02, 1, 0.7, 9.81

/ 6, 0, 0.2, /12
p

p

m l l g
d

 (3)

2.2 Two state model
The here defined model is based on the definition of
the ARGESIM comparison C5 [6]. This is a system
with two coupled differential equations with a classi-
cal parameter state event. The reason why we chose
this more or less simple example is, that in contrast to
the system defined in 2.1 this system can be solved
analytically and therefore we can compare the solu-
tion generated in Mosilab with the original analytical
solution. Furthermore the different model approaches
can be compared pertaining to the solution quality.

This example tests the ability of the simulator to
handle discontinuities of the aforementioned type in a
satisfactory way. The problem is as follows:

1 1 2 2 1

2 3 4 2

()
()

y c y c y
y c c y

 (4)

+++ Class ical/Statechart-based Model ing of State Events and Structural Changes +++ t

19

N
SN

E 18/2, A
ugust 2008

This ordinary differential equation (ODE) system is
essentially a simple linear stiff problem with expo-
nential decays as analytical solution. One of these is a
very rapid transient, and the stationary solution of the
slow decay varies from the two states of the model.
This actually ‘drives’ the model (and the discontinu-
ity).

The parameter 1c and 3c stay unchanged during simu-
lation. The parameter 2c is 0.4 and 4c is 5.5 when the
model is in state 1 (also the initial state). The initial
values are 1(0) 4.2y and 2 (0) 0.3y . The model
remains in state 1 as long as 1 5.8y . The choice of

2c and 4c ensures that 1y will grow past 5.8.

When the model switches to state 2, parameters 2c
and 4c change to 2 0.3c and 4 2.73c . The model
remains in state 2 as long as 1 2.5y . When passing
this instance the model switches back to state 1; the
choice of 2c and 4c ensures that this will happen.

Analytical solution values can be found. We are fo-
cusing on a simulation period starting at time point 0
and ending at time point 5. For comparison we state
that the last discontinuity occurs at time 4.999999646
and the 1(5.0)y value should be approximately 5.369.

2.3 Free pendulum on a string
Until now the definitions of systems of interest have
been looking on models where the state space dimen-
sion does not change during simulation. The state
events can all be interpreted as simple parameter
events. Now a system is given where the state space
dimension has to be changed for real.

This example is a little bit more complicated. Let us
again consider a pendulum. The massive bob of the
pendulum is fixed on a string. The general structure
of the system is depicted in Fig. 1 [5].

In case of a rollover of the pendulum it can start to
fall freely until the constraints of the string apply
again. This can happen if the pendulum swings higher
than / 2 and the centrifugal force is smaller than
the gravitational force.

Accordingly, this model has two different states:

The normal pendulum movement, and
the free fall case.

The movement of the pendulum is given in equation
(1). We have to define the equations for the free fall
case. They are given by

0
y

x

v g
v (5)

For our model we have an additional constraint,
which is based on the fixed length l of the pendulum:

2 2x y l (6)

This model cannot be solved using simple parameter
state events and is defined to give an example that
problems in simulation of technical systems as well
as in biology, genetics, etc. occur not only in very
sophisticated systems. As seen here the need for state
space switching in nowadays modeling and simula-
tion techniques is quite common.

After the definition of the main tasks and the extra
example we will have a closer look on the implemen-
tation approaches of the constrained pendulum and
test the simulator by solving different solution of the
two state model and comparing them with the ana-
lytical solution.

3 Solutions of the constrained pendulum
In this chapter the most important different solution
approaches in Modelica of the classical constrained
pendulum are discussed. Benefits and restrictions of
the different implementations are listed. In the im-
plementations of the constrained pendulum the tan-
gential velocity is used instead of angular velocity.
This has the benefit that only the length of the pendu-
lum has a discrete change in case of hitting or leaving
the pin.

3.1 Standard Modelica approach
In this approach only standard Modelica code is used.
It is defined in the Mosilab equation layer, which is

Figure 1. Force diagram of the model.

+++ Class ical/Statechart-based Model ing of State Events and Structural Changes +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

20

part of the model editor. The model can be formulated
as implicit law, which means that it is not necessary
to transform the equations to an explicit form:

1 equation
2 v = l1*der(phi); vdot = der(v);
3 mass*vdot/l1 + mass*g*sin(phi) + damping*v=0

The state event, which appears every time when the
rope of the pendulum hits the pin or looses the con-
nection to it, is modeled in an algorithm section with
if (or when) – conditions:

4 algorithm
5 if (phi<=phipin) then length := ls; end if;
6 if (phi>phipin) then length := l1; end if;

This section defines the length of the rope depending
on the actual state of the constrained pendulum.
Mosilab handles the if-command by means of a state
event finder. This is important to find the time point
of the state event in a given time slice. The solution
of the so defined system is depicted in Fig. 2.

In compare with the solutions done in another Mode-
lica simulator (Dymola, in SNE [6]) and the reference
solution, this outcome seems reasonable.

3.2 Mosilab state chart approaches
These approaches make use of an additional feature
of Mosilab, namely modeling of discrete elements by
state charts.

Parameter event solution
The state chart is used instead of the algorithm sec-
tion and therefore instead of the if- or when-
construct. This has the benefit of much higher flexi-
bility and readability in case of complex conditions.
Boolean variables define the status of the system and
are managed by the state chart. This can be solved as
follows:

1 event Boolean lengthen(start=false),
 shorten(start=false);

2 equation
3 lengthen = (phi>phipin);
4 shorten = (phi<=phipin);
5 statechart
6 state LengthSwitch extends State;
7 State Short, Long, Initial(isInitial=true);
8 transition Initial->Long end transition;
9 transition Long->Short event shorten

action length := ls;
10 end transition;
11 transition Short->Long event lengthen

action length := l1;
12 end transition;
13 end LengthSwitch

From the modeling point of view, this is equivalent to
the description with if-clauses. The Mosilab transla-
tor generates an implementation with different inter-
nal equations. Mosilab performs a simulation by
handling the state event within the integration over
the simulation period.

Mosilab switching solution
As already explained Mosilab’s state chart engine is
not only an alternative to the Modelica if- or when-
construct, it is much more powerful.

This system allows any kind of hybrid model compo-
sition with models of different state spaces and also
of different types. For the constrained pendulum we
decompose the system into two different models:

SHORT, for the case that the rope has contact to
the pin, and
LONG, for the standard damped pendulum.

These two models are than controlled by a state chart,
defined in a similar way as shown in the UML-
diagram in Fig. 3.

As seen, the new model description comprehends
now three parts, the main program which also con-
sists of the state chart and two submodels. These two
submodels can be defined separately, or because of
the special structure, can be instances of one defined
class.

The following source code is using the first method
for implementation and first defines the two separate
models and afterwards the main program.

1 model ConstrainedPendulum
2 model Long
3 equation
4 mass*vdot/l1 + mass*g*sin(phi) +

 damping*v = 0;
5 end Long;

Figure 2. Solution of the task defined in section 3.1, the red
(inner) curve represents the angle, the blue curve depicts

the angular velocity.

+++ Class ical/Statechart-based Model ing of State Events and Structural Changes +++ t

21

N
SN

E 18/2, A
ugust 2008

6 model Short
7 equation
8 mass*vdot/ls + mass*g*sin(phi) +

 damping*v = 0;

9 end Short;
10 event discrete Boolean lengthen(start=true),

 shorten(start=false);
11 equation
12 lengthen = (phi>phipin);
13 shorten = (phi<=phinpin);
14 statechart
15 state ChangePendulum extends State;
16 State Short,Long,startState(isInitial=true);
17 transition startState -> Long
18 action
19 L := new Long(); K := new Short();
20 add(L);
21 end transition;
22 transition Long -> Short event shorten
23 action
24 disconnect ...; remove(L);
25 add(K); connect ...;
26 end transition;
27 transition Short -> Long event lengthen
28 action
29 disconnect ...; remove(K);
30 add(L); connect ...;
31 end transition;

32 end ChangePendulum;
33 end ConstrainedPendulum; // end of model

The transitions organize the switching between the
pendulums (remove, add). The connect statements
are used for mapping local states to global state vari-
ables.

Summing up the results
In center of interest is also the difference in time
behavior of the different solution methods. As this is
a nonlinear model we can only calculate the numeri-
cal solutions and compare, for example, the time
points where the last state event appears. This is the
moment when the rope of the pendulum looses the

connection to the pin the last time. In the model under
investigation, this happens after the fourth time short-
ening the pendulum, which means after eight state
events all together.

The solutions are calculated with the default simula-
tion method, if possible. With this approach we try to
test the simulation environments from the user’s point
of view. Many programmers and modelers do not care
a lot about the implemented integration methods. For
this reason the standard method has to produce reli-
able results in an appropriate calculation time.

As depicted in Tab. 1, the solutions are quite close but
not identically the same. An explanation therefore is
that the standard Modelica solution cannot be done
with the standard integration method. This could be
examined making further tests with different choice
of the minimal and maximal step size in each solution
method.

4 Two state model
As this is another model where only parameters are
changed in the case of the arrival of a state event, this
model can be solved in four different ways as ex-
plained for the constrained pendulum in chapter 4.

The main differences in compare to the pendulum
model are:

An analytical solution exists for the model.
Only the first derivative has to be calculated.
The system is stiff.

The first solution is done again in standard Modelica
notation. The most interesting part of the source code
is implemented as follows:

1 algorithm
2 when (y1 >= 5.8) then
3 c2 := -0.3; c4 := 2.73;
4 end when;
5 when (y1 <= 2.5) then
6 c2 := 0.4; c4 := 5.5;
7 end when;

Simulation
method

Time of last
event

Solution method

Pure Modelica 6.7199 Impl. Trapez
Min. step 1E-6
Max. step 1E-4

Switch models 6.7204 IDA Dassl
Min step 1E-6
Max step 0.08

Table 1. Comparison of the results.

Figure 3. UML-diagram of the statechart solution of the
constrained pendulum. The main model controls the two

submodels. In this example, the LONG mode is the initial
state.

+++ Class ical/Statechart-based Model ing of State Events and Structural Changes +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

22

8 equation
9 der(y1) =c1*(y2+c2-y1);

10 der(y2) =c3*(c4-y2);

The second way of solving this stiff system is to de-
fine a state chart in which only the parameters c2 and
c4 are changed when an event occurs. We have two
cases for this parameter state event. The one when the
value of the variable y1 gets higher than 5.8 and the
second when this value falls below 2.5. For this
model approach we only need one model in which the
parameter rules are defined on a higher level.

11 event Boolean e(start = false),
 f(start = false);

12 equation
13 ...
14 statechart
15 state SCSol extends State;
16 State ax, bx, ix(isInitial=true);
17 transition ix -> ax end transition;
18 transition ax -> bx event e
19 action c2:=-0.3; // -1.25;

 c4:=2.73; // 4.33;
20 end transition;
21 transition bx -> ax event f

action c2:=0.4; c4:=5.5;
22 end transition;
23 end SCSol;

The source code above shows the easy way of im-
plementation of this task.

The third way of implementation we will focus on
concerning this example is to define two separate
models which will then toggle between the states.
This is the safest way for general implementation of
systems with different states. On the one hand this
cannot be done with the main part of simulators, on
the other hand Mosilab is able to use this structure in
different ways: the first approach is to define a sub-
model and switch between different instances of one
and the same class (this would be enough in our
case). The second solution is the general switching of
active submodels to solve the system. This is done in
the implemented solution.

1 model Zustand1 when (y1>=5.8) then
2 constant Real c1 = 2.7*10^6;
3 constant Real c3 = 3.5651205;
4 constant Real c2 = 0.4;
5 constant Real c4 = 5.5;
6 Real y1; Real y2;
7 equation
8 der(y1) = c1*(y2 + c2 - y1);
9 der(y2) = c3*(c4 - y2);

10 end Zustand1;
11 model Zustand2 ... end Zustand2
12 event Boolean e(start = false),

 f(start = false);

13 Real y1(start = 4.2);
14 Real y2(start = 0.3);
15 dynamic Zustand1 Z1;
16 dynamic Zustand2 Z2;
17 equation
18 e = (y1 > 5.8) or (y1 == 5.8);
19 f = (y1 < 2.5) or (y1 == 2.5);
20 statechart
21 state Zustandswechsel extends ANDState;
22 State ax, bx, ix(isInitial=true);
23 transition ix -> ax action
24 Z1:= new Zustand1();
25 Z2:= new Zustand2();
26 add (Z1); Z1.y1:=y1;
27 Z1.y2:=y2;
28 connect(Z1.y1,y1);
29 connect(Z1.y2,y2);
30 end transition;
31 transition ax -> bx event e action
32 disconnect(Z1.y1,y1);
33 disconnect(Z1.y2,y2);
34 remove(Z1);
35 Z2.y1:=y1;
36 Z2.y2:=y2; add(Z2);
37 connect(Z2.y1,y1);
38 connect(Z2.y2,y2);
39 end transition;
40 transition bx -> ax event f action
41 disconnect(Z2.y1,y1);
42 disconnect(Z2.y2,y2);
43 remove(Z2);
44 Z1.y1:=y1;
45 Z1.y2:=y2; add(Z1);
46 connect(Z1.y1,y1);
47 connect(Z1.y2,y2);
48 end transition;
49 end Zustandswechsel;

The compendium of the code above shows the basic
structure of the problem solution. The next part repre-
sents the output part of the system.

4.1 The three solutions compared
After defining the source code, the main interest of
the user will focus on the quality of different imple-
mentations. From mathematical point of view the
implemented solutions are equivalent.

The solutions are all calculated with standard solution
method IDADassl. Two different step sizes are de-
fined for the experiment. The first with

 maxStep = 1e-6, minStep = 0.08,

the second experiment with

 maxStep = 1e-12, minStep = 0.0008.

The other settings are all chosen by their default val-
ues. No changes are made. The results are all read out
of the graphical interface. For more detailed output
information the user can take a look at the generated

+++ Class ical/Statechart-based Model ing of State Events and Structural Changes +++ t

23

N
SN

E 18/2, A
ugust 2008

data files to get more digits in the representation.
The results are depicted in table 2. As we can see, the
values are exactly the same in all three approaches.
This is very good for model reliability and necessary
for further development. In compare with the exact
solution of this problem (last event at time point
4.999999646 and the value y1(5.0) should be ap-
proximately 5.369.), we see that our simulation
method works in an acceptable quality range. The
imprecision of the output occurs also because the user
gets only four digits after semicolon for the calculated
value. Of course this is normally enough for standard
technical system solution, but in our case, namely, for
comparing with the exact analytical solution, it is not
good enough. The value of the function at the time
point 5 is in the allowed range.

5 Summary and outlook
As pointed out in chapters 4 and 5 Mosilab is capable
to handle as well nonlinear as linear stiff systems. The
Modelica extension for state event handling is a
strong tool for advanced modeling concepts. Never-
theless it is important to develop more features and
work on the compatibility with the Modelica syntax,
so that model exchange can be carried out.

The state chart extension of the Modelica notation is
a very useful feature for modeling complex hybrid
systems. Because of the state space switching ability
it can be used to minimize the simulation time. Fur-
thermore, the models get simpler and the number of
equations, that have to be solved are the minimal
number during computation.

The possibility to couple the simulation environment
with Matlab/Simulink is another important feature of
Modelica. As Matlab is very wide spread, a combina-
tion of both tools, especially in combination with
modern simulation system development and optimi-
zation can be done efficiently.

6 References
[1] http://mosilab.de/
[2] http://mosilab.de/forschungsprojekt-gensim
[3] http://www.modelica.org/
[4] Thilo Ernst, André Nordwig, Christoph Nytsch-

Geusen, Christoph Claus, André Schneider:
MOSILA Modellbeschreibungssprache, Spezifi-
kation, Version 2.0, from webpage:
www.mosilab.de/downloads/dokumentation

[5] http://www.sparknotes.com/physics/oscillations/
applicationsofharmonicmotion/section1.html

[6] http://www.argesim.org/comparisons/index.html
[7] F. Breitenecker, H .Ecker and I. Bausch-Gall.

Simulation mit ACSL: eine Einführung in die
Modellbildung, numerischen Methoden und
Simulation. Braunschweig: Vieweg, 1993. - XI,
399 S

Corresponding author: Günther Zauner
“die Drahtwarenhandlung” Simulation Services,
Neustiftgasse 57-59, 1070 Wien
guenther.zauner@drahtwarenhandlung.at

Accepted EUROSIM 2007, June 2007
Received: September 15, 2007
Revised: May 5, 2008
Revised: July 10, 2008
Accepted: July 30, 2008

 Settings 1 Settings 2
Event 5.0169 5.0000

Value at time 5.0 5.7935 5.8000 - 5.0998

Table 2. Calculated values

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

24

Numerical Simulation of Continuous Systems
with Structural Dynamics

Olaf Enge-Rosenblatt, Jens Bastian, Christoph Clauß, Peter Schwarz
Fraunhofer Institute for Integrated Circuits, Germany, olaf.enge@eas.iis.fraunhofer.de

In this paper, “continuous systems with structural dynamics” shall be understood as dynamical systems con-
sisting of components with continuous and/or discrete behaviour. (This notation should not be confused with
the term “structural dynamics” in the context of Finite Element simulation). Continuous systems with struc-
tural dynamics—or so-called “hybrid systems”—can often be investigated only by a so-called “hybrid simu-
lation” which means a simultaneous simulation of continuous-time dynamics (modelled by differential equa-
tions or differential-algebraic equations (DAE)) and discrete-event dynamics (modelled e.g. by Boolean
equations, finite state machines, or statecharts). To this end, an algorithm for numerical simulation of hybrid
systems must be able to both solve a DAE system within a “continuous” time progression as well as to deal
with event-driven phenomena.

In the paper, the point of view is emphasized that the structure of a continuous system is closely combined to
the structure of the DAE system which describes the continuous system’s dynamical behaviour. In this con-
text, discrete-time events are considered as phenomena which may cause a change of the DAE system’s
structure. Furthermore, a distinction between systems with variable structure and models with variable struc-
ture is explained. The main part of the paper deals in detail with a simulation algorithm suitable for hybrid
systems. This algorithm consists of a “continuous phase” (for numerical integration of the DAE system) and
a “discrete phase” (for interpreting the event, establishing the new valid DAE system, calculating the new
initial values). Some simulation results dealing with selected models and using the multi-physics language
Modelica will complete the paper.

1 System structure—what is it?
This paper deals with changes of the “structure” of a
dynamic system during a simulation process. But
what is the structure of a dynamic system? Many
properties could be considered to possibly belong to
the structural description of such a system. In me-
chanical domain, the number of interacting bodies
and the number of joints between them belong to the
structural information as well as the fact which two
bodies are connected by which kind of joint. A body’s
geometrical shape is of no importance in this context.
In electrical domain, the number and types of electri-
cal components and their galvanic connections among
each other belong to the structural information. It
does not care whether, e.g., a voltage source has a
constant value or a sinusoidal time behavior. Similar
descriptions can be found for other physical domains
(hydraulic, pneumatic, thermodynamic, etc.).
To sum up all these different properties, we assume in
this paper that the structure of a system can be inter-
preted as the structure of its mathematical model, i.e.
the number, types and structure of differential and/or
algebraic equations belonging to the model. Finally,
this structure manifests itself within the fill-in struc-
ture of the equation system’s Jacobian.

In this paper, a mathematical model which possesses
the possibility to change its structure because of some
kind of “events” will be denoted to as a model with
structural dynamics.

2 Why structural dynamics?
Many physical or technical systems change their
properties during operation. Variation of model pa-
rameters is a common situation in simulating dy-
namic systems. But very often, changes of properties
occur depending on events which may appear at cer-
tain points in time (time-discrete phenomena). In
these cases, the complete system shows both time-
continuous and time-discrete behavior. Such systems
are often called hybrid systems. They arise in many
fields including robotics, embedded systems, trans-
portation systems, process control, biological and
chemical systems, mixed signal (analogue-digital)
integrated circuits, etc. Events occurring in hybrid
systems can be distinguished into

events depending only on time (i.e. they can be
collected within a time queue) and
events depending on other physical quantities of
the system (i.e. they happen if a variable crosses
the zero border value).

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++ t

25

N
SN

E 18/2, A
ugust 2008

Investigation of hybrid systems has a long-lasting
history (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15]). Their dynamic simulation is supported by
some simulators (see [8]), e.g. Matlab/Simulink, As-
pen, gPROMS, Dymola, Saber, Mosilab, and various
VHDL-AMS simulators. But most of them only sup-
port very simple model variations. A fundamental
change of model structure—such as adding or remov-
ing differential and/or algebraic equations (which we
call “structural dynamics”)—is not possible in most
simulators. Such behaviour leads to complicated
mathematical problems. Mainly, it has to be guaran-
teed after a structural change that, first, the correct
differential-algebraic equations are chosen and, sec-
ond, a set of consistent initial values of the state vari-
ables can be calculated.

From the application point of view, it is important to
distinguish between systems with a varying structure
and models with varying structure (but the system
itself is not varying). A system having a varying struc-
ture is characterized either by existence of so-called
unilateral constraints (see e.g. [16, 17, 18, 19]) or by
appearance of switches for activating or deactivating
parts of the system. Such a system does really change
its structure or at least its structural information in the
behavioural equations during operation. Examples
may be found in different application areas:

mechanics: clutches, collision of masses, Cou-
lomb friction, “maximum distance” phenomena
(see Fig. 1),
electronics: parts of the system are suspended for
a certain time period (e.g. for saving electrical
power in mobile communication devices),

power electronics: switches and relays as well as
diodes and thyristors (if they are considered as
ideal switches, see Fig. 2),
adaptive manufacturing machines and roboters:
they have to handle different objects and have to
adjust themselves to changing situations.

Other reasons may lead to varying models of the
same system because system’s behaviour shall be
investigated under different circumstances. Examples
of such reasons may be:

accuracy shall be adjustable to a more or less de-
tailed model during simulation (to be able to
“simulate as accurate as necessary”, see Fig. 3),
usage of different model designs for “dynamic
mode” (transient investigation) and “steady-state
mode” with the intention to switch between them
during simulation (see e.g. [20]).

From our point of view, investigation of hybrid mod-
els is much more than a simultaneous simulation of
continuous-time dynamics (modelled by differential
equations or differential-algebraic equations (DAE))
and discrete-event dynamics (modelled e.g. by Boo-
lean equations, finite state machines, or state charts).
A hybrid model should rather be considered as a
model which, beyond its continuous time and dis-
crete-event properties, possesses the possibility to
change the structure of behavioural equations at cer-

Figure 3. Three levels of wind generator modeling

Figure 1. String pendulum

Figure 2. Switched diode circuit

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

26

tain points in time (also called events) because of
various reasons. Hence, a simulator for hybrid models
has not only to be able to handle continuous and dis-
crete parts with appropriate numerical solvers but,
furthermore, should provide concepts and statements
for the definition of models with variable structure.
This includes a practical solution of the expected
numerical issues coming up with a change from one
set of differential-algebraic equations to another. The
next section gives an overview what types of struc-
tural changes may occur with dynamic systems.

3 Types of structural changes
Investigating practical simulation problems, structural
changes may arise in different ways. A summary is
shown in Fig. 4. The most important issue is “change
model behavior” in the first row. This issue includes

simple substitution of one differential equation
by another one,
exchange of a system of differential equations for
another one but with the same order,
replacement of behavioral or structural descrip-
tion of a component by a totally other one (e.g. a
drastic variation of model order, change between
continuous and discrete behavior, substitution of
a model description by coupling with another
simulator).

But also the interconnections between components
and, therefore, the structure of the system may change
(see rows two to five of Fig. 4). Adding and deleting
of certain blocks to/from the complete model (issue
“Additional blocks”, second row) requires a correct
handling of these connectors which are sometimes
“opened” (i.e. not connected). In the “open”-case, an

additional equation has to be added automatically to
the model that enforces the vanishing of the flow
variable of the concerning connector. The issue
“Change connections” (third row) yields a simple
change of parts of some algebraic equations. “Addi-
tional blocks and connections” (row four) combines
the issues above. The “Change number of ports”-
issue may be a consequence of changing the block
content from a simple model to a very detailed one or
vice versa.

4 A hybrid simulation algorithm

4.1 Algorithm principle
The simulation of continuous-discrete systems is
supported by many powerful tools. But in handling
varying model structures, most simulators have
strong restrictions. The Modelica simulator Dymola,
e.g., allows that equations may change in an if-
then-else clause, but the number of equations in
both branches must be the same. Similar restrictions
exist in many other simulators which allow the usage
of hybrid models.

In this section, an approach for simulating hybrid
models is proposed which is able to deal with struc-
tural variability. This approach was implemented
within the experimental simulator Mosilab (see [21,
22, 23]). This simulator was developed within the
German applied research project GENSIM by some
Fraunhofer Institutes. Within Mosilab, an extension
of the language Modelica by a concept for dealing
with structural dynamics has been intended. For this
purpose, a description of state charts in graphical and
textual way was implemented.

In the following, the structural variability of a model
is characterized using state charts. Roughly speaking,
every state stands for a certain set of differentialalge-
braic equations and every transition realizes a change
between different model structures.

The basic algorithm is shown in Fig. 5. It consists of
two phases, a discrete phase and a continuous phase.
The main issue in the discrete phase is to update all
state machines of the hybrid model (one state ma-
chine is described by one state chart) and to establish
the new set of differential-algebraic equations if nec-
essary. Hence, all structural changes of a hybrid
model are carried out within the discrete phase. In
this context, it is assumed that structural changes
occur at discrete points in time, i.e. they shall not be Figure 4. Structural dynamics

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++ t

27

N
SN

E 18/2, A
ugust 2008

executed within a certain time interval (zero time
assumption). Between two successive discrete points
in time, only analogue simulation is performed. This
analogue simulation is carried out by a numerical
DAE solver and must continue for a minimum time
interval which is greater than zero. The length of such
a simulation interval may, a priori, either be known or
be unknown. If the next discrete-time event happens
at a determined (time-fixed) moment then the inter-
val’s length is known. Otherwise, e.g. if the next
event being expected is triggered by a zero crossing
of a variable, the length of the simulation interval is
unknown. In the latter case, the relevant quantity has
to be monitored in an appropriate way.

4.2 Discrete phase
Fig. 6 shows a more detailed outline (compared to
Fig. 5) of the discrete phase of the hybrid simulation
algorithm. Please note that simulation time keeps
constant during the complete discrete phase. The
algorithms of the discrete phase influence only the
discrete parts of the hybrid model. Hence, states and
transitions of the state chart diagram are under special
focus. But the model structure of the continuous sub-
model (including the DAE set belonging to) and the
discrete variables may be affected, too.

At start of numerical simulation, all state machines
must be initialized by evaluating the initial states and
their associated transitions. The main loop of the
discrete phase consists of one or more updating proc-
esses of the state machines and, after every updating

process, the question for new events which may be
raised within the last update. During every updating
process, two sets of events are to be distinguished: the
set of active events and that of waiting events. One
updating process handles all active events and fires
the associated transitions successively. New events,
which may be raised by fired transitions or by exit
actions or entry actions of the associated states, are
collected in the set of waiting states. If no more active
events are available, one updating process is finished.
If now the set of waiting events is empty then the
main loop can be closed. Otherwise, another updating
process is necessary. For this purpose, all waiting
events are transferred into the set of active events and
the next update is started.

After leaving the main loop, it has to be proved
whether the model structure has changed. This can be
done in a very simple way assuming that different
activation configurations of the state machines before
and after the current discrete phase refer to a change
of the structure of the continuous submodel. If the
structure is unchanged, the discrete phase can be
finished and the following continuous phase is ready
to go. In case of structural changes, the set of behav-
ioral equations has to be changed, too. The new set of
differential-algebraic equations has to be chosen
according to the currently active states in all state
machines. At start of the following continuous phase,
consistent initial conditions have to be found. To
simplify this task—or even perhaps to enable a solu-
tion—it may be necessary for the user to define a
mathematical algorithm how some initial values of

Figure 6. Discrete phase of hybrid simulation algorithm.

Figure 5. A hybrid simulation algorithm

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

28

the new model structure are to be calculated from the
values of the old one. Such an algorithm would have
to be specified within the transitions which are re-
sponsible for the appropriate structural change.

4.3 Continuous phase
A more detailed outline (compared to Fig. 5) of the
continuous phase of the hybrid simulation algorithm
is shown in Fig. 7. Please note that within this phase,
the structure of the complete hybrid model keeps
unchanged. The algorithms of the continuous phase
only affect the continuous parts of the hybrid model.
Hence, finding consistent initial values (see e.g. [24,
25, 26]) as well as solving the present set of differen-
tial-algebraic equations is the main issue of this
phase. But the recognition of possibly occurring
events is also important.

The continuous phase begins with an initialization
process. In case of carrying out this step for the first
time (0t), the user-given initial values for physical
quantities of the continuous model are accepted. Oth-
erwise, the values of the physical quantities calcu-
lated within the last discrete phase are used as initial
values. Using these values as a start configuration,
consistent initial values—i.e. values, which fulfill the
constraints of the DAE—have to be found in the next
step.

The main task of the continuous phase is to solve
numerically an initial value problem of the form

0 0 0 0

(, ,) 0
() , ()

F t y y
y t y y t y

 (1)

where 0y and 0y are consistent initial values, i.e. they
fulfil the residuum (, ,) 0F t y y . The vector y con-
sists of both differential variables (the relevant y -
element appears in the DAE) and algebraic variables
(no relevant y -element appears in the DAE). An
appropriate numeric solver can be used to solve the
problem (1) with advancing time. (In Mosilab, the
numeric solver IDA [27] is used.) The numerical
integration process may possibly be continued until
the end time of simulation endt is reached. However,
there are some reasons for stopping the numerical
integration at an earlier point in time.

The first reason is the possible appearance of a struc-
tural change. In such a case, the numeric solver
would have to be stopped at a point in time which lies
as near as possible to the moment of event. In order to
recognize structural changes, so-called “event vari-
ables” are defined. These variables are differential or

algebraic variables which may cause an event in the
sense of structural dynamics. The event variables are
monitored during the numerical integration process.

After each time step of the solver, all event variables
are compared to their values before the last integra-
tion step. If a change of an event variable is detected
then the first moment of changing this variable within
the current integration interval must be determined.
This can be done e.g. by a root finding algorithm. In
this context, it is important to use only numerical
solutions at points in time before the event occurs.
Otherwise, the accuracy of the calculated moment of
event may be affected negatively. After determination
of event point in time, the continuous phase is fin-
ished and the next discrete phase is started.

The second reason for stopping the numerical integra-
tion before reaching endt is the possible jump of a so-
called “non event”-variable. Such variables are dif-
ferential or algebraic variables which are not associ-
ated to any event of structural changes. In case of
jumping of such a variable, the IDA’s integration
interval becomes smaller and smaller. If the integra-
tion interval drops below a certain border value (de-
noted by mint), the solver is reinitialized at the point
in time 1 mini it t t and new consistent initial val-
ues are computed. After that, a new numerical inte-
gration process is started.

4.4 Special aspects
The necessary calculation of consistent initial values
at each beginning of a continuous phase or after a

Figure 7. Continuous phase of hybrid simulation algorithm

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++ t

29

N
SN

E 18/2, A
ugust 2008

jump of a non event variable is sometimes a crucial
task. Therefore, the finding procedure may fail. Some
helping methods were implemented into hybrid simu-
lation algorithm of Mosilab to overcome this prob-
lem. One of them, the homotopy method, shall be
mentioned here.

The homotopy method is a procedure to calculate the
solution of the problem

() 0H z (2)

starting from a known solution 0z . For this purpose,
the original problem (2) is substituted by the follow-
ing problem

0(,) () (1) () 0H z H z H z (3)

If 0 , this equation is trivial. By increasing
stepwise, new problems of the form (3) are estab-
lished. Generally, the solution 1kz of the preceding
problem (3) is used to find a solution kz of the cur-
rent problem (3). In case of convergence, this solution
is used in the next step (with furthermore increased

). If no solution kz can be found then is de-
creased and a new trial is started using 1kz . The com-
plete algorithm as used in Mosilab is shown in Fig. 8.

5 Simulation experiment
In order to show the function of the presented algo-
rithm, some simulation results of a simple 2D string

pendulum are given. A detailed sketch of the example
is shown in Fig. 9.

A point mass (having the mass parameter m) is at-
tached to a fixed point by a non-elastic thread. The
maximum length of the thread shall be denoted to as
L . The mass can perform two kinds of movements: a
circular movement in case of a fully stretched thread
(Fig. 9, left hand side) and a free movement in case of
a non-stretched thread (Fig. 9, right hand side). An
appropriate state chart is depicted in Fig. 10. The
model has two states called bound and free. Within
the circular movement, one differential equation of
second order is valid (having the state quantities
and , where g means the gravity constant and k
denotes a damping coefficient). Within the free
movement, however, two differential equations of
second order are needed (having the positions in x -
and y -direction and their time derivatives as state
quantities, where k means a damping coefficient and
r denotes the current distance between point mass
and fixed point).

The system remains in the bound state as long as the
centrifugal force of the mass holds the thread at its

Figure 10. State chart of string pendulum

Figure 9. Sketch of string pendulum

Figure 8. Homotopy method algorithm

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

30

full length. If the sum of forces acting on the mass
drops below zero (0F), this state will be leaved
and the free state will become active. The relevant
transition is called unstretch. Within this transition,
the current position and velocities have to be calcu-
lated from the last valid values of the physical quanti-
ties of the bound state. On the other hand, the free
state is valid as long as the distance between point
mass and fixed point is less than the full length of the
thread. If the full length is reached or exceeded
(r L), the system will change from the free state
into the bound state. The relevant transition is called
stretch. Within this transition, the current angle and
angular velocity have to be calculated from the last
valid values of the physical quantities of the free
state. Please note that the energy conservation law
may not be fulfilled during this structural change.

Fig. 11 shows an x - y -plot of the string pendulum
under the assumption that the mass is located near its
rest position at start of simulation and an initial veloc-
ity in positive x -direction is given. The pendulum
performs two cycles followed by a decreasing oscilla-
tion. In the first cycle, two structural changes occur
(denoted by no. 1 and 2). The first one switches from
circular to free movement, the second one changes
contrarily. The same appears within the second cycle
(structural changes no. 3 and 4). After the fourth
switch, the thread remains stretched to its full length
during the decreasing oscillations.

The following figures show time histories of some
interesting physical quantities. Fig. 12 depicts the
time association to the x - y -plot in Fig. 11. In case of
free movement, x and y are differential variables of
the DAE, while in case of circular movement, both

variables have to be computed from the current angle.
Contrary to this, Fig. 13 shows the angle which is
known during the circular movement and has to be
calculated within the free movement. The structural
changes can be determined best in the curves of the
two monitoring variables: the force within the thread
(see Fig. 14) and the distance between the mass and
the fixed point (see Fig. 15).

6 Conclusion
The numerical simulation of continuous systems with
structural dynamics requires simultaneous handling
of continuous-time dynamics and discrete-event dy-
namics. Hence, a tool suitable for simulating such
systems must offer facilities to describe both phe-
nomena. In particular, the interactions between both
worlds, i.e. triggering events by the continuous model
as well as changing the continuous model’s structure
by events, have to be taken into account.

In the paper, different types of structural changes are
listed. The full variety of these cases is hardly sup-
ported by well-known simulation tools. Hence, the
paper presents a hybrid simulation algorithm consist-
ing of a discrete phase and a continuous phase. The
simulator switches between these two phases at cer-
tain points in time in an appropriate way. The discrete
phase influences only the discrete parts of the hybrid

Figure 13. Simulation result: angle

Figure 12. Simulation result: x - and y -coordinates

Figure 11. Simulation result: x - y -plot

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++ t

31

N
SN

E 18/2, A
ugust 2008

model while the simulation time keeps constant. Exe-
cution of events and their consequences on changes
of the model structure are under focus. The continu-
ous phase affects only the continuous parts of the
hybrid model while the model structure keeps un-
changed. The main issue is to find consistent initial
values and to carry out numerical integration of the
DAE while monitoring relevant variables for recogni-
tion of possibly occurring events.

Beyond that, a homotopy method for supporting the
overcome of the consistent initial values finding
problem is presented. Finally, some simulation results
of a string pendulum are given.

References
[1] P. Antsaklis, X. Koutsoukos, J. Zaytoon. On hybrid

control of complex systems: a survey. J. Européen des
Systèmes Automatisés, 32:1023-1045, 1998.

[2] P.I. Barton, C.K. Lee. Modeling, simulation, sensitiv-
ity analysis, and optimization of hybrid systems. ACM
Trans. Mod. Comp. Sim., 12:256-289, 2002.

[3] D.A. van Beek, J.E. Rooda. Languages and applica-
tions in hybrid modelling and simulation: Positioning
of Chi. Control Engineering Practice, 8:81-91, 2000.

[4] F. Breitenecker, I. Troch. Simulation software – de-
velopment and trends. In: H. Unbehauen, editor, Con-
trol Systems, Robotics and Automation, Theme in En-

cyclopedia of Life Support Systems, UNESCO /
EOLSS Publishers, Oxford/UK 2004, Article No.
6.43.7.7 [http://www.eolss.net].

[5] F.E. Cellier. Continuous System Modeling. Springer.
1991.

[6] F.E. Cellier, H. Elmqvist, M. Otter, J.H. Taylor.
Guidelines for modeling and simulation of hybrid sys-
tems. Proc. IFAC World Congress, Sydney, Australia,
1993, vol.8, 391-397.

[7] H. Gueguen, M.-A. Lefebvre. A comparison of mixed
specification formalisms. J. Européen des Systemès
Automatisés, 35:381-394, 2001.

[8] http://www.laas.fr/cacsd/hds

[9] Hybrid Systems: Computation and Control. Springer
Lecture Notes in Computer Science (LNCS), Proceed-
ings of the HSCC workshops.

[10] KONDISK: German research project on continuous-
discrete systems; see http://www.
ifra.ing.tu-bs.de/kondisk/

[11] E.A. Lee, H. Zheng. Operational semantics of hybrid
systems. Proc. HSCC 2005, Zurich, Switzerland,
Springer LNCS 3414, 25-53.

[12] P. Mosterman. An overview of hybrid simulation phe-
nomena and their support by simulation packages.
Proc. HSCC 1999, Berg en Dal, The Netherlands,
Springer LNCS 1569, 165-177.

[13] M. Otter. Objektorientierte Modellierung mechatroni-
scher Systeme am Beispiel geregelter Roboter. Disser-
tation, Fortschrittberichte VDI, Reihe 20, Nr. 147,
VDI-Verlag, 1995.

[14] M. Otter, M. Remelhe, S. Engell, P. Mostermann. Hy-
brid models of physical systems and digital control-
lers. J. Automatisierungstechnik, 48:426-437, 2000.

[15] R. Saleh, S.J. Jou, A.R. Newton. Mixed-Mode Simula-
tion and Analog Multilevel Simulation. Kluwer, 1994.

[16] O. Enge. Analyse und Synthese elektromechanischer
Systeme. Dissertation, Shaker, Aachen, 2005.

[17] O. Enge, P. Maißer. Modelling electromechanical sys-
tems with electrical switching components using the
linear complementarity problem. Journal Multibody
System Dynamics, 13:421-445, 2005.

[18] C. Glocker. Dynamik von Starrkörpersystemen mit
Reibung und Stößen. Dissertation, Fortschrittberichte
VDI, Reihe 18, Nr. 182, VDI-Verlag, 1995.

[19] F. Pfeifer, C. Glocker. Multibody dynamics with uni-
lateral contacts. John Wiley & Sons, 1996.

[20] O. Enge et al. Quasi-stationary AC analysis using
phasor description with Modelica. Proc. 5th Modelica
Conf., Vienna, Austria, 2006, 579-588.

[21] http://www.mosilab.de

[22] C. Nytsch-Geusen et al. Mosilab: Development of a
Modelica based generic simulation tool supporting
model structural dynamics. Proc. 4th Modelica Conf.,
Hamburg, Germany, 2005, 527-535.

Figure 14. Simulation result: force

Figure 15. Simulation result: distance

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

32

[23] C. Nytsch-Geusen et al. Advanced modeling and
simulation techniques in Mosilab: A system develop-
ment case study. Proc. 5th Modelica Conf., Vienna,
Austria, 2006, 63-71.

[24] P.N. Brown, A.C. Hindmarsh, L.R. Petzold. Consis-
tent initial condition calculation for differential-
algebraic systems. SIAM J. Sci. Comp., 19:1495-
1512, 1998.

[25] C. Pantelides. The consistent initialization of differen-
tial-algebraic systems. SIAM J. Sci. Stat. Comput.,
9:213-231, 1998.

[26] J. Unger, A. Kröner, W. Marquardt. Structural analy-
sis of differential-algebraic equation systems theory
and applications. Computers Chem. Engng., 19:867-
882, 1995.

[27] A.C. Hindmarsh, R. Serban, A. Collier. User Docu-
mentation for IDA v2.5.0, UCRL-SM- 208112,
www.llnl.gov/casc/sundials, 2006.

Corresponding author: Olaf Enge-Rosenblatt
Fraunhofer Institute for Integrated Circuits,
Design Automation Division,
Zeunerstraße 38, 01069 Dresden, Germany
olaf.enge@eas.iis.fraunhofer.de

Accepted EUROSIM 2007, June 2007
Received: June 5, 2008
Revised: July 10, 2008
Accepted: July 20, 2008

SNE Editorial board
Felix Breitenecker, Felix.Breitenecker@tuwien.ac.at

Vienna University of Technology, Editor-in-chief
Peter Breedveld, P.C.Breedveld@el.utwente.nl

University of Twenty, Div. Control Engineering
Agostino Bruzzone, agostino@itim.unige.it

Universita degli Studi di Genova
Francois Cellier, fcellier@inf.ethz.ch

ETH Zurich, Institute for Computational Science
Russell Cheng, rchc@maths.soton.ac.uk

University of Southampton, Fac. of Mathematics/OR Group
Rihard Karba, rihard.karba@fe.uni-lj.si

University of Ljubljana, Fac. Electrical Engineering
David Murray-Smith, d.murray-smith@elec.gla.ac.uk

Univ. of Glasgow, Fac. Electrical and Electronical Engineering
Horst Ecker, Horst.Ecker@tuwien.ac.at

Vienna University of Technology, Inst. f. Mechanics
Thomas Schriber, schriber@umich.edu

University of Michigan, Business School
Yuri Senichenkov, sneyb@dcn.infos.ru

St. Petersburg Technical University
Sigrid Wenzel, S.Wenzel@uni-kassel.de

University Kassel, Inst. f. Production Technique and Logistics

SNE - Editors /ARGESIM
c/o Inst. f. Analysis and Scientific Computation
Vienna University of Technology
Wiedner Hauptstrasse 8-10, 1040 Vienna, AUSTRIA
Tel + 43 - 1- 58801-10115 or 11455, Fax – 42098
sne@argesim.org; www.argesim.org

Editorial Info – Impressum

SNE Simulation News Europe ISSN 1015-8685 (0929-2268).
Scope: Technical Notes and Short Notes on developments in

modelling and simulation in various areas /application and the-
ory) and on bechmarks for modelling and simulation, member-
ship information for EUROSIM and Simulation Societies.

Editor-in-Chief: Felix Breitenecker, Inst. f. Analysis and Scien-
tific Computing, Vienna University of Technology,
Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria;
Felix.Breitenecker@tuwien.ac.at

Layout: Markus Wallerberger, ARGESIM TU Vienna;
markus.wallerberger@gmx.at

Printed by: Grafisches Zentrum, TU Vienna,
Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria

Publisher: ARGESIM/ASIM; ARGESIM, c/o Inst. for Scientific
Computation, TU Vienna, Wiedner Hauptstrasse 8-10,
1040 Vienna, Austria, and ASIM (German Simulation Society),
c/o Wohlfartstr. 21b, 80939 Munich

© ARGESIM/ASIM 2008

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

33

N
SN

E 18/2, A
ugust 2008

Selection of Variables in Initialization of Modelica Models

Mosoud Najafi, INRIA-Rocquencourt, Domaine de Voluceau, masoud.najafi@inria.fr

In Scicos, a graphical user interface (GUI) has been developed for the initialization of Modelica models. The
GUI allows the user to fix/relax variables and parameters of the model as well as change their initial/guess
values. The output of the initialization GUI is a pure algebraic system of equations which is solved by a nu-
merical solver. Once the algebraic equations solved, the initial values of the variables are used for the simu-
lation of the Modelica model. When the number of variables of the model is relatively small, the user can i-
dentify the variables that can be fixed and can provide the guess values of the variables. But, this task is not
straightforward as the number of variables increases. In this paper, we present the way the incidence matrix
associated with the equations of the system can be exploited to help the user to select variables to be fixed
and to set guess values of the variables during the initialization phase.

Introduction
Scicos (www.scicos.org) is a free and open source
simulation software used for modeling and simulation
of hybrid dynamical systems [3, 4]. Scicos is a tool-
box of SciLab (www.scilab.org) which is also free
and open-source and used for scientific computing.
For many applications, the SciLab/Scicos environ-
ment provides an open-source alternative to Mat-
Lab/Simulink. Scicos includes a graphical editor for
constructing models by interconnecting blocks, repre-
senting predefined or user defined functions, a com-
piler, a simulator, and code generation facilities. A
Scicos diagram is composed of blocks and connection
links. A block corresponds to an operation and by
interconnecting blocks through links, we can con-
struct a model, or an algorithm. The Scicos blocks
represent elementary systems that can be used as
building blocks. They can have several inputs and

outputs, continuous-time states, discrete-time states,
zero-crossing functions, etc. New custom blocks can
be constructed by the user in C and Scilab languages.
In order to get an idea of what a simple Scicos hybrid
models looks like, a model of a control system has
been implemented in Scicos and shown in Figure 1.

Besides causal or standard blocks, Scicos supports a
subset of the Modelica (www.modelica.org) language
[7]. The diagram in Figure 2 shows the way a simple
DC-DC Buck converter has been modeled in Scicos.
The electrical components are modeled with Mode-
lica while the blocks that are used to control the
On/Off switch are modeled in standard Scicos. The
Modelica compiler used in Scicos has been developed
in the SIMPA (Simulation pour le Procédé et
l’Automatique) project. Recently the ANR/RNTL
SIMPA2 project has been launched to develop a more
complete Modelica compiler. The main objectives of
this project are to extend the Modelica compiler re-
sulted from the SIMPA project to fully support inheri-
tance and hybrid systems, to give the possibility to
solve inverse problems by model inversion for static
and dynamic systems, and to improve initialization of
Modelica models.

Figure 2. Model of a DC-DC Buck converter in Scicos
using Modelica components. Figure 1. Model of a control system in Scicos

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

34

An important difficulty when simulating a large
Modelica model is the initialization of the model. In
fact, a model can be simulated only if it is initialized
correctly. The reason lies in the fact that a DAE (Dif-
ferential-Algebraic Equation) resulting from a Mode-
lica program can be simulated only if the initial val-
ues of all the variables as well as their derivatives are
known and are consistent.

A DAE associated with a Modelica model can be
expressed as

0 (, , ,)F x x y p (1)

where , , ,x x y p are the vector of differential vari-
ables of size dN , derivative of differential variables
of size dN , algebraic variables of size aN , and model
parameters of size pN , respectively. ()F is a nonlin-
ear vector function of size (d aN N). Since, the
Modelica compiler of Scicos supports index-1 DAEs
[1, 2], in this paper we limit ourselves to this class of
DAEs.

In Scicos, in order to facilitate the model initializa-
tion, the initialization phase and the simulation phase
have been separated and two different codes are gen-
erated for each phase: The initialization code (an
algebraic equation) and the simulation code (a DAE).
In the Initialization phase, x is considered as an
algebraic variable (i.e., dx) and then an algebraic
equation is solved. Modelica parameters p are con-
sidered as constants unless they are relaxed by the
user. There are (d aN N) equations and (2 dN aN

pN) variables and parameters that can be considered
as unknowns. In order to have a square problemsolv-
able by the numerical solver, (p dN N) vari-
ables/parameters must be fixed. The values of x and
p are often fixed and given by the user and the val-
ues of dx and y are computed. But the user is free to
fix or relax any of variables and parameters. For ex-
ample, in order to initialize a model at the equilibrium
state, dx is fixed and set to zero whereas x is relaxed
to be computed. Another example is parameter sizing
where the value of a parameter is computed as a func-
tion of a fixed variable.

In this case, the parameter p is relaxed and the vari-
able x is fixed. In the simulation phase, the values
obtained for x , dx , y , p are used for starting the
simulation. During the simulation, the value of p
(model parameters) does not change.

In Modelica, the start keyword can be used to set
the start values of the variables. The start values of

derivatives of the variables can be given within the
initial equation section. For small programs, this
method can easily be used but as the program size
grows, it becomes difficult to set start values and
change the fixed attribute of variables or parameters
directly in the Modelica program; initialization via
modifying the Modelica model is specially difficult
for models with multiple levels of inheritance; the
visualization and fixing and relaxing of the variables
and the parameters are not easy. Furthermore, the user
often needs to have a model with several initialization
scenarios. For each scenario a copy of the model
should be saved.

In Scicos, a GUI has been developed to help the user
to initialize the Modelica models. In this GUI, the
user can easily change the attributes of the variables
and the parameters such as initial/guess value,
max, min, nominal, etc. Furthermore, it is possible to
indicate whether a variable, the derivative of a vari-
able, and a parameter must be fixed or relaxed in the
initialization phase.

In the following sections, the initialization methodol-
ogy for Modelica models and the initialization GUI
features will be presented.

1 Initialization and simulation of
Modelica models

The flowchart in Figure 3 shows how initialization
and simulation of Modelica models are carried out in
Scicos. The first step in both tasks is removing inheri-
tances. This provides access to all variables and gen-
erates a flat model. The flat model is used to generate
the initialization and the simulation codes. Note that
the initialization data used for starting the simulation
is passed to the simulation part by means of an XML
file containing all initial values.

In Scicos, three external applications are used in
initialization and simulation: Translator,
XML2Modelica, and ModelicaC.

Translator is used for three purposes:

Modelica Front-end compiler for the simulation:
when called with appropriate options, Transla-
tor generates a flat Modelica program. For that,
Translator verifies the syntax and semantics of
the Modelica program, applies inheritance rules,
generates equations for connect expressions,
expands for loops, handles predefined functions
and operators, performs the implicit type conver-

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

35

N
SN

E 18/2, A
ugust 2008

sion, etc. The generated flat model contains all
the variables, the derivatives of differential vari-
ables, and the parameters defined with attribute
fixed=false. Constants and parameters with the
attribute fixed=true are replaced by their nu-
merical values.
Modelica Front-end for initialization: when
called with appropriate options, Translator
generates a flat Modelica program containing the
variables and the parameters defined with attrib-
ute fixed=false. The derivatives of the variables
are replaced by algebraic variables. Furthermore,
the flat code contains the equations defined in the
initial equation section in the Modelica pro-
grams. Constants and parameters with the attrib-
ute fixed=true are replaced by their numerical
values.

XML generator: when called with -xml option,
Translator generates an XML file from a flat
Modelica model. The generated XML file con-
tains all the information in the flat model.

Once the XML file generated, the user can change
variable and parameter attributes in the XML file with
the help of the GUI. The modified XML file have to
be reconverted into a Modelica program to be com-
piled and initialized. This is done by XML2Modelica.

ModelicaC, which is a compiler for the subset of the
Modelica language, compiles a flat Modelica model
and generates a C program for the Scicos target. The
main features of the compiler are the simplification of
the Modelica models and the generation of the C
program ready for simulation. It supports zero-
crossing and discontinuity handling and provides the
analytical Jacobian of the model. It does not support
DAEs with index greater than one. Another important
feature of the Modelica compiler is the possibility of
setting the maximum number of simplification carried
out during the code generation phase. Thus, the com-
piler can be called to generate a C code with no sim-
plification or a C code with as much simplification as
possible. This is an important feature for the debug-
ging of the model.

A new feature of ModelicaC is generating the inci-
dence matrix. When a C code is generated, the corre-
sponding incidence matrix is generated in an XML
file. The incidence matrix is used by the initialization
GUI to help the user.
As shown in Figure 3, once the user requests the
initialization of the Modelica model, the Modelica

front-end generates a flat Modelica model as well as
its corresponding XML file. The XML file is then
used in the initialization GUI. In the GUI, the user
can change the variable and parameter attributes
defined in the XML file. The modified XML file is
then translated back to a Modelica program. The
Modelica program is compiled with the Modelica
compiler and a C program is generated. The C pro-
gram is used by the Scicos simulator to compute the
value of unknowns. Once the initialization finished,
whether succeeded or failed, the XML file is updated
with the most recent results. The GUI automatically
reloads and displays the results. The user can then
decide whether the simulation can be started or not.

In order to simulate the Modelica model, similar to
the model initialization, a flat model is generated.
Then, the Modelica compiler simplifies the model
and generates the simulation code. The generated
code is simulated by a numerical solver. The initial

Figure 3. Initialization flowchart in Scicos

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

36

values, needed to start the simulation, are read di-
rectly from the XML file. The end result of the simu-
lation can also be saved in another XML file to be
used as a starting point for another simulation.

2 Initialization GUI
In Scicos, a GUI can be used for the initialization of
the Modelica models. Figure 4 illustrates a screen
shot of the GUI corresponding to the Modelica parts
of the Scicos diagram of Figure 2. In this GUI, the
Modelica model is displayed in the hierarchical from,
as shown in Figure 4. Main branches of the tree rep-
resent components in the Modelica model. Sub-
branches are connectors, partial models, etc. If the
user clicks on a branch, the variables and parameters
defined in that branch are displayed and the user can
modify their attributes. In the following subsections,
some main features of the GUI will be presented.

2.1 Variable/parameter attributes
Any variable/parameter has several attributes which
are either imported directly from the Modelica model
such as name, type, fixed etc. or defined and used by
the GUI i.e., id and selection.

name is the name of the variable/parameter used
in the Modelica program. The user cannot
change this attribute in the GUI.
id is an identification of the variable/parameter
in the flat Modelica program. The user cannot
change this attribute in the GUI.
type indicates whether the original type has
been parameter or variable in the Modelica
program. The user cannot change this attribute in
the GUI.
fixed represents the value of the ’fixed’ at-
tribute of the variable/parameter in the Modelica
program. The user cannot change this attribute in
the GUI.
weight is the confidence factor. In the current
version of Scicos, it takes either values 0 or 1.
weight=0 corresponds to the fixed=false in
Modelica whereas weight=1 corresponds to
fixed=true. The default value of weight for the
parameters and differential variables is one,
whereas for the algebraic variables and the de-
rivatives of differential variables (converted to
variables) is zero.
value is the value of the variable/parameter. If
the weight=1, the given value is considered as

the final value and it does not change in the ini-
tialization. If weight=0, the given value is con-
sidered as a guess value. If the user does not pro-
vide any value, it is automatically set to zero.
The user can modify this value in the GUI.

selection is used to mark the variables and parame-
ters. This information will be used by the GUI for
selective display of variables/parameters and to influ-
ence the Modelica compiler in the model simplifica-
tion phase.

Note that if the user sets the weight attribute of a
variable to one, it will be considered as a constant and
in the initialization phase it will be replaced by its
numerical value. On the other hand, if the user sets
the weight attribute of a parameter to zero, the pa-
rameter will be considered as an unknown and its
value will be computed in the initialization phase.
This is in particular useful when the user tries to find
a parameter value as a function of a variable in the
Modelica model.

2.2 Display modes
Accessing to variables and parameters of the model
becomes easier, if different display modes of the GUI
are used:

Normal mode is the default display mode. Click-
ing on each branch of the model tree, the user
can visualize/ modify the variables/parameters
defined in that part of the Modelica model.
Reduced mode is used to display the variables of
the simplified model. When the user pushes the
initialization button, the flat Modelica model is
compiled and a simplified model is generated. In
this display mode, only the remaining variables
are displayed. This display mode is in particular
useful when the numerical solver cannot con-

Figure 4. Screenshot of the initialization GUI in Scicos for
the electrical circuit of figure 2.

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

37

N
SN

E 18/2, A
ugust 2008

verge and the user should help the solver either
by influencing the compiler to eliminate the un-
desirable variables or by giving more accurate
guess values.
Selected mode is used to display only the
marked variables and parameters of the active
branch. A variable or parameter can be marked
by putting ’y’ in its selection field in the GUI.
By default, all parameters, all differential vari-
ables and all algebraic variables whose start val-
ues are given are marked. Marking is useful in
particular when a branch has many vari-
ables/parameters whereas the user is interested in
a few ones. In this display mode, unmarked vari-
ables/parameters are not shown.
Selected (all) mode is used to display all marked
variables and parameters of the Modelica model.
Changed mode is used to display the variables
and the parameters whose weight attributes have
been changed, such as the relaxed parameters.

2.3 Initialization methods
Once the user modified the attributes of the variables
and the parameters, the initialization process can be
started by clicking on the "Initialize" button. The
initialization consists of calling a numerical solver to
solve the final algebraic equation. There are several
algebraic solvers available in Scicos such as Sundi-
als and Fsolve [8, 9, 10].

Once the solver finished the initialization, the ob-
tained results, either successful or not, are put back
into the XML file and new values are displayed in the
GUI. If the result is not satisfactory, the user can
either select another initialization method or help the
solver by giving initial values more accurately. This
try and error can be continued until satisfactory ini-
tialization results are obtained. Then, the simulation
can be started.

3 Problems in variable fixing and
variable selection

The initialization of DAE (1) can be formulated as
the following algebraic problem

0 0 0 00 (, , ,)F dx x y p (2)

where 0x , 0dx , and 0y are solutions or the initial
values of differential variables, derivative of differen-
tial variables, algebraic variables, and parameter
values, respectively. The degree of freedom of the
equation (2) is d pN N , therefore the user should fix

d pN N variables or parameters and let the solver
find the values of the remaining d aN N unknowns.

Fixing the variables/parameters and giving the start
values of the relaxed variables/parameters are essen-
tial in the initialization of models. But they are not
easy and straightforward for large models. In the next
subsections the way these problems are handled in
Scicos will be explained.

3.1 Fixing the variables
Consider the following equation set, composed of two
equations and three unknowns.

0 ()
:

0 (, ,)
f x

F
g x y z

 (3)

Since the degree of freedom is one, the user should
provide and fix the value of a variable. But, it is clear
that x cannot be fixed, because its value is imposed
by the first equation. In this case, the GUI should
prevent the user from fixing x .

Consider the next set of equations composed of three
equations and five unknowns.

0 (,)
: 0 (,)

0 (, , ,)

f x u
F g x z

h x y z v
 (4)

Although the degree of freedom is two, the user can-
not fix (,)u z , (,)x z , or (,)x u at the same time. In
general, it is not easy to identify the set of variables
that can be fixed. This is in particular important when
the number of equations increases. In this case, if the
user tries to fix an inadmissible variable, the GUI
should raise an error message and prevent the user
from fixing the variable.

This problem can be solved using the incidence ma-
trix of the Modelica model. For example, this is the
incidence matrix of (3):

1 0 0 0 1
1 0 1 0 0
1 1 1 1 0

Fixing u and z means removing u and z from the
equations which results in the following equation set
and the incidence matrix.

0

0

0

0 (,) 1 0 0
: 0 (,) 1 0 0

0 (, , ,) 1 1 1

f x u
F g x z

h x y z v
 (5)

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

38

Although, there are three unknowns and three equa-
tions, the incidence matrix is not structurally full
rank. This means that u and z cannot be fixed at the
same time. Computing the structurally rank of the
incidence matrix is a straightforward way to deter-
mine if the user is allowed to fix variables or parame-
ters of the model. Since the incidence matrix is very
often large and sparse in practical models, we should
use special methods for sparse matrices. In the GUI, a
maximum matching method (also called a maximum
transversal method) is used to compute the structural
rank of the incidence matrix. The maximum matching
method is a permutation of the matrix so that its kth

diagonal is zero-free and | |k is uniquely minimized.
With this method, the structural rank of the matrix is
the number of non-zero elements of the matrix diago-
nal [6]. When the user tries to fix a variable or a pa-
rameter, the initialization GUI computes the new
structural rank of the incidence matrix. If the fixing
operation lowers the rank, an error message will
raised and the modification will be inhibited.

3.2 Selection of variables to be eliminated
Another recurrent problem in solving algebraic equa-
tions is the convergence failure of the solver. Newton
methods are convergent if the initial guess values of
unknowns are not too far from the solution. So, the
user should provide reasonable initial guess values. If
the problem size is small and the user knows the
nominal values of the unknowns, the user can provide
the guess values. But in large models, it is nearly
impossible to give all guess values. In medium size
Modelica models, we usually end up with models
with many variables whose start values are not speci-
fied by the user. In this case, their initial guess values
are automatically set to zero which is not often a good
choice. Furthermore, many variables of a model are
redundant and the user does not know for which ones
the initial guess should be given. This often happens
with variables linked by the connect operator in
Modelica. Suppose that two Modelica components
are connected via a connector, e.g.,

connect(Block1.x, Block2.y);

During the model simplification, the compiler may
eliminate either Block1.x or Block1.y. Even if the
user knows the guess values of both, it is not reason-
able to ask the user to provide them. Since the user
has no influence on the compiler’s variable selection,
this may cause a problem in solving the initialization
equation. Consider, e.g., the following situation.

2

30 0.1
(3) 1:

0

x
xF

x y
 (6)

Here, if the user sets the initial guess of y to 10 and
leaves the guess value of x unspecified i.e., 0x ,
although 10y is close to the solution, the Newton’s
method will likely fail. The reason is that the solver
ignores the initial value of y and uses that of x . In
fact, there is no way to tell the solver the guess value
which is "more" correct than the others.

The solution is to formally simplify the equations by
eliminating the variables whose guess-values are not
given, by replacing them with the variables having
given guess values. For that, in the initialization GUI,
variables with known guess-values are marked and
the Modelica compiler is told to eliminate the un-
marked variables. The user, of course, can modify the
list of these marked variables.

The compiler tries to eliminate the variables as much
as possible, but a problem may arise when the com-
piler fails to eliminate all of unmarked variables.
Since, the simulator sets their guess-value to zero, the
original problem still persists. In this case, the user
should be asked to provide the guess-value of the
remaining variables. But, usually the user has no idea
about the nominal values of the remaining variables
or even does not know the physical interpretation of
them. As an example, consider the following set of
equations for which no guess-values are given.

0 ()
:

0
f x

F
x y

 (7)

Suppose that the compiler eliminates y , but the user
does not know the start value of x while y has a
physical interpretation and its nominal value can be
given. In this case, the initialization GUI should pro-
pose the user all variables that can replace x , i.e., y .

Proposing alternative variables for formal simplifica-
tion is done in the initialization GUI. In the next sec-
tions, it will be shown the way these problems can be
handled by the use of the incidence matrix of the
model. This is done using the maximum flow algo-
rithms.

4 Maximum flow problem
The maximum flow problem is to find the maximum
feasible flow through a single-source, single-sink
flow network [5]. The maximum flow problem can be

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

39

N
SN

E 18/2, A
ugust 2008

seen as a special case of more complex network flow
problems. A directed graph or digraph G is an or-
dered pair : (,)G V A with

V is the set of vertices or nodes,
A is the set of ordered pairs of vertices, called
directed edges or arcs.

An edge (,)e u v is considered to be directed from
u to v ; v is called the head and u is called the tail of
the edge; v is said to be a direct successor of u , and
u is said to be a direct predecessor of v . The edge
(,)v u is called the inverted edge of (,)u v .

Given a directed graph (,)G V E , where each edge u ,
v has a capacity (,)c u v , the maximal flow f from
the source s to the sink t should be found. There are
many ways of solving this problem, such as linear
programming, Ford-Fulkerson algorithm, Dinitz
blocking flow algorithm, etc [12, 11].

4.1 Ford-Fulkerson algorithm
The Ford-Fulkerson algorithm computes the maxi-
mum flow in a flow network. The name "Ford-
Fulkerson" is often also used for the Edmonds-Karp
algorithm, which is a specialization of Ford-
Fulkerson. The idea behind the algorithm is very
simple: as long as there is a path from the source to
the sink, with available capacity on all edges in the
path, we send flow along one of these paths. Then we
find another path, and so on. A path with available
capacity is called an augmenting path.

Algorithm: Consider a graph (,)G E V , with capac-
ity (,)c u v and flow (,) 0f u v for the edge from u
to v . We want to find the maximum flow from the
source s to the sink t . After every step in the algo-
rithm the following is maintained:

(,) (,)f u v c u v . The flow from u to v does not
exceed the capacity.

(,) (,)f u v f v u . Maintain the net flow be-
tween u and v . If in reality a units are going
from u to v , and b units from v to u , maintain

(,)f u v a b and (,)f v u b a .
(,) 0 () ()in outv

f u v f u f u for all nodes
u , except s and t . The amount of flow into a
node equals the flow out of the node.

This means that the flow through the network is a
legal flow after each round of the algorithm. We de-
fine the residual network (,)f fG V E to be the network
with capacity (,) (,) (,)fc u v c u v f u v and no flow.

Notice that it is not certain that fE E , as sending
flow on ,u v might close ,u v (it is saturated), but
open a new edge ,v u in the residual network.

1. (,) 0f u v for all edges (,)u v
2. While there is a path p from s to t in fG , such

that (,) 0fc u v for all edges (,)u v p :

a. Find (,)() min (,)f u v p fc p c u v

b. For each edge (,)u v p
i. (,) (,) ()ff u v f u v c p

ii. (,) (,) ()ff v u f v u c p

The path p can be found with, e.g., a breadth-first
search or a depth-first search in (,)f fG V E . The for-
mer which is called the Edmonds-Karp algorithm has
been implemented in Scicos.

By adding the flow augmenting path to the flow al-
ready established in the graph, the maximum flow
will be reached when no more flow augmenting paths
can be found in the graph. When the capacities are
integers, the runtime of Ford-Fulkerson is bounded by

max()O E f , where E is the number of edges in the
graph and maxf is the maximum flow in the graph.
This is because each augmenting path can be found in

()O E time and increases the flow by an integer
amount which is at least 1. The Edmonds-Karp algo-
rithm that has a guaranteed termination and a runtime
independent of the maximum flow value runs in

2()O V E time.

4.2 Problem of proposition of alternative
variables

In order to handle this problem, we build the bipartite
graph shown in Figure 5. The left-hand side vertices
indicate unknowns, and each vertex at the right-hand
side indicates an equation. The edges are bidirectional
and their capacity is infinite.

Figure 5. Bipartite graph of variables and equations.

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

40

Note that, at this stage of initialization, the number of
unknowns and the number of equations are identical
and the incidence matrix is full rank.

For the problem of proposing alternative variables
that can be initialized instead of a variable iV , based
on the bipartite graph in Figure 5, we build another
directed graph as shown in Figure 6. In this graph, a
source vertex and a target (sink) vertex have been
added to the graph. The edge connecting the source
vertex to iV has infinite capacity. All m edges con-
necting the target vertex to the variable vertices have
the capacity 1 (except the edge connected to the ver-
tex iV). The edges are mono-directional.

Now, the problem of finding all alternative variables
for iV is transformed into that of finding of all feasi-
ble paths from the source to the target. All predeces-
sors of the target are possible alternative variables
that can be used instead of iV . In the initialization
GUI, when the user double-clicks on a variable, its
alternative variables are displayed. This is a useful
help during the initialization.

5 Initialization iterations
The role of the GUI and the marking in the initializa-
tion loop (see the flowchart in the Figure 3) can be
summarized in the following algorithm.

1. The GUI automatically marks the model parame-
ters, the differential variables and the algebraic
variables whose guess value are given.

2. In the GUI, the user can
a. visualize/modify the fixed attribute of the

variables and the parameters.
b. change the guess values of variables and pa-

rameters (final values if they are fixed).
c. modify whether a variable or a parameter is

marked or not.
3. Initialization is invoked.

a. If necessary, the model is compiled. The
Modelica compiler tries to reduce the num-
ber of unknowns by performing several
stages of substituting and elimination. In this
phase the marked variables are more likely
to be eliminated by the compiler.

b. A numerical solver is used to find the solu-
tion of the reduced model.

c. The obtained solution values are send back
to the GUI to be displayed.

4. If the obtained results are satisfactory, goto step 7.
5. The user can readjust the guess values of the re-

maining unknowns. If there are still unmarked
unknowns in the reduced model, either the user
can provide more accurate guess values for them
or can click on the variables to see their alterna-
tives variables. The alternative variables should
be marked to be remained in the reduced model.

6. Goto step 2
7. Start the simulation

6 Example
The model of a thermo-hydraulic system is shown in
Figure 7. In this model, there are a pressure source,
two pressure sinks, three pipes (pressure losses), a
constant volume chamber, and two flow-meter sen-
sors linked to a Scicos scope.

As shown in Figure 8, the initial non-simplified
model is composed of 132 equations, 131 relaxed
variables and 1 relaxed parameter (i.e., 132 un-
knowns). The number of fixed parameters and vari-
ables are 36 and 1, respectively.

When the model is simplified, the model size is re-
duced to only 11 unknowns. In Figure 9, where the
display mode is Reduced, the remaining variables as
well as their solution values are shown.

Figure 6. Directed graph for the problem of proposing all
alternative variables for iV .

Figure 7. A thermo-hydraulic system.

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

41

N
SN

E 18/2, A
ugust 2008

7 Conclusion
In the Modelica models, initialization is an important
stage of the simulation. At the initialization, variables
and parameters can be fixed or relaxed and their start
values can be changed by the user. In this paper, we
presented a special GUI to facilitate the task of select-
ing fixed and relaxed variables.

Acknowledgements
The author would like to thank Sébastien Furic
(LMS. Imagine Co.) for a number of helpful com-
ments. This work is supported by the ANR/SIMPA2-
C6E2 project.

References
[1] K.E. Brenan, S.L. Campbell, L.R. Petzold. Numerical

solution of initial-value problems in differential-
algebraic equations. SIAM pubs., Philadelphia, 1996.

[2] P.N. Brown, A.C. Hindmarsh, L.R. Petzold. Consis-
tent initial condition calculation for differential-
algebraic systems. SIAM Journal on Scientific Com-
puting, 19(5):1495– 1512, 1998.

[3] S.L. Campbell, J-Ph. Chancelier, R.Nikoukhah. Mod-
eling and simulation Scilab/Scicos. Springer Verlag,
2005.

[4] J.P. Chancelier, F. Delebecque, C. Gomez, M. Gour-
sat, R. Nikoukhah, S. Steer. An introduction to Scilab.
Springer Verlag, Le Chesnay, France, 2002.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein.
Introduction to Algorithms. MIT Press and McGraw-
Hill, 2nd edition, 2001.

[6] T.A. Davis. Direct Methods for Sparse Linear Systems
(Fundamentals of Algorithms 2). Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA,
2006.

[7] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Press,
2004.

[8] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee,
R. Serban, D.E. Shumaker, C.S.Woodward. Sundials:
Suite of nonlinear and differential/algebraic equation
solvers. ACM Transactions on Mathematical Softwar
31(3), pages 363–396, 2005.

[9] A.C. Hindmarsh. The pvode and ida algorithms.
LLNL technical report UCRL-ID-141558, 2000.

[10] M. Najafi, R. Nikoukhah. Initialization of modelica
models in scicos. Conference Modelica 2008, Biele-
feld, Germany., 2008.

[11] R.L. Rivest, C.E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill, Inc., New York, NY, USA,
1990.

[12] D.D. Sleator, R.E. Tarjan. A data structure for dy-
namic trees. In STOC ’81: Proc. 13th annual ACM
symposium on Theory of computing, pages 114–122,
New York, NY, USA, 1981. ACM. 118

Corresponding author: Masoud Najafi
INRIA-Rocquencourt, Domaine de Voluceau,
BP 105, 78153, Le Chesnay, France
masoud.najafi@inria.fr

Accepted EOOLT 2008, June 2008
Received: July 30, 2008
Revised: August 10, 2008
Accepted: August 15, 2008

Figure 8. The initialization GUI for the model in Figure 6
(the display mod is normal and the variables and the

parameters of the block Volume are shown)

Figure 9. The remaining variables as well as their initial
values after the model simplification. The display mode is

reduced.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

42

Introducing Messages in Modelica for Facilitating Discrete-Event
System Modeling

Victorino Sanz, Alfonso Urquia, Sebastian Dormido, ETSII Informática, UNED, Spain
{vsanz,aurquia,sdormido}@dia.uned.es

The work performed by the authors to provide to Modelica more discrete-event system modeling functional-
ities is presented. These functionalities include the replication of the modeling capacities found in the Arena
environment, the SIMAN language and the DEVS formalism. The implementation of these new functional-
ities is included in three free Modelica libraries called ARENALib, SIMANLib and DEVSLib. These librar-
ies also include capacities for random number and variates generation, and dynamic memory management.
They are freely available for download at http://www.euclides.dia.uned.es/. As observed in the work
performed, discrete-event system modeling with Modelica using the process-oriented approach is difficult
and complex. The convenience to include a new concept in the Modelica language has been observed and is
discussed in this contribution. This new concept corresponds to the model communication mechanism using
messages. Messages help to describe the communication between components in a discrete-event system.
They do not substitute the current discrete-event modeling capabilities of Modelica, but extend them. The
proposed messages mechanism in Modelica is discussed in the manuscript. An implementation of the mes-
sages mechanism is also proposed.

Introduction
Several Modelica libraries have been developed by
the authors in order to provide to Modelica more
discrete-event system modeling capabilities. The
work performed is specially based in modeling sys-
tems using the process oriented approach, reproduc-
ing the modeling functionalities of the Arena simula-
tion environment [10] in a Modelica library called
ARENALib. The functionalities of the SIMAN mod-
eling language [18], used to describe components in
Arena, have also been reproduced in a Modelica
library called SIMANLib. One objective of the de-
velopment of this library is to take advantage of the
Modelica object-oriented capabilities to modularize
as much as possible the development of discrete-
event system models. Also, the use of a formal speci-
fication to describe SIMANLib components helped to
understand, develop and maintain them. SIMANLib
blocks can be described using DEVS specification
formalism [21]. Event communication in DEVS and
block communication in SIMANLib match perfectly.
An implementation of the Parallel DEVS formalism
[23] has been developed in a Modelica library called
DEVSLib, and used to describe the components in
SIMANLib. All the performed work with Modelica
has been developed using the Dymola modeling envi-
ronment [1]. The problems encountered during the
development of the ARENALib, SIMANLib and
DEVSLib Modelica libraries, and the solutions ap-
plied to those problems are discussed.

The Modelica language includes several functional-
ities for discrete-event management, such as if ex-
pressions to define changes in the structure of the
model, or when expressions to define event condi-
tions and the actions associated with the defined
events [16].

Other authors have contributed to the discrete-event
system modeling with Modelica. Depending on the
formalism used to define the discrete-event system,
contributions can be found using finite state machines
[7, 14, 17], Petri nets [15] or the DEVS formalism [2,
3, 4, 8]. On the other hand, other authors have devel-
oped tools to simulate discrete event systems in con-
junction with Modelica. For example, translating
models developed using a subset of the Modelica
language to the DEVS formalism. The translated
models are then simulated using the CD++ DEVS
simulator [5]. Also, other authors describe the dis-
crete-event system with an external tool that trans-
lates a block diagram to Modelica code [19].
All these contributions use the event-scheduling ap-
proach for describing the discrete-event systems [12].
Events are scheduled to occur in a future time instant.
The simulation evolves executing the actions associ-
ated with the occurrence of the events.

Due to the difficulties and problems encountered
during the development of the mentioned Modelica
libraries, the convenience of introducing a new con-
cept in Modelica has been identified. This new con-

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

43

N
SN

E 18/2, A
ugust 2008

cept will facilitate the development of discrete-event
systems, extending the current Modelica capacities.
This new concept is the model communication using
the messages mechanism. The main characteristics
and functionalities of this mechanism are also dis-
cussed in this manuscript.

1 Process-oriented modeling in Modelica
A discrete-event system modeled using the process-
oriented approach is described from the point of view
of entities [10]. These entities flow through the com-
ponents of the system, and some processes are ap-
plied to them using the available resources of the
system. Some of the information associated with the
entities are the serial number, the type, the statistical
indicators, the attributes, the creation time, and the
processing time among others. An example of this
kind of system can be a beverage manufacturing
system. The entities of this system are the bottles. A
tank fills bottles with the beverage. Once filled, the
bottles are labeled and quality controlled before they
are accepted for distribution (first and second class
bottles). Bottles without the required quality are
cleaned and re-labeled. The components of this kind
of systems are usually stochastic. For example, the
labeling and cleaning processes are modeled using
the Triangular probability distribution. The quality
controls are represented by two-way decisions whose
percentage is based on the values of uniform random
variates.
The process-oriented approach is supported by the
Arena simulation environment to model discrete-
event systems. Arena has data modules, that represent
the entities, the resources, and some other static ele-
ments of the system, and flowchart modules, that
represent the processes performed on the entities
across the system. The implementation of the bever-
age manufacturing system using Arena is shown in
Figure 1a. It is modeled as a hybrid system, because
the tank is represented by a continuous time model.

Arena allows some simple hybrid modeling by de-
scribing level variables that change continuously over
time, and rate variables, that represent how fast the
level variable changes its value. Each pair of
level/rate variables represents a differential equation
that is simulated using Euler, RKF or any user-
implemented integration method.

1.1 ARENAlib
ARENALib reproduces the Arena data and flowchart
modules that have to be combined and connected to

model the system. This library is freely available for
download at [6]. At the moment, the Create, Process,
Dispose and Decide flowchart modules and the En-
tity, Queue, Resource and Variable data modules, of
the Arena Basic Process panel, have been imple-
mented.

The library also allows hybrid system modeling,
combining the current Modelica continuous-time
system modeling functionalitieswith the components
of ARENALib.A detailed description of the library
can be found in [20]. The model of the beverage
manufacturing system composed using ARENALib is
shown in Figure 1b. In this figure, the Bottle_filling
module corresponds to a Create module, Labeling and
Cleaning correspond to Process modules, Qual-
ity_control and Quality_control_2 are Decide mod-
ules and the FirstClass_bottle and Second-
Class_bottle are Dispose modules. Entities, queues
and resources contain the data modules required for
this system.

The main tasks accomplished during the development
of the ARENALib library were: a) the model com-
munication mechanism; b) the entity management; c)
the management of the statistical information and; d)
the generation of stochastic data. These tasks and the
solutions proposed and implemented to the problems
encountered during the development of the ARE-
NALib library are discussed below.

a)

b)

Figure 1. Beverage manufacturing system. An example of
hybrid discrete-event system developed using: a) Arena;

and b) ARENALib.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

44

1.2 Model communication mechanism
Entities are generated in the system during the simu-
lation, flow across the components of the system and,
if necessary, are disposed. Generally, the number of
entities in the system changes during the simulation
run, depending on the behavior of the system.

Usually an entity arrives to a module, is processed
and sent to the following module. Entity communica-
tion is an important part of the simulation process.

Model interaction in Modelica can be performed
using connectors. A connector is an special class and
contains some variables that are linked with the ones
in another connector using a connect equation. The
connect equation relates variables either equaling
them, or summing them and equaling the sum to zero.

Several approaches have been studied, implemented
and evaluated during the development of ARENALib
in order to perform the entity transmission between
modules. The approach used to perform the entity
transmission is completely transparent for the end
user. At the user level, the communication is just
defined by connecting the output ports of some mod-
ules to the input ports of other modules. The men-
tioned approaches are discussed next.

Direct transmission
It consists of specifying all the variables that define a
type of entity inside the connector. The values as-
signed to the variables of one connector represent an
entity. These values are assigned, because of the con-
nect equation, to the connector of the next model. In
this way, an entity is directly transmitted from one
model to another. Different types of entities require
different connectors, one for each type. This is the
simplest way for communicating models, but presents
a problem: the simultaneous reception of several
entities at one model. There are three possible situa-
tions for this problem:

One-to-one connection: one model sends several
entities to another model at the same time.
Many-to-one connection: several models simul-
taneously send one entity to another model.
A combination of the previous cases: several
models simultaneously send one, or more, enti-
ties to another model.

The two following solutions have been applied to this
problem:

1. Synchronizing the entity transmission between
models using semaphores. The synchronization
allows the sender and receiver to manage the
flow of entities between both models, using a
send/ACK mechanism like in the TCP/IP com-
munication. Thus, the sender model will send an
entity to the receiver and wait for an ACK. On
the other hand, the receiver model will receive
entities when it is ready to process them, and
only send the ACK back if still ready to continue
processing more entities. A model of the sema-
phore synchronizationmechanism, based on a
previous work by Lundvall and Fritzson [9], has
been implemented and is freely available for
download at [6]. A disadvantage of this solution
is the performance degradation due to the event
iteration that takes place during the synchroniza-
tion phase of the entity transmission.

2. Including in the connector a flow variable that
represents the number of entities sent from a
model. So, the model receiving the entities will
know the number of entities received, even with
many senders. However, the information that de-
scribes several entities can not be transmitted si-
multaneously using the direct transmission ap-
proach. The variables of the connector that de-
scribe the entity can not be assigned with differ-
ent values, that represent the different transmitted
entities, at the same time. Anyway, the text file
storage and dynamic memory storage ap-
proaches, discussed below, allow to solve this
problem using the flow variable.

Text file storage
The idea is to define an intermediate storage for the
transmitted entities. This storage behaves as a com-
munication buffer between two or more modules.

The storage is implemented in a text file that stores in
each line of text the information related to each
transmitted entity. The connector contains a reference
to the text file, its file-name, and the flow variable
indicating the number of entities received. This refer-
ence is shared between the models connected to that
connector, allowing them to access the file. Each
module is able to receive entities, creates an storage
text file and sets the reference to that file in the con-
nector. Functions to read/write entities from/to the file
have been developed. A model writes one or several
entities to the file using the write function. Another
function is used by the receiver to check the number

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

45

N
SN

E 18/2, A
ugust 2008

of entities in the file. When there is any entity to be
read, the receiver reads the entities and processes
them. Thus, this approach allows the simultaneous
reception of several entities.

A disadvantage associated with this approach is the
poor performance due to the high usage of I/O opera-
tions to access the files. Also, the structure of the
information stored in the files is not very flexible if
any additional information has to be included. If new
types of entities need to be used, or the attributes of
an entity have to be changed, the file management
functions (i.e. read and write) have to be re-
implemented to correctly parse the text file to support
these new changes.

Dynamic memory storage
In order to improve the performance of the text file
approach, the intermediate storage was moved from
the file system to the main memory. Using the Mode-
lica external functions interface, a library in C was
created to manage the intermediate storage using
dynamic memory allocation. An entity is represented
in Modelica using a record class, and in C using its
equivalent struct data structure. Entities are stored
using linked-lists structures during their transmission
from one model to another. This library is freely dis-
tributed together with the ARENALib Modelica li-
brary.

Instead of a reference to the file, the connector con-
tains a reference to the memory space that stores the
entities, together with the flow variable that indicates
the number of entities received. That reference is the
memory address pointing to the beginning of the
linked-list. It is stored in an integer variable in the
connector. Similarly to the text file approach, each
model able to receive entities initializes the linked-list
and sets the reference to it in the connector. Entities
can be transferred to the queue using the write func-
tion, and can be extracted using the read function.
Another function is used to check the availability of
received entities, in order to process them.

This approach also allows the simultaneous reception
of several entities. The performance is highly in-
creased compared to the text file approach. And, the
structure of the information only depends on the data
structures managed by the functions. To modify any
attribute or entity type, it is only necessary to change
a data structure and not all the functions used to man-
age that structure.

1.3 Entity management
Regarding the entity management, it has to be men-
tioned that an additional problem appears when im-
plementing processes that delay the entity. Arena
process module can include a delay time that repre-
sents the time spent processing the entity. This delay
time is usually randomly selected from a probability
distribution. It has to be noticed that since the delay
time is usually random, the order of the arrived enti-
ties need not correspond to the order of the entities
leaving the process. These processes have to include a
temporal storage for the entities that are being de-
layed. This problem can be solved using the text file
storage or the dynamic memory storage as an addi-
tional storage for delayed entities. Due to perform-
ance reasons, the dynamic memory approach was
used to manage entity storage during delays in ARE-
NALib and SIMANLib.

Together with the initialization of the linked-queue
for entity communication, a process module initial-
izes a temporary storage, represented by a linked-list
in memory, for delayed entities. The reference to that
list is also stored in an integer variable. Every time
the process module has to delay an entity, it stores the
entity in the list using a write function. Entities are
inserted in the list in increasing order, according to
the time they must leave the process. The insertion of
an entity in the list returns the leaving-time for the
first entity in the queue. When the simulation time
reaches the next leaving-time, the entity or entities
leaving the process are extracted from the list and
sent to the next module.

1.4 Stochastic data generation
Discrete-event models usually contain some kind of
stochastic information. Random processing times,
delays or inter-arrival times help to construct a more
realistic model of a given system.

The Modelica language specification does not include
any functionality for random number generation.
Dymola, the modeling environment used to develop
and test the mentioned Modelica libraries, includes
two functions for generating random uniform and
random normal variates [1]. The generation of ran-
dom variates following other probability distributions
is not covered by these random number generation
functions. Also, the application of variance reduction
techniques is not supported by these functions.

A random number generator (RNG) was developed
by the authors. The RNG algorithm selected for its

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

46

implementation in Modelica is the same that is used
in the Arena environment. This allows the validation
of the ARENALib models using the Arena environ-
ment, because both use the same source of random
numbers. This RNG algorithm was proposed by Pi-
erre L’Ecuyer and is called Combined Multiple Re-
cursive Generator. A detailed description of the RNG
is given in [13].

Additionally to the implementation of the RNG, some
functions for generating random variates were also
developed by the authors of this manuscript. The new
RNG and the random variates generation functions
are packaged in a Modelica library called Random-
Lib, which is freely available for download at [6].

1.5 Statistical information management
Simulation results are usually reported using statisti-
cal indicators, due to the stochastic nature of discrete-
event systems. Some of these statistical indicators
have to be calculated during the simulation and some
others at the end. The amount of data that has to be
stored to calculate some of these indicators changes
depending on the length of the simulation.

Modelica does not allow the declaration of variables
with an undefined length or size, which are required
to store the statistical data. A mechanism to declare
variables of undefined length in Modelica needs to be
defined, giving the possibility to increase or decrease
the size of the variable during the simulation run.

This problem is very similar to the previously men-
tioned one about intermediate entity storage for
transmission or delay management. So, the mentioned
dynamic memory storage has been used in ARE-
NALib to record the information regarding the statis-
tical indicators of the simulation. The indicators cal-
culated in each ARENALib module are shown in Tab.
1. Statistical indicators calculated include the number
of entities arrived, the number of entities departed,
processing times, the number of entities in queue, and
the number of entities in the ystem, among others.
The information calculated for each indicator is the
mean, the maximum value, the minimum value, the
final value and the number of observations. These
values are updated during the simulation. On the
other hand, all the intermediate values have to be
recorded and used to calculate the confidence interval
at the end of the simulation. A variable in Modelica
stores a reference to the memory space that contains
the stored data for each indicator. That space is man-
aged using external functions written in C.

1.6 SIMANLib
The first approach for the development of ARE-
NALib was to write all its components, except the
mentioned external functions and data types which
are written in C, in plain Modelica code. This gener-
ated large and complex models that were difficult to
understand, maintain and extend.

The idea then was to divide the actions performed by
each module into simpler actions that combined will
offer the same functionality than the original module.

The same structure can be observed in the Arena
environment, where the modules are based and con-
structed using a lower level simulation language
called SIMAN [18].

SIMANLib contains low-level components for dis-
crete event system modeling and simulation. These
are low-level components compared to the modules
in ARENALib, which represent the high-level mod-
ules for system modeling. Flowchart modules of both
libraries are shown in Figure 2. ARENALib modules
can be described using a combination of SIMANLib
components. For example, the process module of
ARENALib is composed by the Queue, Seize, Delay
and Release blocks of SIMANLib, as shown in Fig. 3.

Components in SIMANLib are divided, as well as in
the SIMAN language, in two groups: blocks and
elements. The blocks represent the dynamic part of
the system, and are used to describe its structure and
define the flow of entities from their creation to their
disposal. The elements represent the static part of the
system, and are used to model different components
such as entities, resources, queues, etc.

Module Indicator Values
Create System.NumberIn Obs
Process NumberIn

NumberOut
VATime Per Entity
NVATime Per Entity
TotalTime Per Entity
Queue.NQ
Queue.WaitTime

Obs
Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final
Avg, Min, Max, Final, Obs

Dispose System.NumberOut Obs
EntityType NumberIn

NumberOut
VATime
NVATime
TranTime
WaitTime
OtherTime
Work In Progress

Obs
Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final, Obs
Avg, Min, Max, Final

Table 1. Statistical indicators and values calculated in the
ARENALib modules

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

47

N
SN

E 18/2, A
ugust 2008

An example of a model developed using SIMANLib
is shown in Figure 4. This system is very similar to
the beverage manufacturing system mentioned above.
The entities are pieces to be machined. The pieces
arrive to the system and are processed by a machine,
one at a time. After processed, the pieces are in-
spected by a supervisor and classified as Good, Re-
ject and Repair. Repaired pieces are sent back for re-
processing.

2 Parallel DEVS in Modelica
The main objective of the implementation of the
DEVSLib library has been to closely follow the defi-
nition of the Parallel DEVS formalism and implement
all its features without restrictions. The functionalities
of DEVSLib are similar to the ones offered by other
DEVS environments such as DEVSJAVA [24] or
CD++ [22]. These similarities include the new atomic
and coupled models construction based on predefined
classes, the redefinition of the internal, external, out-
put and time advance functions in each atomic model
as required by the user and the management of model

input and output ports as needed. However, due to the
capacities of the Modelica language, DEVSLib still
presents some restrictions that will be discussed be-
low.

2.1 DEVSLib architecture
The architecture of the library is rather simple. It is
shown in Figure 5a. It contains two main models,
atomicDraft and coupledDraft, that represent the
basic structures for building any new atomic or cou-
pled DEVS models. Together with the main models
there are several auxiliary models and functions for
managing event transmission. Additionally, some
examples of atomic and coupled systems have been
included. One of the included examples is the hybrid
model of a pendulum clock [11], which is shown in
Figure 5b. In this system a continuous-time model of
a pendulum generates tics, acting as the motor of the
clock. The rest of the clock receives the tics, calcu-
lates the current time (in hours and minutes) and
manages the alarm of the clock.

2.2 Model development with DEVSLib
When building a new atomic model, the user has to
specify the actions to be performed by the external

a) b)

Figure 2. Flowchart modules: (a) ARENALib; and (b)
SIMANLib

a) b)

Figure 5. The DEVSLib Modelica library: a) architecture;
b) case of use (model of a pendulum clock).

a)

b)

Figure 3. ARENALib process module: a) icon; b) internal
structure composed using SIMANLib components.

Figure 4. Manufacturing system model composed using
SIMANLib components

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

48

transition, internal transition, output and time advance
functions. This can be performed by re-declaring the
functions Fext, Fint, Fout and Fta, initially declared
in the atomicDraft model. The user can specify any
desired behavior for these functions, while maintain-
ing the defined function declaration. Any new atomic
model has to extend the AtomicDEVS model and to
re-declare the mentioned functions. The Modelica
code of a processor system [23] developed using
DEVSLib is shown in Listings 1, 2 and 3.

The desired number of input and output ports can also
be included in the new model and managed with the
mentioned functions. The user can drag and drop new
input and output ports into the model. The prototypes
of the external transition and the output function
allow the user to check the port where an incoming
event has been received, or to specify the output port
to send the event. All these ports could be connected
later to other models.
A coupled DEVS model, like the one shown in Figure
5b, can be easily build using previously defined
atomic or coupled models, and connecting them as
required. The input and output ports have to be in-
cluded and connected to any of the model compo-
nents

2.3 DEVSLib modeling restrictions
One restriction in DEVSLib is the impossibility to
perform one-to-many connections. These kinds of
connections are not considered in ARENALib or
SIMANLib because neither Arena nor SIMAN per-
mits them. However, the Parallel DEVS formalism
allows this kind of connection so they have been
taken into account.

model processor
extends AtomicDEVS(redeclare record State = st);

redeclare function Fcon = con;
redeclare function Fint = int;
redeclare function Fext = ext;
redeclare function Fta = ta;
redeclare function initState =

 initst(dt=processTime);
parameter Real processTime = 1;
Interfaces.outPortManager outPortManager1(

redeclare record State = st,
redeclare function Fout = out, n=1);

Interfaces.outPort outPort1; // output port
Interfaces.inPort inPort1; // input port
equation

 iEvent[1] = inPort1.event;
 iQueue[1] = inPort1.queue;
 connect(outPortManager1.port, outPort1);
end processor;

Listing 1. Modelica code of a processor system modeled
using DEVSLib

function con "Confluent Transtition Function"
input st s, Real e, Integer q, Integer port;
output st sout, soutput;

algorithm
 soutput := s;
 sout := ext(int(s),e,q,port);
end con;

function int "Internal Transition Function"
 input st s;
 output st sout;
algorithm
 sout := s;
 sout.phase := 1; sout.job := 0;
 sout.delta := Modelica.Constants.inf;
end int;

function ext "External Transition Function"
input st s, Real e, Integer q, Integer port;
output st sout;

protected
Integer numreceived;

 stdEvent x;
algorithm
 sout := s;
 numreceived := numEvents(q);

if s.phase == 1 then
for i in 1 : numreceived loop

 x := getEvent(q);
if i == 1 then

 sout.job := x.Value;
Modelica.Utilities.Streams

 .print("* Event to process");
else

Modelica.Utilities.Streams
 .print("* Event balked");

end if;
 sout.received := sout.received + 1;

end for;
 sout.phase := 2; // active
 sout.delta := s.dt; // processing_time

else
 sout.delta := s.delta -e;

end if;
end ext;

function out "Output Function"
input st s, Integer port, Integer queue;
output Boolean send;

protected
 stdEvent y;
algorithm

if s.phase == 2 then
 send := true;
 y.Type := 1;
 y.Value := s.job;
 sendEvent(queue,y);

else
 send := false;

end if;
end out;

function ta "Time Advance Function"
input st s;
output Real delta;

algorithm
 delta := s.delta;
end ta;

Listing 2. Modelica code of the functions redeclared in the
processor system.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

49

N
SN

E 18/2, A
ugust 2008

This restriction appears because the way the port and
the event communication mechanism is managed,
using dynamic memory storage. As mentioned before,
each receiver initializes its linked-queue to receive
entities. A one-to-many connection cannot be per-
formed because the sender can not store in just one
integer variable the references to all the linked-queues
created by the receivers. A solution has been imple-
mented in the DEVSLib library. This solution con-
sists in an intermediate model that can be used to
duplicate the events and send them to the receivers.
Examples of this intermediate model are the Min-
Value and the HourValue models shown in Figure 5b.

By default, the information transmitted between
models in DEVSLib, at event instants, is composed
by two values: the type of the event and a real value.
The information communication mechanism using
dynamic memory is relatively complex. It will not be
easy for a user to change the structure of the informa-
tion, type and value, transmitted in events. Anyway, it
can be performed modifying the Modelica and C data
structures that support the communication mecha-
nism. In order to improve the mechanism for manag-
ing the information transmitted in events, additional
information structures will be included to the
DEVSLib library, e. g., giving the possibility to trans-
mit arrays or matrices instead of only real values.

3 Introducing messages in Modelica
A conclusion of the performed work is that discrete
event system modeling with Modelica, using the
process-oriented approach, is not an easy task. The
components required for modeling these kind of sys-

tems and the solutions proposed for the problems are
relatively complex. The developed libraries provide
some functionalities for discrete-event system model-
ing with Modelica, using the process-oriented ap-
proach. Still, there are some problems without a solu-
tion, like the one-to-many connections in DEVSLib
and the polymorphism of the information transmitted
at event instants.

In this section the model communication using mes-
sages in Modelica is presented. The authors also
propose a possible implementation of this mechanism
that will be discussed in Section 4.

3.1 Motivation
The main difficulty observed in the presented work is
the model communication mechanism. This is the
way models are connected and communicate.

The connection of models in Modelica is represented
by the connect equation. In a connection equation
the value of the variables at the ends of the connec-
tion are either equaled, or summed and equaled to
zero. A connection between discrete-event models
does not establish any relation between variables of
both models, but is used to communicate some in-
formation that has been generated in one model and is
transmitted to another. Both connection concepts
mean different things.

Event management is also different between Mode-
lica and DEVS discrete-event systems. An event in
Modelica involves a change in the value of a boolean
condition that either makes the structure of the model
to change, or performs a change in the discrete time
variables or the state variables of themodel. Events in
DEVS discrete-event systems represent a change in
the state of the system or its discrete time variables,
and usually also involves the exchange of information
between models. This is an instantaneous transmis-
sion/reception of an impulse of information between
models at the time of an event. Event management in
discrete-event systems involve additional things than
in Modelica, because of this information communica-
tion.

In order to make the development of discrete-event
systems more simple and easy, a new concept is pro-
posed and introduced in Modelica. This concept is the
messages communication mechanism. The messages
mechanism provides the capacity for communicating
impulses of information between models at event
instants.

record st "State of the model"
Integer phase; // 1 = passive, 2 = active
Real delta; // internal transitions interval
Real job; // current processing job
Real dt; // default processing time
Integer received; // num of jobs received

end st;

function initst "State Initialization Function"
input Real dt;
output st out;

algorithm
 out.phase := 1; // passive
 out.delta := Modelica.Constants.inf;
 out.job := 0;
 out.dt := dt;
 out.received := 0;
end initst;

Listing 3. Modelica code of the state and state initialization
of the processor system.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

50

3.2 Messages and mailboxes
The model communication mechanism using mes-
sages involves two parts: the message itself and the
mailbox. The message represents the information
either traveling from one model to another, or inside a
model itself. The mailbox receives the incoming
messages and stores them until they are read. The
mailbox also represents the concept of a bag of events
in the Parallel DEVS formalism.

The characteristics of the model communication us-
ing messages are the following:

A message can be sent to any available mailbox.
Available mailboxes are the ones that can be ref-
erenced from the model that sends the message,
either accessing directly or using a connection.
The mailbox warns the model when new incom-
ing messages are received.
Once received, the message can be read from the
mailbox.
The transmission of messages between models
has to be performed instantly. Any message sent
from one model will be immediately received by
another model.
Messages can be received simultaneously, either
in the same or different mailboxes.
The information transported by a message, the
content, is independent from the message com-
munication mechanism. It is a task of the user to
define the structure of that information using the
existing components of the Modelica language,
so it can be managed by the models.
Messages can be of different types. A mailbox
can store any message independently of its type.
The type of the message has also to be independ-
ent from the content of the message.
Received messages have to be stored temporarily
in the mailbox, until they are read.
Message communication has to be performed in
two stages: sending and reception. The sending
involves the transmission of any message in the
system at a given point in time, so all the mes-
sages sent are stored in the mailbox at the end.
After the sending, all the messages are available
for reception in each mailbox and can be read
and managed as required. If a model sends sev-
eral messages to the same mailbox, all the sent
messages have to be stored in the mailbox before
the first message can be read by the receiver.

3.3 Message sending, transmission, detection
and treatment

A message can be sent from one model to any other
model that contains a mailbox, even if no connection
between models is available.

Mailboxes can also be shared between models. Shar-
ing a mailbox represent that several models can ac-
cess to the message storage that it represents. Each
model sharing the mailbox can access the messages
stored, reading or extracting them from it. Read mes-
sages are kept in the mailbox until they are extracted,
or fetched, from it.

A special case of mailboxes are the ones defined
inside connectors. Two mailboxes, inside connectors,
connected using a connect equation represent a bidi-
rectional message communication pipe. They will act
as input/output mailboxes instead of only receiving
messages. A message sent to one end of the pipe will
be transported to the opposite end, and vice-versa. If
more than two models are connected to the same
pipe, a copy of the message will be transported to
each receiver connected to the pipe. This provides a
message broadcast functionality that also emulates
the event transmission in DEVS, however in DEVS
the communication is not bidirectional. The connect
equation functionalities in Modelica have to be ex-
tended in order to support this mailbox behavior. An
example of this behavior is shown in Figure 6.

The detection of a message is implicit in the action of
sending it, since they are transferred instantly. Every
time a model sends a message to a mailbox, the simu-
lator knows that the message will be received by
another model and will have to be treated properly.

The treatment of each message has to be defined by
the user. The mailbox warns when a new message has
arrived. The mailbox activates a listener function that
can be used as a condition to detect any incoming
message, used with statements like when or if in
Modelica. This does not mean that the new message
condition has to be effectively checked at each simu-
lation step, because it is notified by the send message
operation. Once a new message arrives to a mailbox,
the arrived message or messages have to be read and
treated.

4 Proposal of implementation
This section contains a proposal of implementation in
Modelica of the previously described message com-
munication mechanism. This implementation is based

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

51

N
SN

E 18/2, A
ugust 2008

on the definition of data structures that support the
message and mailbox concepts, and the definition of
the operations that can be performed with both data
structures. Messages and mailboxes have to be de-
fined as new predefined classes that have to be
treated in a singular way, allowing objects of type
message or mailbox. Due to the current Modelica
language specification, the proposed implementation
differs from the mechanism described above. The
Modelica language will need to be extended in order
to support the messages mechanism.

4.1 Data structures
There are two data structures needed to manage the
messages mechanism. These are the definition of the
message itself and the structure to support the mail-
box that receives the defined messages.

The message structure contains two components: the
type and the content. The type of a message can be
represented with an integer value. It is used to sepa-
rate the messages of the system in different classes.
The content represents the information transported by
the message. The content of a message is defined by
the user and has to be independent from the message
management mechanism. Thus, any mailbox can
receive messages with any content and of any type. It
is a task of the user to distinguish between the types
of the messages and their contents. The content of the
message is represented by a reference to an external
data structure in C defined by the user. The user has

to provide this data structure and the functions re-
quired to manage it using the reference in Modelica.
Because of this definition, a message will be com-
posed by two integer values: the type and the refer-
ence to the content.

The second structure required in the messages
mechanism is the mailbox. A mailbox is a temporary
storage for messages. If a message is sent to a mail-
box, it is stored in the mailbox until the receiver reads
it. The number of stored messages in a mailbox is not
limited, so this structure has to be able to change its
dimension depending on the number of stored mes-
sages. The implementation of a mailbox is very simi-
lar to the currently implemented linked-lists for stor-
ing delayed entities during processes.

4.2 Operations
The operations that can be performed with the previ-
ously described structures are defined below. Each
operation is defined with its parameters and a short
description of its behavior.

Mailbox operations
newmailbox(mailbox). Initializes the mailbox.

checkmsg(mailbox). Warns about the arrival of a
new message. It changes its value from false to
true and immediately back to false at each mes-
sage arrival event.

newmsg(). Detects the arrival of a message to any
of the mailboxes declared in the model. This
helps to manage the simultaneous arrival of mes-
sages in different mailboxes.

nummsg(mailbox). Returns the number of wait-
ing messages stored in the mailbox.

readmsg(mailbox,select). Reads a message
from the mailbox. The select parameter repre-
sents a user-defined function used to select the
desired message to be read from the mailbox.

getmsg(mailbox,select). Fetches a message
from the mailbox, deleting it. The select parame-
ter is used in the same way as in the readmsg
function.

putmsg(mailbox,message). Sends the message
to the mailbox.

Figure 6. Model communication with messages using
connectors.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

52

Message operations
newmsg(content,type). Creates a new message
with the defined type and content.

gettype(message). Returns the type of the mes-
sage.

settype(message,newtype). Updates the type of
the message to the value of newtype.

getcontent(message). Reads the content of the
message.

setcontent(message,newcontent). Inserts the
newcontent into the message.

An example of a SIMAN single-queue system, with
the Create, Queue, Seize, Delay, Release and Dispose
blocks, modeled using the described messages
mechanism is shown in Figure 7. Each block of the
figure contains the pseudo-code that implements the
basic actions for the entity management and commu-
nication. The select function, in the readmsg and
getmsg functions, has been simplified and only
represents the type of message to be read or extracted.

5 Conclusions
It has been observed that process-oriented modeling
of discrete-event systems in Modelica is a difficult
task. Several Modelica libraries have been developed
to provide more discrete-event system modeling func-

tionalities to Modelica, especially for modeling sys-
tems using the process-oriented approach. The im-
plementation of these libraries present some problems
and restrictions, and the solutions proposed and im-
plemented are complex, hard to understand and diffi-
cult to maintain. In order to facilitate the development
of discrete-event system models in Modelica, the
message communication mechanism has been intro-
duced and described. A possible implementation of
this mechanism in Modelica has also been proposed.

Acknowledgments
This work has been supported by the Spanish CICYT,
under DPI 2007-61068 grant, and by the IV PRICIT
(Plan Regional de Ciencia y Tecnología de la Comu-
nidad de Madrid 2005-2008), under S-0505/DPI/0391
grant.

References
[1] Dynasym AB. Dymola Dynamic Modeling Laboratory

User’s Manual. http://www.dymola. com/ , 2006.
[2] T. Beltrame. Design and Development of a Dymola/

Modelica Library for Discrete Event-Oriented Sys-
tems Using DEVS Methodology. Master’s thesis, ETH
Zürich, March 2006.

[3] T. Beltrame, F.E. Cellier. Quantised State System
Simulation in Dymola/Modelica using the DEVS For-
malism. In Proceedings of the 5th International Mode-
lica Conference, pages 73–82, 2006.

Figure 7. Example of a SIMAN single-queue system modeled using messages.

+++ Messages in Modelica for Faci l i tat ing Discrete-Event System Modeling +++ t

53

N
SN

E 18/2, A
ugust 2008

[4] F.E. Cellier, E. Kofman. Continuous System Simula-
tion. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[5] M.C. D’Abreu, G.A. Wainer. M/CD++: Modeling
Continuous Systems Using Modelica and DEVS. In
Proc. 13th IEEE International Symposium on Model-
ing, Analysis, and Simulation of Computer and Tele-
communication Systems, pages 229–236, 2005.

[6] http://www.euclides.dia.uned.es/.
[7] J.A. Ferreira and J.P. Estima de Oliveira. Modelling

Hybrid Systems using Statecharts and Modelica. In
Proc. 7th IEEE International Conference on Emerging
Technologies and Factory Automation, pages 1063–
1069, 1999.

[8] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Com-
puter Society Pr, 2003.

[9] H. Lundvall, P. Fritzson. Modelling concurrent activi-
ties and resource sharing in Modelica. In Proceedings
of the SIMS 2003 - 44th Conference on Simulation
and Modeling, 2003.

[10] W.D. Kelton, R.P. Sadowski, D.T. Sturrock. Simula-
tion with Arena (4th ed.). McGraw-Hill, Inc., New
York, NY, USA, 2007.

[11] J. Kriger. Trabajo práctico 1: Antiguo reloj des perta-
dor. http://www.sce.carleton.ca/faculty
/wainer/wbgraf/samplesmain_1.htm.

[12] A.M. Law. Simulation Modelling and Analysis (4th
ed.). McGraw-Hill, 1221 Avenue of the Americas,
New York, NY, 2007.

[13] P. L’Ecuyer. Good Parameters and Implementations
for Combined Multiple Recursive Random Number
Generators. Oper. Res., 47(1):159–164, 1999.

[14] S.E. Mattsson, M. Otter, H. Elmqvist. Modelica Hy-
brid Modeling and Efficient Simulation. In Proc. 38th
IEEE Conference on Decision and Control, pages
3502–3507, 1999.

[15] P.J. Mosterman, M. Otter, H. Elmqvist. Modelling
Petri Nets as Local Constraint Equations for Hybrid
Systems using Modelica. In Proceedings of the Sum-
mer Computer Simulation Conference, pages 314–
319, 1998.

[16] M. Otter, H. Elmqvist, S.E. Mattsson. Hybrid Model-
ing in Modelica Based on the Synchronous Data Flow
Principle. In CACSD’99, pages 151–157, 1999.

[17] M. Otter, K.-E. Årzén, I. Dressler. StateGraph - A
Modelica Library for Hierarchical State Machines. In
Proc. 4th International Modelica Conference, pages
569–578, 2005.

[18] C.D. Pegden, R.P. Sadowski, R.E. Shannon. Introduc-
tion to Simulation Using SIMAN. McGraw-Hill, Inc.,
New York, NY, USA, 1995.

[19] M.A. Pereira Remelhe. Combining Discrete Event
Models and Modelica - General Thoughts and a Spe-
cial Modeling Environment. In Proc. 2nd International
Modelica Conference, pages 203–207, 2002.

[20] V. Sanz, A. Urquia, S. Dormido. ARENALib: A Mode-
lica Library for Discrete-Event System Simulation. In
Proc. 5th International Modelica Conference, pages
539–548, 2006.

[21] V. Sanz, A. Urquia, S. Dormido. DEVS Specification
and Implementation of SIMAN Blocks Using Modelica
Language. In Proc. Winter Simulation Conference
2007, pages 2374–2374, 2007.

[22] G. Wainer. CD++: A Toolkit to Develop DEVS Mod-
els. Softw. Pract. Exper., 32(13):1261–1306, 2002.

[23] B.P. Zeigler, Tag Gon Kim, H. Praehofer. Theory of
Modeling and Simulation. Academic Press, Inc., Or-
lando, FL, USA, 2000.

[24] B.P. Zeigler, H.S. Sarjoughian. Introduction to DEVS
Modeling & Simulation with JAVA: Developing Com-
ponent-based Simulation Models.
http://www.acims.arizona.edu/PUBLICATIONS/.93

Corresponding author: Victorino Sanz
Dpto. Informática y Automática,
ETSII Informática, UNED
Juan del Rosal 16, 28040 Madrid, Spain
vsanz@dia.uned.es

Accepted EOOLT 2008, June 2008
Received: July 30, 2008
Revised: August 15, 2008
Accepted: August 20, 2008

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

54

Multi-Aspect Modeling in Equation-Based Languages

Dirk Zimmer, Inst. of Computational Science, ETH Zürich, Switzerland, dzimmer@inf.ethz.ch

Current equation-based modeling languages are often confronted with tasks that partly diverge from the
original intended application area. This results out of an increasing diversity of modeling aspects. This paper
briefly describes the needs and the current handling of multi-aspect modeling in different modeling lan-
guages with a strong emphasis on Modelica. Furthermore a small number of language constructs is sug-
gested that enable a better integration of multiple aspects into the main-language. An exemplary implementa-
tion of these improvements is provided within the framework of Sol, a derivative language of Modelica.

Motivation
Contemporary equation-based modeling languages
are mostly embedded in graphical modeling environ-
ments and simulators that feature various types of
datarepresentation. Let that be for instance a 3D-
visualization or a sound module. Consequently the
corresponding models are accompanied by a lot of
information that describes abundantly more than the
actual physical model. This information belongs to
other aspects, such as the modeling of the icono-
graphic representation in the schematic editor or the
preference of certain numerical simulation tech-
niques. Hence, a contemporary modeler has to cope
with many multiple aspects.

In many modeling languages such kind of informa-
tion is stored outside the actual modeling files, often
in proprietary form that is not part of any standard.
But in Modelica [6], one of the most important and
powerful EOO-languages, the situation has developed
in a different way. Although the language has been
designed primarily on the basis of equations, the
model-files may also contain information that is not
directly related to the algebraic part. Within the
framework of Modelica, the most important aspects
could be categorized as follows:

Physical modeling: The modeling of the physical
processes that are based on differential-algebraic
equations (DAEs). This modeling-aspect is also
denoted as the primary aspect.
System hints: The supply of hints or information
for the simulation-system. This concerns for ex-
ample hints for the selection of state-variables or
start values for the initialization problem.
3D Visualization: Description of corresponding
3Dentities that enable a visualization of the mod-
els

GUI-Representation: Description of an icono-
graphic representation for the graphical user-
interface (GUI) of the modeling environment.
Documentation: Additional documentation that
addresses to potential users or developers.

We will use this classification for further analysis,
since it covers most of the typical applications fairly
well. Nevertheless, this classification of modeling
aspects is of course arbitrary, like any other would be.

Let us analyze the distribution of these aspects with
respect to the amount of code that is needed for them.
Figure 1 presents the corresponding pie-charts of
three exemplary models of the Modelica standard
library. These are the “FixedTranslation” component
for the MultiBodylibrary, the PMOS model of the
electrical package and the “Pump and Valve” model
in the Thermal library. The first two of them represent
single components; the latter one is a closed example
system.

In the first step of data-retrieval, all unnecessary
formatting has been removed from the textual model-
files. For each of these models, the remaining content
has then been manually categorized according to the
classification presented above. The ratio of each as-
pect is determined by counting the number of charac-
ters that have been used to model the corresponding
aspect.

The results reveal that the weight of the primary as-
pect cannot be stated to be generally predominant.
The distribution varies drastically from model to
model. It varies from only 14% to 53% for these
examples.

Yet one shall be careful by doing an interpretation of
the pie-charts in figure 1. The weight of an aspect just
expresses the amount of modeling code with respect
to the complete model. This does not necessarily

+++ Mult i -Aspect Model ing in Equation-Based Languages +++ t

55

N
SN

E 18/2, A
ugust 2008

correlate with the invested effort of the modeler and
even less it does correlate with the overall importance
of an aspect. It needs to be considered that code for
the GUIrepresentation is mostly computer-generated
code that naturally tends to be lengthy. On the other
hand side, the code that belongs to the primary aspect
of equation-based modeling is often surprisingly
short. This is due to the fact that this represents the
primary strength of Modelica. The language is opti-
mized to those concerns and enables convenient and
precise formulations. Unfortunately, this can hardly
be said about the other aspects in our classification.

The discussion about the Modelica and other
EOOlanguage is often constrained to its primary
aspect of physical modeling. But in typical models of
the Modelica standard-library this primary aspect
often covers less than 25% of the complete modeling
code. Any meaningful interpretation of figure 1 re-
veals that the disregard on other modeling aspects is
most likely inappropriate especially when we are
concerned with language design. For any modeling
language that owns the ambition to offer a compre-
hensive modeling-tool, the ability to cope with multi-
ple aspects has become a definite prerequisite.

It is the aim of this paper to improve modeling lan-
guages with respect to these concerns. To this end, we
will suggest certain language constructs that we have
implemented in our own modeling language: Sol. The
application of these constructs will be demonstrated
by a small set of examples. But first of all, let us take
a look at the current language constructs in Modelica
and other modeling languages.

1 Current handling of multiple aspects

1.1 Situation in VHDL-AMS, Spice, gPROMS,
Chi

The need for multiple aspects originates primarily
from industrial applications. Hence this topic is often
not concerned for languages that have a strong aca-
demic appeal. One example for such a language is
Chi [3]. For the sake of simplicity and clarity, this
language is very formal and maintains its focus on the
primary modeling aspect.

In contrast, languages like SPICE3 [9] or VHDL-
AMS [1,10] and Verilog-AMS[12] are widely used in
industry. Unlike Modelica, these languages do typi-
cally not integrate graphical information into their
models. The associated information that describes the
schematic diagram and the model icons is often sepa-

rately stored, often in a proprietary format. For in-
stance, the commercial product Simplorer [11] gener-
ates its own proprietary files for the model-icons. The
corresponding VHDL-code does not relate to these
files.
However, different solutions are possible: both AM-
Slanguages contain a syntax-definition for attributes.
These can be used to store arbitrary information that
relate to certain model-items. Since there is only a
small-number of predefined attributes (as unit de-
scriptors, for instance), most of the attributes will
have to be specified by the corresponding processing
tools.
Furthermore these two languages and SPICE3 own an
extensive set of predefined keywords. This way it is
possible to define output variables or to configure
simulation parameters. The situation is similar in
ABACUSS II [5], which is the predecessor to
gPROMS [2]. This language offers a set of predefined
sections that address certain aspects of typical simula-
tion run like initialization or output.

1.2 Multiple aspects in Modelica
The Modelica language definition contains also a
number of keywords that enable the modeler to de-
scribe certain aspects of his model. For instance, the
attributes stateSelect or fixed represent system-
hints for the simulator. In contrast to other modeling
languages, Modelica introduced the concept of anno-
tations. These items are placed within the definitions
of models or the declarations of members and contain
content that directly relates on them. Annotations are
widely used within the framework of Modelica. The
example below presents an annotation that describes
the position, size and orientation of the capacitor icon
in a graphic diagram window.

1 Capacitor C1(C=c1) “Main capacitor”
2 annotation (extent =[50, -30; 70, -10],
3 rotation=270);

Listing 1. Use of an annotation in Modelica

Since annotations are placed alongside the main
modeling code, they inflate the textual description
and tend to spoil the overall clarity and beauty. A lot
of annotations contain also computer-generated code
that hardly will be interesting for a human reader.
Thus, typical Modelica editors mostly hide annota-
tions and make them only visible at specific demand
of the user. However, this selection of code-visibility
comes with a price. First it reduces the convenience
of textual editing, since cut, copy and paste opera-

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

56

tions may involve hidden annotations. Second, the
selection of visibility happens on a syntactical level
not on a semantic level.
Storing data for GUI-representation or other specific
hints and information has been initially a minor topic
in the design process of Modelica. Still, there was a
compelling need for it. To meet these urgent require-
ments, the Modelica community decided to introduce
the concept of annotations into the modeling lan-
guage. Already the first language definition of Mode-
lica contained the concept of annotations and also
presented some applications for GUI-representation
and documentation. The corresponding annotations
have been used as a quasi-standard despite the fact
that they only have been weakly documented. Anno-
tations served also as an official back-door entrance
to non-official, proprietary functionalities. Since it
happens frequently in software engineering that cer-
tain things just grow unexpectedly, many further
annotations have been introduced meanwhile. Nowa-
days, annotations contain a lot of crucial content that
revealed to be almost indispensable for the generation
of effective portable code. Therefore it is no surprise
that just recently a large set of annotations had to be
officially included in version 3 of the Modelica lan-
guage definition [8]. This way, what started out as a
small, local and semi-proprietary solution, became
now a large part in the official Modelica standard.

To store the information that belongs to certain as-
pects, different approaches are used in Modelica and
often more than one language-tool is involved. The
following list provides a brief overview on the current
mixture of data representation:

The physics of a model is described by DAEs
and is naturally placed in the main Modelica
model.

Hints or information for the simulation-system
are mostly also part of the main Modelica lan-
guage but some of them have to be included in
special annotations.
Information that is used by the GUI is mostly in-
cluded in annotations. But the GUI uses also uses
information from textual descriptions that are
part of the main-language.
The description of 3D-visualization is done by
dummy-models within main-Modelica code.
Documentation may be extracted from the tex-
tual descriptions that accompany declarations
and definitions, but further documentation shall
be provided by integrating HTML-code as a text-
string into a special annotation. Other annota-
tions store information about the author and the
library version.

1.3 Downfalls of the current situation
Obviously, this fuzzy mixture of writings and lan-
guage constructs reveals the lack of a clear, concep-
tual approach. As nice as the idea of annotations ap-
pears in the first moment, it also incorporates a num-
ber of problematic insufficiencies.

The major drawback is that only pre-thought func-
tionalities are applicable. The modeler has no means
to define annotation by its own or to adapt given
constructs to his personal demands. Furthermore,
syntax and semantics of each annotation needs to be
defined in the language definition. Since there is
always a demand for new functionalities, the number
of annotations will continue to increase. This leads to
a foreseeable inflation of the Modelica language
definition.

Figure 1. Code distribution of aspects in Modelica models.

+++ Mult i -Aspect Model ing in Equation-Based Languages +++ t

57

N
SN

E 18/2, A
ugust 2008

1.4 Lack of expressiveness
These downfalls originate from a lack of expressive-
ness in the original Modelica language. Whenever
one is concerned with language design [7], it is im-
portant to repetitively ask some fundamental ques-
tions. How can it be that a language so powerful to
state highly complicated DAE-systems is unable to
describe a rectangle belonging to an iconographic
representation? Why do we need annotations at all?

These questions are clearly justified and point to the
fact that the development scope of the Modelica lan-
guage might have been too narrowly focused on the
equation based part. Therefore, extension that would
have been of great help in other domains, have been
left out:

There is no suitable language construct that en-
ables the declaration of an interface to an envi-
ronment that corresponds to a certain aspect.
Instances of objects cannot be declared anony-
mously within a model.
The language provides no tool for the user that
enables him or her to group statements into se-
mantic entities.
The language offers no means to refer on other
(named) objects, neither statically nor dynami-
cally.

By removing these four lacks, we will demonstrate
that the use of annotations can be completely avoided
and that the declarative modeling of multiple aspects
can be handled in a conceptually clear and concise
manner. The following section will discuss this in
more detail and provide corresponding examples.

2 Multi-aspect modeling in Sol
Sol is a language primarily conceived for research
purposes. It owns a relatively simple grammar (see
appendix) that is similar to Modelica. Its major aim is
to enable the future handling of variable-structure
systems. To this end, a number of fundamental con-
cepts had to be revised and new tools had to be intro-
duced into the language. The methods that finally
have become available suit also a better modeling of
multiple aspects. These methods and their application
shall now be presented.

2.1 Starting from an example
In prior publications on Sol [13,14] the “Machine”
model has been introduced as standard example. It
contains a simple structural change and consists of an

engine that drives a flywheel. In the middle there is a
simple gear box. Two versions of an engine are avail-
able: The first model Engine1 applies a constant
torque. In the second model Engine2, the torque is
dependent on the positional state, roughly emulating a
piston-engine. Our intention is to use the latter, more
detailed model at the machine’s start and to switch to
the simpler, former model as soon as the wheel’s
inertia starts to flatten out the fluctuation of the
torque. This exchange of the engine model represents
a simple structural change on run-time.

1 model Machine
2 implementation:
3 static Mechanics.FlyWheel F{inertia<<1};
4 static Mechanics.Gear G{ratio<<1.8};
5 dynamic Mechanics.Engine2 E {meanT<<10};
6
7 connection c1(a << G.f2, b << F.f);
8 connection c2(a << E.f, b << G.f1);
9 when F.w > 40 then

10 E <- Mechanics.Engine1{meanT << 10};
11 end;
12 end Machine;

Listing 2. Simple machine model in Sol.

The first three lines of the implementation declare the
three components of the machine: fly-wheel, gear-box
and the engine. The code for the corresponding con-
nections immediately follows. The third component
that represents the engine is declared dynamically.
This means that the binding of the corresponding
identifier to its instance is not fixed and a new in-
stance can be assigned at an event. This is exactly
what happens in the following declaration of the
when-clause. A new engine of compatible type is
declared and transmitted to the identifier E. The old
engine-model is thereby implicitly removed and the
corresponding equations are automatically updated.
This model contains the physics part only. We now
want to add other aspects to the model. We would like
to add a small documentation and to specify the simu-
lation parameters. Furthermore we want to add in-
formation about model’s graphical representation in a
potential, graphical user-interface. The following sub-
sections will present the necessary means and their
step by step application.

2.2 Environment packages and models
Many modeling aspects refer to an external environ-
ment that is supposed to process the exposed informa-
tion. This environment may be the GUI of the model-
ing environment or a simulator program. Therefore it
needs to be specified how a model can address a

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

58

potential environment. To this end, Sol features envi-
ronment packages and models that enable to define an
appropriate interface. Let’s take a look at an example:

1 environment package Documentation
2 model Author
3 interface:
4 parameter string name;
5 end Author;
6 model Version
7 interface:
8 parameter string v;
9 end Version;

10 model ExternalDoc
11 interface:
12 parameter string fname;
13 end ExternalDoc;
14 end Documentation

Listing 3. Environment package.

This example consists in a package that contains
models which can be used to store relevant informa-
tion for the documentation of arbitrary models. The
keyword environment does specify that the models
of the corresponding package address the environ-
ment and are therefore not self-contained. They
merely offer an interface instead. The actual imple-
mentation and semantics of the package remains to be
specified by the environment itself.

It is important to see that stipulating the semantics
would be a misleading and even futile approach.
Different environments will inevitable have to feature
different interpretations of the data. For instance, a
pure simulator will complete ignore the “Documen-
tion” models whereas a modeling editor may choose
to generate an HTML-code out of it. Nevertheless it
is very meaningful to specify a uniform interface
within the language. This provides the modeler with
an overview of the available functionalities. Further-
more the modeler may choose to customize the inter-
face for its personal demands using the available
object-oriented means of the Sol-language.

2.3 Anonymous declaration
The language Sol enables the modeler to anony-
mously declare models anywhere in the implementa-
tion. The parameters can be accessed by curly brack-
ets whereas certain variable members of the model’s
interface are accessible by round brackets. This way,
the modeler can address its environment in a conven-
ient way just by declaring anonymous models of the
corresponding package. An application of this meth-
odology is presented below in listing 4 for the Ma-
chine model.

Anonymous declarations are an important element of
Sol, since they enable the modeler to create new in-
stances on the fly, for example at the execution of an
event. This is very helpful for variable-structure sys-
tems. However, within the context of multi-aspect
modeling, anonymous declarations serve primarily
convenience. It is of course possible to assign names
to each of the documentation items. They can be
declared with an identifier like any other model, but
this is mostly superfluous and would lead to bulky
formulations.

1 model Machine
2 implementation:
3 […]
4 when F.w > 40 then
5 E <- Mechanics.Engine1{meanT << 10 };
6 end;
7 Documentation.Author{name<<"DirkZimmer"};
8 Documentation.Version{v << "1.0");
9 Documentation.ExternalDoc

 {fname<<"MachineDoc.html"};
10 end Machine;

Listing 4. Use of anonymous declarations.

2.4 Model sections
Sol has been extended by the option for the modeler
to define sections using an arbitrary package name.
Sections incorporate three advantages: One, code can
be structured into semantic entities. Two, sections add
convenience, since the sub-models of the correspond-
ing package can now be directly accessed. Three,
section enable an intuitive control of visibility. A
modern text editor may now hide uninteresting sec-
tions. The user may then be enabled to toggle the
visibility according to its current interests. This way,
the visibility is controlled by semantic criteria and not
by syntactical or technical terms.

1 model Machine
2 implementation:
3 […]
4 when F.w > 40 then
5 E <- Mechanics.Engine1{meanT << 10 };
6 end;
7 section Documentation:
8 Author{name << "Dirk Zimmer"};
9 Version{v << "1.0"};

10 ExternalDoc{fname<<"MachineDoc.html"};
11 end;
12 section Simulator:
13 IntegrationTime{t << 10.0};
14 IntegrationMethod{method<<"euler",
15 step << "fixed", value << 0.01};
16 end;
17 end Machine;

Listing 5. Sections

+++ Mult i -Aspect Model ing in Equation-Based Languages +++ t

59

N
SN

E 18/2, A
ugust 2008

The documentation part of the machine model has
now been wrapped within a section. A second section
addresses another environment called “Simulator”
and shows an exemplary specification of some simu-
lation parameters. Both sections could be hidden by
an editor if the user has no interest in their content.

2.5 Referencing of model instances
The provided methods so far, are fully sufficient for
simple application cases. The proper implementation
of a GUI-representation is yet a more complex task
that demands a more elaborate solution. In the classic
GUI-framework for object-oriented modeling, each
model owns an icon and has a diagram window that
depicts its composition from sub-models. Figure 2
displays the aspired diagram of the exemplary ma-
chine-model that contains the icons of its three sub-
models. The connections are represented by single
lines. The following paragraphs outline one possible
solution in Sol.

The problem is that many models will own GUI in-
formation but only the information of certain model
instances shall be acquired. This originates in the
need for language constructs that enable hierarchical
or even mutual referencing between model-instances.
Sol meets these requirements by giving model-
instances a first-class status [4]. This means that
model-instances cannot only be declared anony-
mously but also these instances can be transmitted to
other members or even to parameters.

This capability had already been applied in listing 2
to model the structural change of the engine. The
statement

E <- Mechanics.Engine1(meanT << 10)

declares anonymously an instance of the model “En-
gine1” and then transmits this instance to the dynamic
member E. Hence the binding of the identifier to its
instance gets re-determined which causes a structural
change.

A similar pattern will occur in our solution for the
GUI-design. Let us take a look at the corresponding
environment-package.

environment package Graphics
o model Line
o model Rectangle
o model Ellipse
o model Canvas

model Line
model Rectangle
model Ellipse

o model GraphicModel
Figure 3. Structure of the Graphics package.

Figure 3 gives a structural overview of the environ-
ment package Graphics. This package provides ru-
dimentary tools for the design of model-icons and
diagrams. These are represented by models for rec-
tangles, ellipses and lines. The package contains also
a Canvas model that enables drawings on a local
canvas. Furthermore the package contains a partial
model GraphicModel that serves as template for all
models that support a graphical GUI-representation.
It defines two sub-models: one for the icon-
representation and one for the diagram representation.
Models that own a graphical representation are then
supposed to inherit this template model. Please note
that the icon has a canvas model as parameter.

1 model GraphicModel
2 interface:
3 model Icon
4 interface:
5 parameter Canvas c;
6 end Icon;
7 model Diagram
8 end Diagram;
9 end GraphicModel;

Listing 6. A template for graphical models.

A graphical modeling environment may now elect to
instantiate one of these sub-models. This will cause
further instantiations of models belonging to the
“Graphics”-package that provide the graphical envi-
ronment with the necessary information. Below we
present an exemplary icon model for our engine that
corresponds to the icon in Figure 2.
10 model Engine2 extends Interfaces.OneFlange;
11 // that extends GraphicalModel
12 interface:
13 parameter Real meanT;
14 redefine model Icon
15 implementation:
16 c.Ellipse(sx<<0.0, sy<<0.2,

 dx<<0.6, dy<<0.8);
17 c.Rectangle(sx<<0.9, sy<<0.45,

 dx<<1.0, dy<<0.55);
18 c.Line(sx<<0.3, sy<<0.3,

 dx<<0.9, dy<<0.5);

Figure 2. Diagram representation

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

60

19 end Icon;
20 implementation:
21 […]
22 end Engine2;

Listing 7. An implementation of an icon

The icon of listing 7 “paints” on a local canvas that is
specified by the corresponding parameter c. The
transmission of this parameter is demonstrated in
Listing 8 that represents the whole diagram of figure
2. This model declares the icons of its sub-models
and creates a local canvas for each of them by an
anonymous declaration. The two connections c1 and
c2 also own a Line-model for their graphical repre-
sentation.

1 model Machine extends Graphics.GraphicalModel;
2 interface:
3 redefine model Diagram
4 implementation:
5 section Graphics:
6 F.Icon{c<<Canvas{x<<10, y<<10,

 w<<10, h<<10}};
7 G.Icon{c<<Canvas{x<<30, y<<10,

 w<<10, h<<10}};
8 E.Icon{c<<Canvas{x<<50, y<<10,

 w<<10, h<<10}};
9 c1.Line(sx<<20, sy<<15,

 dx<<30, dy<<15);
10 c2.Line(sx<<40, sy<<15,

 dx<<50, dy<<15);
11 c.Rectangle(0,0,70,30);
12 end;
13 end Diagram;
14 implementation:
15 […]
16 section Documentation:
17 […]
18 section Simulator:
19 […]
20 end Machine;

Listing 8. An implementation of a diagram

The “GraphicalModel” involves another key-concept
of Sol. The language enables the modeler to define
models also as member-models in the interface sec-
tion. When instantiated, these models belong to their
corresponding instance and are therefore not inde-
pendent. This means that the Diagram or Icon model
always refer to their corresponding super-instance.
Consequently, they also have access to all the relevant
parameters and can adapt.

Please note that the resulting GUI-models are poten-
tially much more powerful than their annotation-
based counterparts in Modelica. All the modeling
power of Sol is now also available for the graphical

models. For instance, only a minimal effort is needed
to make the look of an icon adapt to the values of a
model-parameter. No further language construct
would be required. A model could even feature “ac-
tive” icons that display the current system-state and
hence enable a partial animation of the system within
the diagram-window. Even the structural change of
the machine-model could be made visible in the dia-
gram during the simulation. Such extensions (if de-
sired or not) become now feasible and demonstrate
the flexibility of this approach.

However, the provided examples are merely a sugges-
tion and represent just one possible and convenient
solution within the framework of Sol. There are also
many other language constructs that would lead to
feasible or even more general solutions. Many of
them could easily be integrated into equation-based
languages. Some of them are featured in Sol. With
respect to Modelica, this is unfortunately not the case
yet.

3 Conclusion
Handling complexity in a convenient manner and
organizing modeling knowledge in a proper form
have always been primary motivations for the design
of modeling languages. The introduction of object-
oriented mechanism has yield to a remarkable success
and drastically simplified the modeling of complex
systems. Object-orientation essentially enabled the
modeler to break models into different levels of ab-
straction. Hence, the knowledge could be organized
with respect to depth.

However, certain models combine many different
aspects that have to be linked together at a top level.
Here the knowledge needs to be organized with re-
spect to breadth. For those tasks, current mechanisms
in EOOlanguages are underdeveloped.

This paper focuses on four conceptual language con-
structs for EOO-languages that in combination drasti-
cally increase the ability to deal with multiple as-
pects. These are:

1. Environment-packages that enable the as-
pectspecific declaration of interfaces.

2. Anonymous declarations of model instances.
3. Sections can be used to form semantic entities

and control visibility.
4. Referencing mechanisms between model-

instances. (In Sol, these mechanisms are pro-

+++ Mult i -Aspect Model ing in Equation-Based Languages +++ t

61

N
SN

E 18/2, A
ugust 2008

vided by giving model-instances a first class
status and enabling socalled member-models.)

The proposed constructs have been implemented in
our experimental language Sol and their application is
demonstrated by a set of corresponding examples.
The resulting advantages of this approach are mani-
fold:

The methods how to address a potential envi-
ronment are made available within the language.
The modeler may browse through the provided
functionalities like she or he is used to do it for
standard libraries.
The existing object-oriented mechanisms can be
applied on these environment-models. Hence the
modeler can customize the interface for its per-
sonal demands and is not constrained to a prede-
fined solution.
Anonymous declarations enable a convenient us-
age of these models, anywhere in the implemen-
tation. The resulting statements are naturally
readable and integrate nicely into the primary,
equation-based part.
User-defined sections help to organize the model
and offer an excellent way to filter for certain
modeling aspects. Uninteresting information may
consequently be hidden without hindering the ed-
iting of the code. The filtering criteria are not
based on syntax anymore, there are based on se-
mantic entities that have been formed by the
modelers themselves. Furthermore sections en-
able a clear separation of computer generated
modeling code.
The embedment into an existing object-oriented
framework enables a uniform approach for a
wider range of modeling aspects. Furthermore, it
increases the interoperability between these as-
pects.

However, the most important conclusion is that the
ability of the language to help and to extend itself by
its own means has been drastically improved with
respect to other languages like Modelica. Further
development is now possible within the language
does not require a constant update and growth of the
language definition.

4 Appendix
The following listing of rules in extended Backus-
Naur form (EBNF) presents an updated version of the
core grammar for the Sol modeling language. The
rules are ordered in a top-down manner listing the

high-level constructs first and breaking them down
into simpler ones. Non-terminal symbols start with a
capital letter and are written in bold. Terminal sym-
bols are written in small letters. Special terminal
operator signs are marked by quotation-marks. Rules
may wrap over several lines.
The inserted modifications concern solely the model-
ing of multiple aspects. With respect to a prior ver-
sion of the grammar [13], the changes are minor and
concern only 3 rules: ModelSpec, Statement and
Section.

Model = ModelSpec Id Header
[Interface] [Implemen] end Id ";"

ModelSpec = [redefine | partial | environment]
 (model | package | connector | record)

Header = {Extension} {Define} {Model}
Extension = extends Designator ";"
Define = define (Const | Designator) as Id ";"
Interface = interface ":" {(IDecl | ParDecl) ";"} {Model}
ParDecl = parameter Decl
IDecl = [redelcare] LinkSpec [IOSpec] [CSpec] Decl
ConSpec = potential | flow
IOSpec = in | out

Implemen = implementation ":" StmtList
StmtList = [Statement {";" Statement }]
Statement = [Section | Condition | Event |
 Declaration | Relation]

Section = section Designator ":" StmtList end [section]
Condition = if Expression then StmtList ElseCond
ElseCond = (else Condition)|([else then StmtList]
 end [if])
Event = when Expression then StmtList ElseEvent
ElseEvent = (else Event)|([else then StmtList]
 end [when]
Declaration = [redeclare] LinkSpec Decl
LinkSpec = static | dynamic
Decl = Designator Id [ParList]

Relation = Expression Rhs
Rhs = ("=" | "<<" | "<-") Expression

ParList = "{" [Designator Rhs {"," Designator Rhs }] "}"
InList = "(" [Designator Rhs {"," Designator Rhs }] ")"

Expression = Comparis {(and|or) Comparis }
Comparis = Term [("<"|"<="|"=="|"<>"|">="|">")Term]
Term = Product {("+" | "-") Product }
Product = Power { ("*" | "/") Power }
Power = SElement {"^" SElement }
SElement = ["+" | "-" | not] Element
Element = Const | Designator [InList] [ParList]
 | "(" Expression ")"
Designator = Id {"." Id }
Id = Letter {Digit | Letter}
Const = Number | Text | true | false
Number = ["+"|"-"] Digit { Digit }
 ["." {Digit }] [e ["+"|"-"] Digit { Digit }]
Text = "\"" {any character} "\""
Letter = "a" | ... | "z" | "A" | ... | "Z" | "_"
Digit = "0" | ... | "9"

Listing 9. EBNF grammar of Sol

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

62

Acknowledgements
I would like to thank Prof. Dr. François E. Cellier for
his helpful advice and support. This research project
is sponsored by the Swiss National Science Founda-
tion (SNF Project No. 200021-117619/1).

References
[1] P.J. Ashenden, G.D. Peterson, D.A. Teegarden. The

System Designer’s Guide to VHDL-AMS Morgan
Kaufmann Publishers. 2002.

[2] P.I. Barton and C.C. Pantelides. Modeling of Com-
bined Discrete/Continuous Processes. American Insti-
tute of Chemical Engineers Journal. 40, pp.966-979,
1994.

[3] D. A. van Beek, J.E. Rooda. Languages and Applica-
tions in Hybrid Modelling and Simulation: Position-
ing of Chi. Control Engineering Practice, 8(1), pp.81-
91, 2000

[4] R. Burstall. Christopher Strachey – Understanding
Programming Languages. Higher-Order and Sym-
bolic Computation 13:52, 2000.

[5] J.A. Clabaugh, ABACUSS II Syntax Manual, Techni-
cal Report. Massachusetts Institute of Technology.
http://yoric.mit.edu/abacuss2/syntax.html. 2001.

[6] P. Fritzson. Principles of Object-oriented Modeling
and Simulation with Modelica 2.1, John Wiley &
Sons, 897p. 2004.

[7] C.A.R. Hoare. Hints on Programming Language De-
sign and Implementation. Stanford Artificial Intelli-
gence Memo, Stanford, California, AIM-224, 1973.

[8] Modelica® - A Unified Object-Oriented Language for
Physical Systems Modeling Language Specification
Version 3.0. Available at www.modelica.org .

[9] T.L. Quarles. Analysis of Performance and Conver-
gence Issues for Circuit Simulation. PhDDissertation.
EECS Department University of California, Berkeley
Technical Report No. UCB/ERL M89/42, 1989.

[10] P. Schwarz, C. Clauß, J. Haase, A. Schneider. VHDL-
AMS und Modelica - ein Vergleich zweier Model-
lierungssprachen. Symposium Simulationstechnik
ASIM2001, Paderborn 85-94, 2001.

[11] Ansoft Corporation: Simplorer Avaiable at:
http://www.simplorer.com .

[12] Verilog-AMS Language Reference Manual Version
2.2 Available at http://www.designers-
guide.org/VerilogAMS/.

[13] D. Zimmer. Introducing Sol: A General Methodology
for Equation-Based Modeling of Variable-Structure
Systems. Proc. 6th International Modelica Conference,
Bielefeld, Germany, Vol.1 47-56, 2008.

[14] D. Zimmer. Enhancing Modelica towards variable
structure systems. Proc. 1st International Workshop
on Equation-Based Object-Oriented Languages and
Tools, Berlin, Germany, 61-70, 2007.

Corresponding author: Dirk Zimmer
Institute of Computational Science
ETH Zürich, Switzerland,
dzimmer@inf.ethz.ch

Accepted EOOLT 2008, June 2008
Received: July 30, 2008
Accepted: August 10, 2007

Accelerating the pace of engineering and science

515.000.000 KM, 380.000 SIMULATIONEN
UND KEIN EINZIGER TESTFLUG.

DAS IST MODEL-BASED DESIGN.

Nachdem der Endabstieg der beiden

Mars Rover unter Tausenden von

atmosphärischen Bedingungen simuliert

wurde, entwickelte und testete das

Ingenieur-Team ein ausfallsicheres

Bremsraketen-System, um eine

zuverlässige Landung zu garantieren.

Das Resultat – zwei erfolgreiche

autonome Landungen, die exakt gemäß

der Simulation erfolgten.

Mehr hierzu erfahren Sie unter:

www. mathworks.de/mbd

MBD-Mars_Ad_A4.indd 1MBD-Mars_Ad_A4.indd 1 18.08.2005 15:33:3518.08.2005 15:33:35

TITEL, NACHNAME

VORNAME

FIRMA / UNIVERSITÄT

ABTEILUNG

ADRESSE

PLZ, ORT

TELEFON, FAX

EMAIL

Fax: +49(0)551 / 99 721- 29
www.comsol.de/conference2005/cd/

• Akustik und Fluid-Struktur-Interaktion
• Brennstoffzellen
• Chemietechnologie und Biotechnologie
• COMSOL Multiphysics™ in der Lehre
• Elektromagnetische Wellen
• Geowissenschaften
• Grundlegende Analysen, Optimierung, numerische Methoden
• Halbleiter
• Mikrosystemtechnik
• Statische und quasi-statische Elektromagnetik
• Strömungssimulation
• Strukturmechanik
• Wärmetransport

ANWENDUNGSBEREICHE:

 Proceedings CD der
 Konferenz zur Multiphysik-Simulation

www.comsol.de

Bestellen Sie hier Ihre kostenlose Proceedings CD mit
Vorträgen, Präsentationen und Beispielmodellen
zur Multiphysik-Simulation:

