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Editorial SNE Special Issue 
Object-oriented and Structural-dynamic Modelling and Simulation II 

The SNE special issues on Object-oriented and Structural-
dynamic Modelling and Simulation emphasize recent develop-
ments in languages and tools for object-oriented modelling of 
complex systems and on approaches, languages, and tools for 
structural-dynamic systems. 
Computer aided modelling and simulation of complex systems, 
using components from multiple application domains, have in 
recent years witnessed a significant growth of interest. In the last 
decade, novel equation-based object-oriented (EOO) modelling 
languages, (e.g. Modelica, gPROMS, and VHDL-AMS) based on 
acausal modelling using equations have appeared. These lan-
guages allow modelling of complex systems covering multiple 
application domains at a high level of abstraction with reusable 
model components.  
This need and interest in EOO languages additionally raised the 
question for modelling approaches and language concepts for 
structural dynamic systems. Appropriate control structures like 
state charts in EOO languages also allow composition of model 
components ‘in serial’ – an interesting new strategy for modelling 
structural- dynamic systems. 
There exist several different communities dealing with both 
subjects, growing out of different application areas. Efforts for 
bringing together these disparate communities resulted in a new 
workshop series, EOOLT workshop series, and established spe-
cial sessions on structural-dynamic modelling and simulation 
(SDMS) within simulation conferences. In August 2007, the 1st

International Workshop on Equation-Based Object-Oriented 
Languages and Tools – EOOLT 2007 – took place in Berlin, 
followed by the 2nd workshop EOOLT 2008 in Cyprus, July 2008, 
and a special session at EUROSIM 2007 Congress (September 
2007, Ljubljana) focused on structural dynamic modelling (EU-
ROSIM 2007- SDMS Special Session), to be continued at 
MATHMOD 2009 in Vienna.  
SNE 17/2, the SNE special issue on Object-oriented and Struc-
tural-dynamic Modelling and Simulation – I  presented selected 
contributions from EOOLT 2007 and from EUROSIM 2007 – 
SDSM. This SNE special issue Object-oriented and Structural-
dynamic Modelling and Simulation – II  - SNE 18/2 - continues 
with overview, state-of-the-art, and development of object-
oriented and structural-dynamic modelling and simulation with 
further four contributions from EUROSIM 2007 – SDSM and 
with three contributions from EOOLT 2008. 
The first two contributions investigate and describe structural-
dynamic changes by means of hybrid automata and UML state 
charts, resp., trying to combine continuous and discrete world 
views (‘Discrete Hybrid Automata Approach to Structural and 
Dynamic Modelling and Simulation’, G. Mušic and B. Zupancic; 
‘Modeling of Structural-dynamic Systems by UML Statecharts in 
AnyLogic’, N. Popper et al). 
The paper ‘Classical and Statechart-based Modeling of State 
Events and of Structural Changes in the Modelica Simulator 
Mosilab’ by G. Zauner et al. compares classical IF- and WHEN – 
clause constructs with state charts for modelling state events, with 
examples in a Java-based simulator. 
The fourth and the fifth paper, ‘Numerical Solution of Continuous 
Systems with Structural Dynamics’ by O. Enge-Rosenblatt, and 
‘Selection of Variables in Initialization of Modelica Models’ by 

M. Najafi’ discuss algorithmic and  numerical aspects in handling 
structural changes and variable initialising, resp. 
The sixth contribution ‘Introducing Messages in Modelica for 
Facilitating Discrete-Event System Modeling’ by V. Sanz under-
lines that the Modelica approach is also suited for discrete-event 
modelling. The issue concludes with the contribution ‘Multi-
Aspect Modeling in Equation-Based Languages’ by D. Zimmer, 
addressing general topics and further developments. 
It is intended to publish related contributions from EOOLT 2008 
and from MATHMOD 2009 SDMD special session in coming 
regular issues of SNE. 
The editors would like to thank all authors for their co-operation 
and for their efforts, e.g. for sending revised versions of their 
contributions for SNE, and hope, that the selected papers present 
a good overview and state-of-the-art in object-oriented and struc-
tural-dynamic modelling and simulation. 

Peter Fritzson, Linköping University, Sweden 
François Cellier, ETH Zurich, Switzerland 
Christoph Nytsch-Geusen, University of Fine Arts,  
 Berlin, Germany 
Peter Schwarz, Fraunhofer EAS – Dresden, Germany 
Felix Breitenecker, Vienna Univ. of Technology, Austria 
Borut Zupancic, Univ. Ljubljana, Slovenia 

Proceedings EUROSIM 2007 - 6th EUROSIM Congress on Modeling 
and Simulation, B. Zupancic, R. Karba, S. Blazic (Eds.); ARGESIM / 
ASIM, Vienna (2007), ISBN: 978-3-901608-32-2; 

Proceedings of the 2nd International Workshop on Equation-Based 
Object-Oriented Languages and Tools – EOOLT 2008, P. Fritzson, F. 
Cellier, Ch. Nytsch-Geusen (eds), Linköping University Electronic 
Press 2008, ISSN (online): 1650-3740; www.ep.liu.se/ecp/024/ 

Contents

Editorial, Call for papers........................................................  4 
Discrete Hybrid Automata Approach to  

Structural Dynamic Modelling and Simulation 
Gašper Muši , Borut Zupan i ...........................................  5 

Modeling of Structural-dynamic Systems by  
UML Statecharts in AnyLogic 
Daniel Leitner et al. .........................................................  12 

Classical and Statechart-based Modeling of State Events 
and of Structural Changes in the Modelica Simulator 
Mosilab 
Günther Zauner, Florian Judex, Peter Schwarz ..............  17 

Numerical Simulation of Continuous Systems 
with Structural Dynamics 
O. Enge-Rosenblatt, J. Bastian, C. Clauß, P. Schwarz ....  24 

Impressum ...........................................................................  32 
Selection of Variables in Initialization of Modelica Models 

Mosoud Najafi..................................................................  33 
Introducing Messages in Modelica for Facilitating 

Discrete-Event System Modeling 
Victorino Sanz, Alfonso Urquia, Sebastian Dormido .......  42 

Multi-Aspect Modeling in Equation-Based Languages 
Dirk Zimmer ....................................................................  54 





+++ Editorial   Cal l  for  Contr ibutions  SNE 19/2 +++  
SN

E 
18

/2
, A

ug
us

t 
20

08
 

4

Dear Readers, 
Due to the big interest in object-oriented and structural-dynamic modelling we decided to continue in 2008 with 
this subject, publishing this year a further SNE Special Issue ‘Object-oriented and Structural-dynamic Modelling 
and Simulation II’ – SNE 18/2. SNE 17/2, ‘Object-oriented and Structural-dynamic Modelling and Simulation I’, 
contained revised and/or extended versions from contributions to EOOLT 2007 workshop and from EUROSIM 
2007 special session on structural-dynamic systems . This issues continues with further contributions from EU-
ROSIM 2007 special session on structural-dynamic systems, and from EOOLT 2008 workshop- all fulfilling the 
editorial policy of SNE Special Issues.  Further contributions, which were suggested as candidates (e.g. from 
Modelica Conference 2008) will be published in regular SNE issues (SNE 18/3-4, SNE 19/1) – so that the subject 
‘Object-oriented and Structural-dynamic Modelling and Simulation’ has become an emphasis for SNE in the 
years 2007, 2008, and 2009. 
 The already announced SNE Special Issue on ‘Verification and Validation’ is postponed to 2009, to appear with 
new title “Quality Aspects in Modeling and Simulation’ (SNE 19/2). 
I would like to thank all authors and people who helped in managing this SNE Special Issue, especially the 
Guest Editors, Peter Schwarz (Fraunhofer EAS, Dresden, Germany), Borut Zupancic (Univ. Ljubljana, Slove-
nia), Peter Fritzson (Linköping University, Sweden), François Cellier (ETH Zurich, Switzerland), and David 
Broman, (Linköping University, Sweden). 

Felix Breitenecker, Editor-in-Chief SNE; Felix.Breitenecker@tuwien.ac.at 

Call for Contributions 
SNE Special Issue 2009 “Quality Aspects in Modeling and Simulation“ 

Simulation is an important method which helps to 
take right decisions in system planning and operation. 
Building high-quality simulation models and using 
the right input data are preconditions for achieving 
significant and usable simulation results. For this 
purpose, a simulation model has to be well-defined, 
consistent, accurate, comprehensive and applicable. 

The ASIM-Working Group Simulation in Production 
and Logistics accommodates the increased signifi-
cance of quality aspects in simulation studies and will 
publish the forthcoming special issue in the Simula-
tion News Europe (SNE). Papers on one or more of 
the following topics will be welcome: 

Quality Aspects in Simulation Studies 
Procedure Models and Methods for Information 
and Data Acquisition 
Procedure Models for Verification and Validation 
Verification and Validation Techniques 
Certification and Accreditation 

Model Management and Documentation Aspects 
Statistical Significance of Simulation Results 
Case Studies and Practical Experiences 

The guest editors of this SNE Special Issue, Sigrid 
Wenzel (University Kassel), Markus Rabe (Fraun-
hofer Institute IPK, Berlin), and Sven Spieckermann 
(SimPlan AG, Maintal) invite for submitting a contri-
bution. 

Contributions should not exceed 8 pages (template 
provided at ASIM Webpage, ww.asim-gi.org, Menu 
International) and should be mailed directly to the 
editors not later than April 15, 2009. Contributions 
will be peer reviewed. 

Sigrid Wenzel 
Dept. of Mechanical Engineering, University of Kassel 

Kurt-Wolters-Strasse 3, D-34125 Kassel, Germany 
sigrid.wenzel@uni-kassel.de 



+++ Discrete Hybrid Automata Approach to Structural  Dynamic Model l ing +++ t

5

N
SN

E 18/2, A
ugust 2008

Discrete Hybrid Automata Approach to Structural Dynamic 
Modelling and Simulation 

Gašper Muši , Borut Zupan i , University of Ljubljana, Slovenia, gasper.music@fe.uni-lj.si

The paper presents the discrete hybrid automata (DHA) modelling formalism and related HYSDEL model-
ling language. The applicability of the framework in the context of modelling of structural-dynamic systems 
is discussed. High level and partially modular modelling capabilities of HYSDEL are presented and the pos-
sibility of modelling structural-dynamic systems is shown and illustrated by a simple example. To model 
structural dynamics, standard HYSDEL list structures are employed, and additional dynamic modes are in-
troduced when state re-initializations are necessary at mode switching. For the derived DHA models an effi-
cient simulation algorithm is presented. The main features of the framework are compared to characteristics 
of other modelling and simulation tools capable of capturing structural dynamics. Although DHA modelling 
framework only permits the simulation of a corresponding maximal state space model, and the simulation 
precision is limited, it offers other advantages, e.g. straightforward translation of the model to various opti-
mization problems that can be solved by standard linear or quadratic programming solvers. 

Introduction 
Hybrid systems were recognized as an emerging 
research area within the control community in the 
past decade. With improvements to the control 
equipment the complexity of modern computer-
control systems increases. Various aspects of discrete-
event operation, such as controller switching, chang-
ing operating modes, communication delays, and 
interactions between different control levels within 
the computercontrol systems are becoming increas-
ingly important. Hybrid systems, defined as systems 
with interacting continuous and discrete-event dy-
namics, are the most appropriate theoretical frame-
work to address these issues. 

Mathematical models represent the basis of any sys-
tem analysis and design such as simulation, control, 
verification, etc. The model should not be too com-
plicated in order to efficiently define system behav-
iour and not too simple, otherwise it does not corre-
spond to the real process and the behaviour of the 
model is inaccurate. Many modelling formalisms for 
hybrid systems were proposed in the engineering 
literature [1, 2, 3] and each class of models is usually 
appropriate only for solving a certain problem. 
A common approach to analyse the behaviour of the 
developed model is to apply simulation and observe 
the response in the time domain. When hybrid models 
are dealt with, a number of problems must be re-
solved, such as detection of state-events, generated 
when a predefined boundary in the state-space is 
reached by the state trajectory, or a proper treatment 
of discontinuities, such as re-initialization of the state 

at the so-called state jumps, etc. A number of related 
simulation techniques and tools has been developed 
that deal successfully with these problems. One of the 
most challenging issues from the simulation view-
point is a proper treatment of state dependent changes 
in the model structure during the simulation run. This 
means that in dependency of events, which are trig-
gered from the state of the model or its environment, 
the number and types of equations can change during 
the simulation. These changes are often designated by 
a term model structural dynamics. 

In the paper an approach is presented, where the sys-
tem is modelled as a discrete hybrid automaton 
(DHA) using a HYSDEL (HYbrid System DEscrip-
tion Language) modelling language [4, 5]. Using an 
appropriate compiler, a DHA model described by the 
HYSDEL modelling language can be translated to 
different modelling frameworks, such as mixed logi-
cal dynamical (MLD), piecewise affine (PWA), linear 
complementarity (LC), extended linear complemen-
tarity (ELC) or max-min-plus-scaling (MMPS) sys-
tems [6]. The system described as an MLD system [7] 
can be effectively simulated using an additional in-
formation from the HYSDEL compiler. The approach 
was applied to a simple example of a structural-
dynamic system, which illustrates the applicability of 
the framework. 

1 Discrete hybrid automata 
According to [4] a Discrete hybrid automaton (DHA) 
is the interconnection of a finite state machine (FSM),
which provides the discrete part of the hybrid system, 
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with a switched affine system (SAS) providing the 
continuous part of the hybrid dynamics. The interac-
tion between the two is based on two connecting 
elements: the event generator (EG), which extracts 
logic signals from the continuous part, and mode 
selector, which defines the mode (continuous dynam-
ics) of the SAS based on logic variables (states, in-
puts and events). The DHA system is shown on fig-
ure 1. 

A switched affine system (SAS) represents a sampled 
continuous system that is described by the following 
set of linear affine equations: 

( ) ( ) ( )( 1) ( ) ( )r i k r i k r i kx k A x k B u k f  (1a) 

( ) ( ) ( )( ) ( ) ( )r i k r i k r i ky k C x k D u k g  (1b) 

where 0k  represents the independent variable 
(time step) ( 0 {0,1,...} is a set of nonnegative 
integers) rn

r rx  is the continuous state vector, 
rm

r ru  is the continuous input vector, 
rp

r ry  is the continuous output vector, 
{ , , , , , }i i i i i i iA B f C D g  is a set of matrices of suitable 
dimensions, and ( )i k  is a variable that selects the 
linear state update dynamics. A SAS of the form (1) 
changes the state update equation when the switch 
occurs, i.e. ( )i k  changes. An SAS can be also 
rewritten as the combination of linear terms and if-
then-else rules. The state-update function (1a) can 
also be written as: 

1 1 1
1

( ) ( ) ( ) 1
( )

0 otherwise
r rA x k B u k f i k

z k  (2a) 

 … 

( ) ( ) ( )
( )

0 otherwise
s r s r s

s

A x k B u k f i k s
z k  (2b) 

1
( 1) ( )

s

r i
i

x k z k  (2c) 

An event generator (EG) generates a logic signal 
according to the satisfaction of linear affine con-
straints: 

( ) ( ( ), ( ), )e H r rk f x k u k k  (3) 

where 0: {0,1} er r nn m
Hf  is a vector 

of descriptive functions of a linear hyperplane. The 
relation Hf  for time events is modeled as 
[ ( ) 1]i

e k [ ]s ikT t , where sT  is the sampling 
time, while for threshold events is modeled as 
[ ( ) 1]i

e k [ ( ) ( ) ]T T
i r i r ia x k b u k c , where ia , ib ,

ic  represent the parameters of a linear hyperplane. 
i

e  denotes the i -th component of a vector ( )e k .

A finite state machine (FSM) is a discrete dynamic 
process that evolves according to a logic state update 
function: 

( 1) ( ( ), ( ), ( ))b B b b ex k f x k u k k  (4) 

where bx {0,1} bn
b  is the Boolean state, bu

{0,1} bm
b  is the Boolean input, ( )e k  is the input 

coming from the EG, and :B b b bf  is a 
deterministic logic function. An FSM may have also 
associated Boolean output: 

( ) ( ( ), ( ), ( ))b B b b ey k g x k u k k  (5) 

where by {0,1} bp
b .

A mode selector (MS) selects the dynamic mode ( )i k
of the SAS according to the Boolean state ( )bx k , the 
Boolean inputs ( )bu k  and the events ( )e k  using the 
Boolean function :M b bf . The output 
of this function 

( ) ( ( ), ( ), ( ))M b b ei k f x k u k k  (6) 

is called the active mode.

2 HYSDEL modelling language 
DHA models can be built by using the HYSDEL 
modelling language [4], which was designed particu-
larly for this class of systems. The HYSDEL model-
ling language allows the description of hybrid dy-
namics in textual form. The HYSDEL description of 
hybrid systems represents an abstract modelling step. 
Once the system is modelled as DHA, i.e. described 
by HYSDEL language, the model can be translated 
into an MLD model using an associated HYSDEL 
compiler. At this point, we will give just a brief intro-
duction into the structure of a HYSDEL list. 

A HYSDEL list is composed of two parts: the INTER-
FACE, where all the variables and parameters are de-
clared, and the IMPLEMENTATION, which consists of 
specialised sections, where the relations between the 
variables are defined. 

Figure 1. A discrete hybrid automation (DHA) 
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The AD section allows the definition of Boolean vari-
ables and is based on the semantics of the event gen-
erator (EG), i.e. in the AD section the e  variables are 
defined. The LOGIC section allows the specification of 
arbitrary functions of Boolean variables. Since the 
mode selector is defined as a Boolean function, it can 
be defined in this section. The DA section defines the 
switching of the continuous variables according to if-
then-else rules depending on Boolean variables, i.e. 
part of switched affine system (SAS), namely iz  vari-
ables (see Equation (2)) are defined. The CONTINUOUS
section defines the linear dynamics expressed as 
difference equations, i.e. defines the remaining Equa-
tion (2c) of the SAS. The LINEAR section defines 
continuous variables as an affine function of continu-
ous variables, which in combination with the DA and 
the CONTINUOUS section enables more flexibility when 
modelling SAS. The AUTOMATA section specifies the 
state transition equations of the finite state machine 
(FMS) as a Boolean function (4), i.e. defines Boolean 
variables bx . The MUST section specifies constraints 
on continuous and Boolean variables, i.e. defines the 
sets r , b , r  and b .

For more detailed description on the functionality of 
the modelling language HYSDEL and the associated 
compiler (tool HYSDEL), the reader is referred to 
[4, 5]. 

3 Structural-dynamic systems and 
HYSDEL

In general, discontinuities are modelled in HYSDEL 
by the use of auxiliary variables. Two types of such 
variables exist: Boolean or discrete ( ) and continu-
ous ( z ).

3.1 Modelling of discontinuities 
Discrete auxiliary  variables may be defined based 
on continuous variables in the AD section of the 
HYSDEL list, which has the following syntax:  

AD{ ad-item+ }

and each ad-item is one of the following: 

var = affine-expr <= real-number ; 
var = affine-expr >= real-number ; 

The affine expression is a linear affine combination of 
real variables 

0 1 1 2 2 n na a x a x a x  (7) 

where ia  is a function of parameters, and ix  are real 

(state, input, output, and auxiliary) variables [5]. The 
 variables defined in such a way represent outputs 

of the event generator (EG) in Fig. 1. 

Continuous auxiliary z  variables are defined in the 
DA section of the HYSDEL list, which has the fol-
lowing syntax: 

DA{ da-item+ }

and each da-item is one of the following: 

var = { IF Boolean-expr THEN affine-expr };
var = { IF Boolean-expr THEN affine-expr

ELSE affine-expr }; 

if the ELSE part is omitted, it is assumed to be 0. 

The z  variables defined this way can be used to 
implement switching dynamic part (SAS) of the HDA 
in figure 1. Using this approach, also the changes in 
the model structure can be easily implemented. 

The actual continuous dynamic of the system is im-
plemented in discretized form in the CONTINUOUS
section, which has the following syntax: 

CONTINUOUS{ cont-item+ }

and each cont-item is one of the following: 

var = affine-expr ; 

Typically, a list of such cont-items looks like: 

x1 = z11 + z12 + ... + z1m ; 
x2 = z21 + z22 + ... + z2m ; 
...
xn = zn1 + zn2 + ... + znm ; 

where n  is the number of states and m  the number of 
dynamical nodes. Auxiliary variables 11z  to n mz  are 
defined within the DA section. 

When the mode is not active the ijz  variables can be 
zero or may be held at any other value, depending on 
the problem. 

The conditions related to reset of the state at switch-
ing or other similar conditions can be easily taken 
into account if a new mode is defined, which is active 
only at a single sampling instant. 

With regard to structural changes, it is obvious that 
the states can not be created or deleted during the 
simulation run but can only be held ’inactive’ when 
they are not required. Therefore the simulation runs 
by employing a corresponding maximal state space 
model. 
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3.2 Example 
To illustrate the HYSDEL modelling of structural-
dynamic systems a simple example will be shown. A 
system under consideration has two dynamic modes, 
the first one being active when the system output is 
below 0.5 and the second one when the output is 
above 0.5. 

In the first mode the system dynamics is described by 
0.5 0.5y y u  (8) 

where u  is the input to the system and y  is the sys-
tem output. 

The second mode is described by 
2y y y u  (9) 

The system is written in the state space form by as-
signing the state variables 1x y  and 2x y , and 
discretized at the sampling time 0.1ssT . Then the 
first mode is described by: 

1 1
1 11 1 11 1

1

( 1) ( ) ( )
( ) ( )

x k a x k b u k
y k x k

 (10) 

and the second mode by 
2 2 2

1 111 12 11
2 2 2

2 221 22 21

1

2

( 1) ( )
( )

( 1) ( )

( )
( ) 1 0

( )

x k x ka a b
u k

x k x ka a b

x k
y k

x k

 (11) 

Equations (10) and (11) are coded in the IMPLEMENTA-
TION part of HYSDEL list as follows: 

1 IMPLEMENTATION { 
2 AUX { 
3 BOOL d, df; 
4 REAL z1, z21, z22; } 
5 AD { 
6   d = x1 <= limit; 
7   df = a11_1*x1 + b11_1*u >= limit; } 
8 DA { 
9   z1 = {IF d THEN

          a11_1*x1 + b11_1*u 
10 ELSE

          a11_2*x1 + a12_2*x2 + b11_2*u}; 
11   z21 = {IF ˜d THEN

          a21_2*x1 + a22_2*x2 + b21_2*u}; 
12   z22 = {IF d & df THEN

          (a11_1 - a11_2)/a12_2*x1 + 
          (b11_1 - b11_2)/a12_2*u}; } 

13 CONTINUOUS { 
14       x1 = z1; 
15       x2 = z21 + z22; } 
16 OUTPUT { 
17       y = x1; } 
18 }

The limit parameter is set to 0.5, while other parame-
ters are obtained by discretization procedure. It can be 
observed that an additional dynamic mode is intro-
duced, which is active when 1x  is below the limit but 
the value of 1x  in the next time step exceeds the limit.
This way the time of mode switching is predicted and 

2x  is set to the value which causes a smooth transi-
tion to the new mode (both y  and y  are continuous). 
Both 21z  and 22z  are forced to zero when correspond-
ing modes are inactive. 

4 Simulation
Once a DHA system is modelled by the HYSDEL 
modelling language, the companion HYSDEL com-
piler generates the equivalent MLD model [4]. In [7] 
the authors proposed discrete-time hybrid systems 
denoted as mixed-logical dynamical (MLD) systems: 

1 2 3( 1) ( ) ( ) ( ) ( )x k Ax k B u k B k B z k  (12a) 

1 2 3( ) ( ) ( ) ( ) ( )y k C x k D u k D k D z k  (12b) 

2 3 1 4 5( ) ( ) ( ) ( )E k E z k E u k E x k E  (12c) 

where [ , ] {0,1} br nn
r bx x x  is a vector of con-

tinuous and logic states, [ , ] {0,1} br mm
r bu u u

are continuous and logic inputs, [ , ]r by y y rp

{0,1} bp  are continuous and logic outputs, {0,1} br ,
rrz  auxiliary logic and continuous variables, 

respectively, and A , 1B , 2B , 3B , C , 1D , 2D , 3D , 1E ,
…, 5E  are matrices of suitable dimensions. Inequali-
ties (12c) can also contain additional constraints on 
the variables (states, inputs and auxiliary variables). 
This permits the inclusion of additional constraints 
and the incorporation of heuristic rules into the 
model. 

4.1 The structure of an MLD form 
Hybrid systems consist of continuous and logic vari-
ables. Relations between latter can be described by 
propositional calculus [7]. Propositional calculus 
enable statements to be combined in compound 
statements by means of connectives: “ ” (and), “ ”
(or), “ ” (not), etc. Each compound statement can 
be translated into a conjunctive normal form (CNF) 
or product of sums (POS) of the following form 

1( )
j j

m
j i P i NX X  (13) 

where jP  and jN  are sets of indices of literals iX  and 
inverted literals iX . By associating logical (binary) 
variables {0,1}i  with each propositional variable 

iX  then the compound statement (13) can be equiva-
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lently translated into a following set of integer linear 
inequalities:

1 1

1 (1 )

1 (1 )
m m

i i
i P i N

i i
i P i N

 (14) 

This translation technique can be adopted to model 
logic parts of processes, logic constraints of the plant 
and heuristic knowledge about plant operation, as 
integer linear inequalities. 

A/D interface:    Propositional variable X , defined 
by statement [ ( ) 0]rX f x , i.e. [ ( 0)]rf x
[ 1], can be can be translated into the following set 
of mixed-integer inequalities  

( ) (1 )
( ) ( )

r

r

f x M
f x m

 (15) 

where  is a small positive real number and M  and 
m  are constants defined by max ( )rM f x and 

min ( )rM f x  . 

D/A interface:    In this case the results of logical 
events define values of continuous variables. The 
most common D/A interface is the IF-THEN-ELSE
construct, IF X THEN 1( )rz f x ELSE 2 ( )rz f x ,
which can be translated into the following set of 
mixed-integer inequalities: 

2 1 2

1 2 2

1 2 1

2 1 1

( ) ( )
( ) ( )

( )(1 ) ( )
( )(1 ) ( )

r

r

r

r

m M z f x
m M z f x

m M z f x
m M z f x

 (16) 

where z  is an auxiliary continuous variable defined 
by auxiliary logical variable  associated to literal 
X . iM  and im  are defined as in Equation (15). 

Linear    part enables to define linear relations as a 
system of inequalities and is defined as 

( )
( )
r

r

z f x
z f x

 (17) 

Continuous dynamical    part is described by linear 
difference equations (discrete time domain) as fol-
lows

( 1) ( ) ( )
( ) ( ) ( )

r r r r r

r r r r r

x k A x k B u k
y k C x k D u k

 (18) 

By considering Equations (14,15,16,17,18) the mixed 
logical dynamical (MLD) system is derived and is 

presented by Equation (12). For more detailed de-
scription of the MLD structure the reader is referred 
to [4, 7]. 

4.2 Simulation of an MLD system 
Using the current state ( )x k  and input ( )u k , the time 
evolution of (12) is determined by solving ( )k  and 

( )z k  from inequalities (12c), and then updating 
( 1)x k and ( 1)y k  from equalities (12a) and (12b), 

respectively. The MLD system (12) is assumed to be 
completely well-posed, i.e. for a given state ( )x k  and 
input ( )u k  the inequalities (12c) have a unique solu-
tion for ( )k  and ( )z k . Obtaining the values of the 
auxiliary variables ( )k  and ( )z k  presents a bottle-
neck in a simulation of a hybrid system modelled as 
an MLD system. 
The variables ( )k  and ( )z k  are defined by the sys-
tem of inequalities (12c) and can be computed by 
defining and solving a mixed integer problem. It has 
to be pointed out that in this case the optimization is 
only used to find a feasible solution. Because the 
system is well posed the solution is unique and only 
one solution to the system of inequalities exists, 
which does not depend on the cost function. The 
disadvantage of this approach is the usage of the 
mixed integer optimization algorithms, which can be 
time consuming or even not able to find a feasible 
solution because of numerical sensitivity. 
One of the reasons why the optimization approach is 
time consuming lies in the branch and bound nature 
of the underlying algorithm and in the fact that, once 
that the delta variables have been fixed, the inequali-
ties (16) are actually equalities, i.e. 1( )rz f x  or 

2 ( )rz f x .

To overcome the problem, which appears when using 
optimization approach, a special algorithm was de-
veloped. It is based on the knowledge of transforma-
tion procedure from DHA into MLD form and is able 
to compute values of ( )k  and ( )z k  “explicitly”, i.e. 
without iterations. Such approach is of course much 
faster. The algorithm involves a direct 1E , …, 5E
matrix manipulation. 

The algorithm abstracts the inequalities (12c) into 
sets based on an origin of a certain row. The result are 
six sets: AD set containing the inequalities from AD 
part of a system, LOGIC set containing the inequalities 
of logical relations, LINEAR set containing the linear 
relations, DA set containing inequalities from DA part 
of a system, LOGIC MUST set containing all logical 
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constraints and CONTINUOUS MUST set containing all 
continuous constraints. The following algorithm ex-
ploits the definition of the variables ( )k  and ( )z k  to 
define them:  

1. Given ( )x k  and ( )u k .
2. Repeat 

a. Define ( )AD k  variables for which all right 
hand side variables are defined. 

b. Define ( )LO k  variables for which all right 
hand side variables are defined. 

c. Define ( )LIz k  variables for which all right 
hand side variables are defined. 

d. Define ( )DAz k  variables for which all right 
hand side variables are defined. 

3. Until all ( ) ( ) ( ) T
AD LOk k k  and ( )z k

( ) ( ) T
LI DAz k z k are defined. 

4. Check logical constraints 
5. Check continuous constraints 
6. If all containts are fulfilled define ( )k , ( )z k ,

new state ( 1)x k  and output ( )y k else return er-
ror. 

All the computation is based on direct 1E , …, 5E
matrix manipulation and does not rely on any mixed 
integer solver but relies on additional information 
provided by the HYSDEL tool, such as row origin 
information (AD, DA...). A similar algorithm is im-
plemented in the HYSDEL tool, version 2.0.5 [4, 5]. 

4.3  Example 
The described simulation algorithm is applied to the 
example model introduced in section 3.2. A periodic 
pulse signal with the amplitude 1 is defined as an 
input to the system and simulation results are shown 
in Fig. 2 and 3. 

It can be observed that dynamics is changed when the 
system output crosses the boundary at 0.5. The chan-
ge in the dynamics can be seen if the shapes of the 
rising and falling responses are compared. It can also 
be observed that 2x  state is initialized to the appropri-
ate value whenever the second dynamic mode is en-
tered. This value guarantees a smooth transition to the 
new mode. On the contrary, 2x  is switched to zero 
when the second mode is exited, because it is not 
needed anymore. 

5 Comparison to other tools 
A number of simulation techniques and tools has been 
developed in recent years that deal successfully with 
hybrid phenomena. Structural-dynamics as an impor-
tant part of hybrid dynamics can be seen in one of the 
two distinct ways. In one way, state events can be 
seen as a mechanism that switches on and off alge-
braic conditions, which freeze certain states for cer-
tain periods. In another way, local model with fixed 
state spaces are controlled by a global model. Follow-
ing this, two different approaches for simulating 
structural-dynamic systems are developed: the maxi-
mal state space approach and the hybrid decomposi-
tion approach [8]. 

Most currently available simulation tools follow the 
maximal state space model approach, e.g. Modelica, 
VHLD-AMS, Dymola. Matlab incorporates a simula-
tion tool Simulink, which also works with a maximal 
state space. Simulink supports triggered sub-models, 
which can be executed only at event occurrences. 
Recent versions also include support for Statechart-

Figure 2. Simulated response ( 1x y )

Figure 3. Simulated response ( 2x )
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based description of state-machines and discrete-
event simulation by SimEvents Blockset, based on 
the entity concept. On the other hand, Simulink can 
not deal with Differential-Algebraic Equations 
(DAEs). 

At the moment, the developments of hybrid decom-
position approach are mainly focused on various 
extensions of Modelica. One of such extensions, 
which closely follows all basic principles of the hy-
brid decomposition approach, is a modelling descrip-
tion language Mosila (Modelling and Simulation 
Language). In Mosila, dynamical object structures are 
introduced to represent variable models. Objects 
represent state attributes and behaviour in a form of 
equations, and the equation system may be changed 
when a structural change is triggered. A correspond-
ing simulator MOSILAB has been successfully ap-
plied to simulation of a number of case studies [9]. 

The DHA modelling and simulation approach pre-
sented in this paper belongs to the group of maximal 
state space model approaches. Since it operates in 
discrete-time, it is less elaborated from the simulation 
viewpoint. State and time events may be detected 
with a limited precision that is mainly influenced by 
the chosen sampling-time. On the other hand, the 
description has a sound theoretical framework and 
models can be converted to other formal descriptions 
of hybrid systems. This enables analytical exploration 
of important system properties, e.g. stability. Fur-
thermore, the models converted to the MLD form can 
be used for defining various optimization problems 
that can be solved by standard linear or quadratic 
programming solvers. 

6 Conclusions
The discrete hybrid automata (DHA) modelling for-
malism and related HYSDEL modelling language can 
be applied also to modelling and simulation of struc-
turaldynamic systems. The modelling is simple and 
requires only the description of the switching bounda-
ries in the state space and a discretization of the cor-
responding dynamics. The coding into HYSDEL list 
is straightforward and could also be automated based 
on a higher level description of the model. The simu-
lation is fast and relatively simple. Compared to other 
tools the accuracy of simulation is limited, but on the 
other hand, the underlying DHA description can be 
easily transformed to other descriptions of hybrid 
systems and also used as a basis for analysis and 
optimization. 
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Modeling of Structural-dynamic Systems by UML Statecharts in 
AnyLogic

Daniel Leitner, Johannes Kropf, Günther Zauner, TU Vienna, Austria, dleitner@osiris.tuwien.ac.at
Yuri Karpov, Yuri Senichenkov, Yuri Kolesov, XJ Technologies St. Petersburg, Russia 

With the progress in modeling dynamic systems new extensions in model coupling are needed. The models 
in classical engineering are described by differential equations. Depending on the general conditions of the 
system the description of the model and thereby the state space is altered. This change of system behavior 
can be implemented in different ways. In this work we focus on AnyLogic and its ability to switch between 
different sets of equations using UML statecharts. Different possibilities of the coupling of the state spaces 
are compared. This can be done either using a parallel model setup, a serial model setup, or a combined 
model setup. The analogies and discrepancies can be figured out on the basis of three classical examples. The 
first is the constrained pendulum as defined in ARGESIM comparison C7, where the dimension of the state 
space is unaltered. Second is the free pendulum on a string, where the dimension of the state space changes. 
The third example is a thermal storage model at which between different accuracies of the discretization is 
switched. 

Introduction 
In this work three different structural dynamic sys-
tems are under investigation. The models are imple-
mented in AnyLogic using its UML statecharts repre-
sentation for discrete event based changes of their 
governing differential equations and their state 
spaces. In the first part AnyLogic will be described, 
and then the different models will be presented. After 
that different methods of solutions are introduced 
with a special focus on how UML statecharts can be 
used to control the model structure. With these meth-
ods implementations for AnyLogic of the structural 
dynamic systems are given. As a conclusion the bene-
fits and drawbacks of the hybrid simulator are exam-
ined. 

AnyLogic is a multiparadigm simulator supporting 
Agent Based modeling as well as Discrete Event 
modeling, which is flowchart-based, and System 
Dynamics, which is a stock-and-flow kind of descrip-
tion. Due to its very high flexibility AnyLogic is 
capable of capturing arbitrary complex logic, intelli-
gent behaviour, spatial awareness and dynamically 
changing structures. It is possible to combine differ-
ent modeling approaches which make AnyLogic a 
hybrid simulator. AnyLogic is highly object oriented 
and based on the Java programming language. To a 
certain degree this ensures a compatibility and reus-
ability of the resulting models. 

The development of AnyLogic in the last years has 
been towards business simulation. In version 6 of 

AnyLogic it is possible to calculate typical problems 
from engineering, but there are certain restrictions. 
For example the integration method cannot be chosen 
freely and there is no state event finder. 

When a model starts, the equations are assembled 
into the main differential equation system (DES). 
During the simulation, this DES is solved by one of 
the numerical methods built in AnyLogic. AnyLogic 
provides a set of numerical methods for solving ordi-
nal differential equations (ODE), algebraic-
differential equations (DAE), or algebraic equations 
(NAE). 

AnyLogic chooses the numerical solver automatically 
at runtime in accordance to the behaviour of the sys-
tem. When solving ordinal 
differential equations, it starts 
integration with forth-order 
Runge-Kutta method with 
fixed step. Otherwise, Any-
Logic plugs in another solver, 
the Newton method. This 
method changes the integra-
tion step to achieve the given 
accuracy. 

1 Modeling
In this section three different 
models will be explained. 
They have in common that 
discrete events change the 

Figure 1. Force diagram 
of a simple gravity 

pendulum
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model structure. In the first model the state space is 
not altered, thus the process can be described as pa-
rameter event that occur at a discrete time point. In 
the second and third model this is not possible be-
cause the dimension of the state space changes. This 
change of model structure and its implementation 
using UML statecharts in AnyLogic shall be investi-
gated. 

1.1 Constrained pendulum 
A classical and simple nonlinear model in simulation 
techniques is the so called constrained pendulum. 
This model has been presented in the definition of 
ARGESIM comparison C7, full solutions in Any-
Logic can be found in [1] or [2]. There is no exact 
analytical solution to this problem Therefore the re-
sults must be obtained by numerical methods. In this 
section a description of the model shall be given. 

The motion of the pendulum is given by 
sin( )ml mg d l  (1) 

where  denotes the angle measured in counter-
clockwise direction from the vertical position and 
is the angular velocity. The parameter m  is the mass 
and l  is the length of the pendulum. The damping is 
realized with the constant d .

In the case of a constrained pendulum a pin is fixed at 
a certain position given by the angle p  and the 
length pl . If the pendulum is swinging it may hit the 
pin. In this case the pendulum swings on with the 
position of the pin as the point of rotation and the 
shortened length 

s pl l l . (2) 

In ARGESIM comparison C7, the initial values of 
two experiments are predetermined: 

1. The first example is given by 
/ 6, 0, 0.2, /12pd  (3) 

2. The second example is given by 
/ 6, 0, 0.1, /12pd  (4) 

Both examples have the general parameters: 
1.02, 1, 0.7 ( 0.3), 9.81p sm l l l g  (5) 

1.2 Free pendulum on a string 
The second example is a slightly more complicated 
pendulum. The massive bob of the pendulum is fixed 
on a string. In case of a rollover of the pendulum it 

can start to fall freely until the constraints of the 
string apply again. This can happen if the pendulum 
swings higher than 2  and the centrifugal force is 
smaller than the gravitational force, see figure 1. Thus 
the model has two different states: the normal pendu-
lum movement normal and the free fall fall. The 
pendulum movement is given in equation 1. The 
equations of free fall are given by 

0
y

x

v g
v

 (6) 

1.3 Solar system heating 
The third example is motivated by the work of 
Nytsch-Geusen, who describes a complex energy 
system [3]. In this work only a small subsystem will 
be investigated, which can demonstrate the abilities 
of AnyLogic to deal with structural dynamics. 

A one dimensional thermal storage model shall be 
calculated with different accuracies that are depend-
ent of the gradient of the temperature in the storage 
system. This happens for example when hot water 
enters the storage system. The effect is realized by 
using to different systems with different thermal lay-
ering as presented in figure 2. 

The example demonstrates not only the dynamics but 
although AnyLogic’s ability to connect with external 
solvers which happens in this example because spe-
cialized finite element method (FEM) solvers are 
needed for the calculations. 

2 Solution approaches 
New advantages in computer numerics and the fast 
increase of computer capacity lead to necessity of 
new modeling and simulation techniques. In many 
cases of modern simulation problems state events 
have to be handled. There exist different categories of 

Figure 2. Structural variable storage model, which uses a 
different number of zones in dependency of the current 

thermal layering. 
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structural dynamic systems which should be focused 
on and solved. The first class of hybrid systems are 
the one, where the state space dimension does not 
change during the whole simulation time and also the 
system equations stay the same. Only so called pa-
rameter events occur at discrete time points. These 
are the more or less simplest form of state events. 
AnyLogic does not differ between different types of 
events. The implementation of parameter events and 
state space changes does not differ, making AnyLogic 
a truly hybrid simulation environment. 

AnyLogic supports the usage of UML statecharts [4]. 
This is a very intuitive and convenient way to de-
scribe a system which contains multiple discrete 
states. In the combination with dynamical equations 
this approach enables a simple implementation of 
structural dynamics. The dynamic equations or pa-
rameters are dependent of the discrete state of the 
model. On the other hand the transitions of the states 
are influenced by the dynamic variables, see [5]. 

The different kinds of description will be explained 
by means of the constrained pendulum. In this case 
the states are normally swinging (state long) or 
swinging with shortened length around the pin (state 
short). The discrete state of the model depends on the 
angle  and the pins angle p . The state alters the 
model parameters or the models set of equations, see 
figure 3. 

2.1 Switching states 
When the state of a system changes, often the state 
space of the model stays unchanged, thus the same set 
of differential equation can be used for different 
states. In this situation only certain parameters must 
be changed when a state is entered. 

In case of the constrained pendulum the differential 
equation for movement stays the same for both states 
long and short. If the state changes the parameter 
length and angular velocity are updated before the 
calculation can continue, see figure 4. 

2.2 Switching models 
Often the previous approach is not possible. Some-
times situation occur where the state space of the 
model changes, thus a simple change of parameters is 
not possible. Normally the whole set of differential 
equations, thus the complete model, must be 
switched. In many simulation environments this ap-
proach can lead to complications. 

In case of the constrained pendulum two differential 
equations are set up describing the movement of the 
pendulum. One describes the normal pendulum the 
other one the shortened pendulum. Which equation is 
set to be active is determined by the state diagram. 
When the states are switched the initial values must 
be passed on. The current equation must be activated 
and the other one must be frozen, see figure 5. 

3 Constrained pendulum 
The implementation of the constrained pendulum has 
been done in two different ways. In the first approach 
only the parameter states have been switched corre-
sponding to section 3.1, in the second approach the 
whole differential equation is switched corresponding 
to section 3.2. Both examples from chapter 2.1 have 
been simulated using both approaches. The results in 
AnyLogic are identical in both methods because the 
times of the state transitions are the same. 

In the first approach the model consists of two ordi-
nary differential equations describing the movement 

      
Figure 4. The parameters of the model are changed by an 

UML statechart 

Figure 3. UML statechart controlling the pendulum. 

Figure 5. The differential equations of the system are 
switched in dependence of the UML state diagram 
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of the pendulum. The differential equations are real-
ized in AnyLogic using two stock variables, the angle 

 and the angular velocity . In these equations 
four parameters are used: length l , mass m , damping 
d  and gravity g . Further a state diagram with states 
long and short and two transitions are used to update 
the equations. When the state changes, the length l
and angular velocity  are updated. The results cal-
culated by AnyLogic 6 are plotted in figures 6 and 7. 

The second approach uses two separate models. The 
implemented model consists of two times two ordi-
nary differential equations, thus four stock variables 
( 1 , 2 , 1 , 2 ). Both equations have four parame-
ters separately: length l , mass m , damping d  and 
gravity g . A state diagram is implemented analog to 
the first approach. If the state changes the right dif-
ferential equations are activated and their initial val-
ues are set, while the other differential equation is 
frozen.

4 Pendulum on a string 
When implementing the pendulum on a string in Any-
Logic, to totally different submodels must be consid-
ered:

1. The pendulum is described by the formula given 
by equation 1. The equation is realized in Any-
Logic with the use of two stock variables, the 
angle  and the angular velocity . Further the 

four parameters describe the pendulum, length l ,
mass m , the damping factor  and gravity g .

2. The equations of free fall uses a completely dif-
ferent state space. The stock variables x  and y
describe the position of the massive bob. In ver-
tical direction another stock variable xv  is 
needed because in this direction exists accelera-
tion due to gravity. The vertical acceleration is 
described with a parameter ya . In horizontal di-
rection a parameter yv  is sufficient.  

Which model is active is controlled by an UML state-
chart, see figure 8. Therefore two different states are 
needed, the state pendulum for the first submodel and 
the state fall for the second submodel. Two transitions 
control the state of the system. The condition of the 
transition from state pendulum to state fall is given by 

2 r g  (7) 

expressing that the pendulum begins to fall when the 
gravity force is larger than the centrifugal force. The 
condition of the transition from state fall to state 
pendulum is naturally given by the constraint of the 
pendulum length, thus 

2 2x y l  (8) 

When a state is entered all initial values for the sys-
tem must be calculated from the previous submodel. 
When switching from pendulum to fall following 
initial values are preset: 

cos( )
sin( )

sin( )
cos( )

y

x

y

a g
v l
v l
x l
y l

 (9) 

In the case of the transition fall to pendulum follow-
ing initial values are chosen: 

Figure 6. The angle (red, inner graph) and the angular 
velocity (blue) of the constrained pendulum (example 1) 

Figure 7. The angle (red, inner graph) and the angular 
velocity (blue) of the constrained pendulum (example 2) 

Figure 8. UML statechart controlling the pendulum on a 
string.
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arcsin

cos( ) sin( )x y

x
l

v v
 (10) 

The example show the possibilities of UML state-
charts controlling the model structure. The main 
benefit of this kind of representation is the that model 
is clearly arranged and dependencies are shown in an 
intuitive way. 

5 Solar heating system 
The UML statechart in figure 9 controls the two dif-
ferent components of the problem, which solve the 
thermal model with a different number of nodes. 

In the original solution the model is linked to external 
simulation software for numerical FEM calculations. 
In AnyLogic this link to external code can be estab-
lished easily. The reason for that is that AnyLogic can 
be extended by arbitrary Java code. This make it 
possible to either start applications or to communicate 
with external code via the Java Native Interface (JNI). 

JNI is a programming framework that allows Java 
code to call and be called by native applications and 
libraries written in other languages such as C or C++. 
With JNI it is possible to export and import parame-
ters using a predetermined interface. In the case of 
C++ this interface look like 

1 // C++ code
JNIEXPORT void JNICALL Java_ClsName_MethodName 
   (JNIEnv *env, jobject obj, jstring javaStr) 

2 {
// For example a string is imported from AnyLogic
const char *nativeString = 

      env->GetStringUTFChars(javaString, 0); 
3

// Do something with the nativeString
4

// Don’t forget to release the string
5    env->ReleaseStringUTFChars 
6       (javaString, nativeString); 
7 }

6 Conclusion
AnyLogic is a hybrid simulator which supports a 
multitude of different modeling approaches, particu-
larly UML statecharts, System Dynamics, Agent 
Based simulation and Dynamic Systems. In this work 
it has been focused on UML statecharts in combina-
tion with Dynamic Systems for the description of 
structural dynamic systems. In theory all different 
approaches can be freely combined. 

AnyLogic is feasible tool to create UML statecharts 
and can handle structural dynamic systems in an very 
intuitive way. AnyLogic works strictly object oriented 
and translates the models to Java code and further 
Java code is used within the models. This ability of 
AnyLogic makes it easy to extend and thus applicable 
to a huge range of applications. 

The main scope of AnyLogic version 6 is business 
simulation. For engineering application it is a draw-
back that the integration method cannot be chosen 
freely. Further there is no state event finder which can 
lead to a significant reduction of the step size in the 
temporal domain. 
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Figure 9. UML statechart controlling the accuracy of the 
thermal layers. 
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Classical and Statechart-based Modeling of State Events and of 
Structural Changes in the Modelica Simulator Mosilab 

Günther Zauner, dieDrahtwarenhandlung Simulation Services Vienna, Austria 
Florian Judex, Vienna University of Technology, Austria 

Peter Schwarz, Fraunhofer Institute for Integrated Circuits Dresden, Germany 

Mosilab (MOdelling and SImulation LABoratory) a new simulation system developed by Fraunhofer under-
stands Modelica, offers different modeling approaches, and supports structural dynamic systems. This will 
be discussed on the basis of a main example, the classical constrained pendulum. We show how the solution 
can be done using only standard Modelica components, where the benefits are and which kind of switching 
the states can be done. As we will see there is no possibility to define separate submodels with different state 
space dimensions and switch between these systems during one simulation run. 

The next point of view lies on an extension of the Modelica framework. The most important new feature of 
this model description language is the definition of a statechart framework. With this construction the next 
three solutions of the constrained pendulum are done. The first approach is mathematically similar to the 
Modelica solution and defines poor parameter events within the statechart construct. This approach cannot 
handle events of higher order. The second approach for the model is done with two different submodels, one 
for the case that the rope of the pendulum is short and one for the case it is long. In the statechart the two 
models are then connected and disconnected to the main program and thereby switched between active and 
off. A third approaches with only one submodel but two instances of the system will conclude our model in-
spection. 

We focus on how the numerical approaches are done in general and where are the benefits comparing to the 
other solutions. A final step is to look at the numerical quality of the output of the different approaches. This 
is done by validation with another example for which an analytical solution exists. 

General
In the last decade a broad amount of knowledge in 
model description theory and modeling and simula-
tion techniques, which could not be solved with the 
older systems, have their renaissance. Increasing 
power of computers and better algorithms lead to 
advanced modeling environments. One benefit are the 
customer friendly interfaces.  

Nevertheless, these advanced modeling environments 
ask for well educated experts in the field of simula-
tion. In nowadays definition of a project it is very 
often important to model a part of a system in detail, 
but when the system switches to another state the 
description is done imprecisely. Another often needed 
approach is that a state event makes restrictions to the 
actual model which leads to a change in the degree of 
freedom. Both here explained cases result in a change 
in the state space dimension or even a parameter 
change for the given system.  

The new generation of simulation systems handles 
this challenge with different methods. One approach 

is to define a discrete class, where state event han-
dling is done (e.g. ACSL), others restrict their system. 
They allow only parameter changing state events (e.g. 
Dymola/Modelica) or to blow up the whole system. A 
third class, which we will focus on in a selected ex-
ample, is simulators with an implemented state ma-
chine. This group of simulators can handle state 
events of both sorts: the classical ones where the 
dimension of the state space remains the same and the 
hybrid switch between separate models. 

1 The simulation environment 
MOSILAB (MOdeling and SImulation LABoratory) 
[1] is a simulator developed by Fraunhofer-Instituts 
FIRST, IIS/EAS, ISE, IBP, IWU and IPK within the 
research project GENSIM [2]. It is a generic simula-
tion tool for modeling and simulation of complex 
multidisciplinary technical systems. The simulation 
environment supports the procedures modeling, simu-
lation and post processing. The model description in 
MOSILAB is done in the Modelica [3] standard. 
Additional features are implemented to assure high 
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flexibility during modeling the concept of structural 
dynamics. This is done by extending the Modelica 
standard with state charts to control dynamic models. 

The resulting model description language is called 
MOSILA [4]. The textual editor in which the model 
setup is done is expanded by the component diagram 
as in other Modelica simulators. But there exits an-
other graphical layer which supports state chart defi-
nition by using UML diagrams (Unified Markup 
Language). This is one main benefit compared to 
some other tools, because the event handling can be 
done intuitively and the thereby defined program 
code can be modified and extended in the textual 
layer as well. Moreover, simulator coupling with 
standard tools (e.g. MATLAB/Simulink, FEMLAB) 
is realized. Features for coupling a new simulator 
with MATLAB are in general used for optimization. 
The included MATLAB algorithms can be used and 
so, the system runs in co-simulation, whereby the 
model is defined intuitively in Modelica standard 
with additional states and the optimization routine is 
started in MATLAB/Simulink.  

Mosilab offers a list of explicit and implicit integra-
tion methods for solving the defined system of DAEs 
(Differential Algebraic Equations). The default 
method is the IDA Dassl routine. This method is 
capable to handle stiff systems. The other imple-
mented methods are Explicit Euler, Implicit Euler, 
Implicit Trapeze and Explicit Trapeze. 

2 Modeling
In this section three different models will be ex-
plained in detail. The first one, the constrained pendu-
lum, is used to show the high flexibility of Mosilab 
and to represent the different ways of implementing a 
state event. The second is a linear model [6] for 
which an analytical solution exists and which is used 
to show the mathematical correctness of the imple-
mented solution algorithms.  

The third one gives an overview about advanced 
modeling and simulation with Mosilab/Modelica, it is 
a model of the free pendulum. Out of the given model 
definition we will see that a pure Modelica solution is 
not possible any more, because the dimension of the 
state space changes. This happens when a statechart is 
inevitable in Mosilab. 

2.1 Constrained pendulum 
The constrained pendulum is a classical nonlinear 
model in simulation techniques. To make the problem 

easier than it is in real life, we assume the mass m is 
large enough so that, as an approximation, we state 
that all the mass is contained at the bob of the pendu-
lum (that is the mass of the rigid shaft of the pendu-
lum is assumed negligible). This model has been 
presented in the definition of ARGESIM comparison 
C7 [5]. There is no exact analytical solution to this 
problem. Therefore, the results have to be obtained by 
numerical methods. In this section a description of 
the model will be given. 

sin( )ml mg d l  (1) 

Hereby  denotes the angle in radiant measured in 
counter clockwise direction from the vertical posi-
tion. The parameters in the model are the mass m  and 
the length of the rope l . The damping is realized with 
the constant d . In Mosilab it is an important differ-
ence, if the modeler is using constant or parameter!

As it is a constrained pendulum a pin is fixed at a 
certain position. This position is given by the angle 
angle p  and the length pl . Every time when the rope 
of the pendulum hits the pin the length of the pendu-
lum has to be shortened. In this case the pendulum 
swings on with the position of the pin as the point of 
rotation and the shortened length 

s pl l l  (2) 

We will focus on the first example defined in the 
ARGESIM comparison C7, where the following 
parameters, constants, and initial values are defined: 

start start

1.02, 1, 0.7, 9.81

/ 6, 0, 0.2, /12
p

p

m l l g
d

 (3) 

2.2 Two state model 
The here defined model is based on the definition of 
the ARGESIM comparison C5 [6]. This is a system 
with two coupled differential equations with a classi-
cal parameter state event. The reason why we chose 
this more or less simple example is, that in contrast to 
the system defined in 2.1 this system can be solved 
analytically and therefore we can compare the solu-
tion generated in Mosilab with the original analytical 
solution. Furthermore the different model approaches 
can be compared pertaining to the solution quality. 

This example tests the ability of the simulator to 
handle discontinuities of the aforementioned type in a 
satisfactory way. The problem is as follows: 

1 1 2 2 1

2 3 4 2

( )
( )

y c y c y
y c c y

 (4) 
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This ordinary differential equation (ODE) system is 
essentially a simple linear stiff problem with expo-
nential decays as analytical solution. One of these is a 
very rapid transient, and the stationary solution of the 
slow decay varies from the two states of the model. 
This actually ‘drives’ the model (and the discontinu-
ity).

The parameter 1c  and 3c  stay unchanged during simu-
lation. The parameter 2c  is 0.4 and 4c  is 5.5 when the 
model is in state 1 (also the initial state). The initial 
values are 1(0) 4.2y  and 2 (0) 0.3y . The model 
remains in state 1 as long as 1 5.8y . The choice of 

2c  and 4c  ensures that 1y  will grow past 5.8.  

When the model switches to state 2, parameters 2c
and 4c  change to 2 0.3c  and 4 2.73c . The model 
remains in state 2 as long as 1 2.5y . When passing 
this instance the model switches back to state 1; the 
choice of 2c  and 4c  ensures that this will happen.  

Analytical solution values can be found. We are fo-
cusing on a simulation period starting at time point 0 
and ending at time point 5. For comparison we state 
that the last discontinuity occurs at time 4.999999646 
and the 1(5.0)y  value should be approximately 5.369. 

2.3 Free pendulum on a string 
Until now the definitions of systems of interest have 
been looking on models where the state space dimen-
sion does not change during simulation. The state 
events can all be interpreted as simple parameter 
events. Now a system is given where the state space 
dimension has to be changed for real.  

This example is a little bit more complicated. Let us 
again consider a pendulum. The massive bob of the 
pendulum is fixed on a string. The general structure 
of the system is depicted in Fig. 1 [5]. 

In case of a rollover of the pendulum it can start to 
fall freely until the constraints of the string apply 
again. This can happen if the pendulum swings higher 
than / 2  and the centrifugal force is smaller than 
the gravitational force. 

Accordingly, this model has two different states: 

The normal pendulum movement, and 
the free fall case. 

The movement of the pendulum is given in equation 
(1). We have to define the equations for the free fall 
case. They are given by 

0
y

x

v g
v  (5) 

For our model we have an additional constraint, 
which is based on the fixed length l  of the pendulum: 

2 2x y l  (6) 

This model cannot be solved using simple parameter 
state events and is defined to give an example that 
problems in simulation of technical systems as well 
as in biology, genetics, etc. occur not only in very 
sophisticated systems. As seen here the need for state 
space switching in nowadays modeling and simula-
tion techniques is quite common.  

After the definition of the main tasks and the extra 
example we will have a closer look on the implemen-
tation approaches of the constrained pendulum and 
test the simulator by solving different solution of the 
two state model and comparing them with the ana-
lytical solution. 

3 Solutions of the constrained pendulum 
In this chapter the most important different solution 
approaches in Modelica of the classical constrained 
pendulum are discussed. Benefits and restrictions of 
the different implementations are listed. In the im-
plementations of the constrained pendulum the tan-
gential velocity is used instead of angular velocity. 
This has the benefit that only the length of the pendu-
lum has a discrete change in case of hitting or leaving 
the pin. 

3.1 Standard Modelica approach 
In this approach only standard Modelica code is used. 
It is defined in the Mosilab equation layer, which is 

Figure 1. Force diagram of the model. 
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part of the model editor. The model can be formulated 
as implicit law, which means that it is not necessary 
to transform the equations to an explicit form: 

1 equation
2   v = l1*der(phi);  vdot = der(v);
3   mass*vdot/l1 + mass*g*sin(phi) + damping*v=0 

The state event, which appears every time when the 
rope of the pendulum hits the pin or looses the con-
nection to it, is modeled in an algorithm section with 
if (or when) – conditions: 

4 algorithm
5 if (phi<=phipin) then length := ls; end if;
6 if (phi>phipin) then length := l1; end if;

This section defines the length of the rope depending 
on the actual state of the constrained pendulum. 
Mosilab handles the if-command by means of a state 
event finder. This is important to find the time point 
of the state event in a given time slice. The solution 
of the so defined system is depicted in Fig. 2. 

In compare with the solutions done in another Mode-
lica simulator (Dymola, in SNE [6]) and the reference 
solution, this outcome seems reasonable. 

3.2 Mosilab state chart approaches 
These approaches make use of an additional feature 
of Mosilab, namely modeling of discrete elements by 
state charts. 

Parameter event solution 
The state chart is used instead of the algorithm sec-
tion and therefore instead of the if- or when-
construct. This has the benefit of much higher flexi-
bility and readability in case of complex conditions. 
Boolean variables define the status of the system and 
are managed by the state chart. This can be solved as 
follows:

1 event Boolean lengthen(start=false),
              shorten(start=false);

2 equation
3    lengthen = (phi>phipin); 
4    shorten  = (phi<=phipin); 
5 statechart
6 state LengthSwitch extends State;
7 State Short, Long, Initial(isInitial=true);
8 transition Initial->Long end transition;
9 transition Long->Short event shorten 

action length := ls; 
10 end transition;
11 transition Short->Long event lengthen 

action length := l1; 
12 end transition;
13 end LengthSwitch 

From the modeling point of view, this is equivalent to 
the description with if-clauses. The Mosilab transla-
tor generates an implementation with different inter-
nal equations. Mosilab performs a simulation by 
handling the state event within the integration over 
the simulation period. 

Mosilab switching solution 
As already explained Mosilab’s state chart engine is 
not only an alternative to the Modelica if- or when-
construct, it is much more powerful. 

This system allows any kind of hybrid model compo-
sition with models of different state spaces and also 
of different types. For the constrained pendulum we 
decompose the system into two different models: 

SHORT, for the case that the rope has contact to 
the pin, and 
LONG, for the standard damped pendulum. 

These two models are than controlled by a state chart, 
defined in a similar way as shown in the UML-
diagram in Fig. 3. 

As seen, the new model description comprehends 
now three parts, the main program which also con-
sists of the state chart and two submodels. These two 
submodels can be defined separately, or because of 
the special structure, can be instances of one defined 
class.

The following source code is using the first method 
for implementation and first defines the two separate 
models and afterwards the main program. 

1 model ConstrainedPendulum
2 model Long
3 equation
4      mass*vdot/l1 + mass*g*sin(phi) +

        damping*v = 0;
5 end Long;

Figure 2. Solution of the task defined in section 3.1, the red 
(inner) curve represents the angle, the blue curve depicts 

the angular velocity. 
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6 model Short
7 equation
8      mass*vdot/ls + mass*g*sin(phi) +

        damping*v = 0;

9 end Short;
10 event discrete Boolean lengthen(start=true),

                       shorten(start=false);
11 equation
12      lengthen = (phi>phipin); 
13      shorten  = (phi<=phinpin); 
14 statechart
15 state ChangePendulum extends State;
16 State Short,Long,startState(isInitial=true);
17 transition startState -> Long 
18 action
19        L := new Long(); K := new Short(); 
20 add(L);
21 end transition;
22 transition Long -> Short event shorten 
23 action
24        disconnect ...; remove(L);
25 add(K); connect ...; 
26 end transition;
27 transition Short -> Long event lengthen 
28 action
29        disconnect ...; remove(K);
30 add(L); connect ...; 
31 end transition;

32 end ChangePendulum; 
33 end ConstrainedPendulum; // end of model 

The transitions organize the switching between the 
pendulums (remove, add). The connect statements 
are used for mapping local states to global state vari-
ables.

Summing up the results 
In center of interest is also the difference in time 
behavior of the different solution methods. As this is 
a nonlinear model we can only calculate the numeri-
cal solutions and compare, for example, the time 
points where the last state event appears. This is the 
moment when the rope of the pendulum looses the 

connection to the pin the last time. In the model under 
investigation, this happens after the fourth time short-
ening the pendulum, which means after eight state 
events all together.  

The solutions are calculated with the default simula-
tion method, if possible. With this approach we try to 
test the simulation environments from the user’s point 
of view. Many programmers and modelers do not care 
a lot about the implemented integration methods. For 
this reason the standard method has to produce reli-
able results in an appropriate calculation time. 

As depicted in Tab. 1, the solutions are quite close but 
not identically the same. An explanation therefore is 
that the standard Modelica solution cannot be done 
with the standard integration method. This could be 
examined making further tests with different choice 
of the minimal and maximal step size in each solution 
method. 

4 Two state model 
As this is another model where only parameters are 
changed in the case of the arrival of a state event, this 
model can be solved in four different ways as ex-
plained for the constrained pendulum in chapter 4.  

The main differences in compare to the pendulum 
model are: 

An analytical solution exists for the model.  
Only the first derivative has to be calculated.  
The system is stiff.  

The first solution is done again in standard Modelica 
notation. The most interesting part of the source code 
is implemented as follows: 

1 algorithm
2 when (y1 >= 5.8) then
3       c2 := -0.3; c4 := 2.73;
4 end when;
5 when (y1 <= 2.5) then
6       c2 := 0.4; c4 := 5.5;
7 end when;

Simulation
method

Time of last 
event 

Solution method 

Pure Modelica 6.7199 Impl. Trapez 
Min. step 1E-6 
Max. step 1E-4 

Switch models 6.7204 IDA Dassl 
Min step 1E-6 
Max step 0.08 

Table 1. Comparison of the results. 

Figure 3. UML-diagram of the statechart solution of the 
constrained pendulum. The main model controls the two 

submodels. In this example, the LONG mode is the initial 
state. 
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8 equation
9 der(y1) =c1*(y2+c2-y1);

10 der(y2) =c3*(c4-y2); 

The second way of solving this stiff system is to de-
fine a state chart in which only the parameters c2 and 
c4 are changed when an event occurs. We have two 
cases for this parameter state event. The one when the 
value of the variable y1 gets higher than 5.8 and the 
second when this value falls below 2.5. For this 
model approach we only need one model in which the 
parameter rules are defined on a higher level. 

11 event Boolean e(start = false),
              f(start = false); 

12 equation
13    ... 
14 statechart
15 state SCSol extends State;
16 State ax, bx, ix(isInitial=true);
17 transition ix -> ax end transition;
18 transition ax -> bx event e
19 action c2:=-0.3; // -1.25;

            c4:=2.73; // 4.33;  
20 end transition;
21 transition bx -> ax event f

action c2:=0.4; c4:=5.5;
22 end transition;
23 end SCSol; 

The source code above shows the easy way of im-
plementation of this task.  

The third way of implementation we will focus on 
concerning this example is to define two separate 
models which will then toggle between the states. 
This is the safest way for general implementation of 
systems with different states. On the one hand this 
cannot be done with the main part of simulators, on 
the other hand Mosilab is able to use this structure in 
different ways: the first approach is to define a sub-
model and switch between different instances of one 
and the same class (this would be enough in our 
case). The second solution is the general switching of 
active submodels to solve the system. This is done in 
the implemented solution. 

1 model Zustand1 when (y1>=5.8) then
2 constant Real c1 = 2.7*10^6; 
3 constant Real c3 = 3.5651205; 
4 constant Real c2 = 0.4; 
5 constant Real c4 = 5.5;
6 Real y1; Real y2;
7 equation
8 der(y1) = c1*(y2 + c2 - y1); 
9 der(y2) = c3*(c4 - y2); 

10 end Zustand1; 
11 model Zustand2 ... end Zustand2 
12 event Boolean e(start = false),

              f(start = false);

13 Real y1(start = 4.2); 
14 Real y2(start = 0.3); 
15 dynamic Zustand1 Z1;
16 dynamic Zustand2 Z2; 
17 equation
18    e = (y1 > 5.8) or (y1 == 5.8); 
19    f = (y1 < 2.5) or (y1 == 2.5); 
20 statechart
21 state Zustandswechsel extends ANDState;
22 State ax, bx, ix(isInitial=true);
23 transition ix -> ax action
24      Z1:= new Zustand1();
25      Z2:= new Zustand2(); 
26      add (Z1); Z1.y1:=y1; 
27      Z1.y2:=y2; 
28      connect(Z1.y1,y1); 
29      connect(Z1.y2,y2); 
30 end transition;
31 transition ax -> bx event e action
32      disconnect(Z1.y1,y1); 
33      disconnect(Z1.y2,y2); 
34      remove(Z1); 
35      Z2.y1:=y1; 
36      Z2.y2:=y2; add(Z2); 
37      connect(Z2.y1,y1); 
38      connect(Z2.y2,y2); 
39 end transition;
40 transition bx -> ax event f action
41      disconnect(Z2.y1,y1); 
42      disconnect(Z2.y2,y2); 
43      remove(Z2); 
44      Z1.y1:=y1; 
45      Z1.y2:=y2; add(Z1); 
46      connect(Z1.y1,y1); 
47      connect(Z1.y2,y2); 
48 end transition;
49 end Zustandswechsel; 

The compendium of the code above shows the basic 
structure of the problem solution. The next part repre-
sents the output part of the system. 

4.1 The three solutions compared 
After defining the source code, the main interest of 
the user will focus on the quality of different imple-
mentations. From mathematical point of view the 
implemented solutions are equivalent.  

The solutions are all calculated with standard solution 
method IDADassl. Two different step sizes are de-
fined for the experiment. The first with  

 maxStep = 1e-6, minStep = 0.08,  

the second experiment with  

 maxStep = 1e-12, minStep = 0.0008.  

The other settings are all chosen by their default val-
ues. No changes are made. The results are all read out 
of the graphical interface. For more detailed output 
information the user can take a look at the generated 
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data files to get more digits in the representation. 
The results are depicted in table 2. As we can see, the 
values are exactly the same in all three approaches. 
This is very good for model reliability and necessary 
for further development. In compare with the exact 
solution of this problem (last event at time point 
4.999999646 and the value y1(5.0) should be ap-
proximately 5.369.), we see that our simulation 
method works in an acceptable quality range. The 
imprecision of the output occurs also because the user 
gets only four digits after semicolon for the calculated 
value. Of course this is normally enough for standard 
technical system solution, but in our case, namely, for 
comparing with the exact analytical solution, it is not 
good enough. The value of the function at the time 
point 5 is in the allowed range. 

5 Summary and outlook 
As pointed out in chapters 4 and 5 Mosilab is capable 
to handle as well nonlinear as linear stiff systems. The 
Modelica extension for state event handling is a 
strong tool for advanced modeling concepts. Never-
theless it is important to develop more features and 
work on the compatibility with the Modelica syntax, 
so that model exchange can be carried out.  

The state chart extension of the Modelica notation is 
a very useful feature for modeling complex hybrid 
systems. Because of the state space switching ability 
it can be used to minimize the simulation time. Fur-
thermore, the models get simpler and the number of 
equations, that have to be solved are the minimal 
number during computation.  

The possibility to couple the simulation environment 
with Matlab/Simulink is another important feature of 
Modelica. As Matlab is very wide spread, a combina-
tion of both tools, especially in combination with 
modern simulation system development and optimi-
zation can be done efficiently. 
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 Settings 1 Settings 2 
Event 5.0169 5.0000 

Value at time 5.0 5.7935 5.8000 - 5.0998 

Table 2. Calculated values 
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Numerical Simulation of Continuous Systems 
with Structural Dynamics 

Olaf Enge-Rosenblatt, Jens Bastian, Christoph Clauß, Peter Schwarz 
Fraunhofer Institute for Integrated Circuits, Germany, olaf.enge@eas.iis.fraunhofer.de

In this paper, “continuous systems with structural dynamics” shall be understood as dynamical systems con-
sisting of components with continuous and/or discrete behaviour. (This notation should not be confused with 
the term “structural dynamics” in the context of Finite Element simulation). Continuous systems with struc-
tural dynamics—or so-called “hybrid systems”—can often be investigated only by a so-called “hybrid simu-
lation” which means a simultaneous simulation of continuous-time dynamics (modelled by differential equa-
tions or differential-algebraic equations (DAE)) and discrete-event dynamics (modelled e.g. by Boolean 
equations, finite state machines, or statecharts). To this end, an algorithm for numerical simulation of hybrid 
systems must be able to both solve a DAE system within a “continuous” time progression as well as to deal 
with event-driven phenomena. 

In the paper, the point of view is emphasized that the structure of a continuous system is closely combined to 
the structure of the DAE system which describes the continuous system’s dynamical behaviour. In this con-
text, discrete-time events are considered as phenomena which may cause a change of the DAE system’s 
structure. Furthermore, a distinction between systems with variable structure and models with variable struc-
ture is explained. The main part of the paper deals in detail with a simulation algorithm suitable for hybrid 
systems. This algorithm consists of a “continuous phase” (for numerical integration of the DAE system) and 
a “discrete phase” (for interpreting the event, establishing the new valid DAE system, calculating the new 
initial values). Some simulation results dealing with selected models and using the multi-physics language 
Modelica will complete the paper. 

1 System structure—what is it? 
This paper deals with changes of the “structure” of a 
dynamic system during a simulation process. But 
what is the structure of a dynamic system? Many 
properties could be considered to possibly belong to 
the structural description of such a system. In me-
chanical domain, the number of interacting bodies 
and the number of joints between them belong to the 
structural information as well as the fact which two 
bodies are connected by which kind of joint. A body’s 
geometrical shape is of no importance in this context. 
In electrical domain, the number and types of electri-
cal components and their galvanic connections among 
each other belong to the structural information. It 
does not care whether, e.g., a voltage source has a 
constant value or a sinusoidal time behavior. Similar 
descriptions can be found for other physical domains 
(hydraulic, pneumatic, thermodynamic, etc.).  
To sum up all these different properties, we assume in 
this paper that the structure of a system can be inter-
preted as the structure of its mathematical model, i.e. 
the number, types and structure of differential and/or 
algebraic equations belonging to the model. Finally, 
this structure manifests itself within the fill-in struc-
ture of the equation system’s Jacobian. 

In this paper, a mathematical model which possesses 
the possibility to change its structure because of some 
kind of “events” will be denoted to as a model with 
structural dynamics. 

2 Why structural dynamics? 
Many physical or technical systems change their 
properties during operation. Variation of model pa-
rameters is a common situation in simulating dy-
namic systems. But very often, changes of properties 
occur depending on events which may appear at cer-
tain points in time (time-discrete phenomena). In 
these cases, the complete system shows both time-
continuous and time-discrete behavior. Such systems 
are often called hybrid systems. They arise in many 
fields including robotics, embedded systems, trans-
portation systems, process control, biological and 
chemical systems, mixed signal (analogue-digital) 
integrated circuits, etc. Events occurring in hybrid 
systems can be distinguished into 

events depending only on time (i.e. they can be 
collected within a time queue) and 
events depending on other physical quantities of 
the system (i.e. they happen if a variable crosses 
the zero border value). 
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Investigation of hybrid systems has a long-lasting 
history (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15]). Their dynamic simulation is supported by 
some simulators (see [8]), e.g. Matlab/Simulink, As-
pen, gPROMS, Dymola, Saber, Mosilab, and various 
VHDL-AMS simulators. But most of them only sup-
port very simple model variations. A fundamental 
change of model structure—such as adding or remov-
ing differential and/or algebraic equations (which we 
call “structural dynamics”)—is not possible in most 
simulators. Such behaviour leads to complicated 
mathematical problems. Mainly, it has to be guaran-
teed after a structural change that, first, the correct 
differential-algebraic equations are chosen and, sec-
ond, a set of consistent initial values of the state vari-
ables can be calculated. 

From the application point of view, it is important to 
distinguish between systems with a varying structure 
and models with varying structure (but the system 
itself is not varying). A system having a varying struc-
ture is characterized either by existence of so-called 
unilateral constraints (see e.g. [16, 17, 18, 19]) or by 
appearance of switches for activating or deactivating 
parts of the system. Such a system does really change 
its structure or at least its structural information in the 
behavioural equations during operation. Examples 
may be found in different application areas: 

mechanics: clutches, collision of masses, Cou-
lomb friction, “maximum distance” phenomena 
(see Fig. 1), 
electronics: parts of the system are suspended for 
a certain time period (e.g. for saving electrical 
power in mobile communication devices), 

power electronics: switches and relays as well as 
diodes and thyristors (if they are considered as 
ideal switches, see Fig. 2), 
adaptive manufacturing machines and roboters:
they have to handle different objects and have to 
adjust themselves to changing situations. 

Other reasons may lead to varying models of the 
same system because system’s behaviour shall be 
investigated under different circumstances. Examples 
of such reasons may be: 

accuracy shall be adjustable to a more or less de-
tailed model during simulation (to be able to 
“simulate as accurate as necessary”, see Fig. 3), 
usage of different model designs for “dynamic 
mode” (transient investigation) and “steady-state 
mode” with the intention to switch between them 
during simulation (see e.g. [20]). 

From our point of view, investigation of hybrid mod-
els is much more than a simultaneous simulation of 
continuous-time dynamics (modelled by differential 
equations or differential-algebraic equations (DAE)) 
and discrete-event dynamics (modelled e.g. by Boo-
lean equations, finite state machines, or state charts). 
A hybrid model should rather be considered as a 
model which, beyond its continuous time and dis-
crete-event properties, possesses the possibility to 
change the structure of behavioural equations at cer-

Figure 3. Three levels of wind generator modeling 

Figure 1. String pendulum 

Figure 2. Switched diode circuit 
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tain points in time (also called events) because of 
various reasons. Hence, a simulator for hybrid models 
has not only to be able to handle continuous and dis-
crete parts with appropriate numerical solvers but, 
furthermore, should provide concepts and statements 
for the definition of models with variable structure. 
This includes a practical solution of the expected 
numerical issues coming up with a change from one 
set of differential-algebraic equations to another. The 
next section gives an overview what types of struc-
tural changes may occur with dynamic systems. 

3 Types of structural changes 
Investigating practical simulation problems, structural 
changes may arise in different ways. A summary is 
shown in Fig. 4. The most important issue is “change 
model behavior” in the first row. This issue includes 

simple substitution of one differential equation 
by another one, 
exchange of a system of differential equations for 
another one but with the same order, 
replacement of behavioral or structural descrip-
tion of a component by a totally other one (e.g. a 
drastic variation of model order, change between 
continuous and discrete behavior, substitution of 
a model description by coupling with another 
simulator). 

But also the interconnections between components 
and, therefore, the structure of the system may change 
(see rows two to five of Fig. 4). Adding and deleting 
of certain blocks to/from the complete model (issue 
“Additional blocks”, second row) requires a correct 
handling of these connectors which are sometimes 
“opened” (i.e. not connected). In the “open”-case, an 

additional equation has to be added automatically to 
the model that enforces the vanishing of the flow 
variable of the concerning connector. The issue 
“Change connections” (third row) yields a simple 
change of parts of some algebraic equations. “Addi-
tional blocks and connections” (row four) combines 
the issues above. The “Change number of ports”-
issue may be a consequence of changing the block 
content from a simple model to a very detailed one or 
vice versa. 

4 A hybrid simulation algorithm 

4.1 Algorithm principle 
The simulation of continuous-discrete systems is 
supported by many powerful tools. But in handling 
varying model structures, most simulators have 
strong restrictions. The Modelica simulator Dymola, 
e.g., allows that equations may change in an if-
then-else clause, but the number of equations in 
both branches must be the same. Similar restrictions 
exist in many other simulators which allow the usage 
of hybrid models. 

In this section, an approach for simulating hybrid 
models is proposed which is able to deal with struc-
tural variability. This approach was implemented 
within the experimental simulator Mosilab (see [21, 
22, 23]). This simulator was developed within the 
German applied research project GENSIM by some 
Fraunhofer Institutes. Within Mosilab, an extension 
of the language Modelica by a concept for dealing 
with structural dynamics has been intended. For this 
purpose, a description of state charts in graphical and 
textual way was implemented. 

In the following, the structural variability of a model 
is characterized using state charts. Roughly speaking, 
every state stands for a certain set of differentialalge-
braic equations and every transition realizes a change 
between different model structures. 

The basic algorithm is shown in Fig. 5. It consists of 
two phases, a discrete phase and a continuous phase.
The main issue in the discrete phase is to update all 
state machines of the hybrid model (one state ma-
chine is described by one state chart) and to establish 
the new set of differential-algebraic equations if nec-
essary. Hence, all structural changes of a hybrid 
model are carried out within the discrete phase. In 
this context, it is assumed that structural changes 
occur at discrete points in time, i.e. they shall not be Figure 4. Structural dynamics 
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executed within a certain time interval (zero time 
assumption). Between two successive discrete points 
in time, only analogue simulation is performed. This 
analogue simulation is carried out by a numerical 
DAE solver and must continue for a minimum time 
interval which is greater than zero. The length of such 
a simulation interval may, a priori, either be known or 
be unknown. If the next discrete-time event happens 
at a determined (time-fixed) moment then the inter-
val’s length is known. Otherwise, e.g. if the next 
event being expected is triggered by a zero crossing 
of a variable, the length of the simulation interval is 
unknown. In the latter case, the relevant quantity has 
to be monitored in an appropriate way. 

4.2 Discrete phase 
Fig. 6 shows a more detailed outline (compared to 
Fig. 5) of the discrete phase of the hybrid simulation 
algorithm. Please note that simulation time keeps 
constant during the complete discrete phase. The 
algorithms of the discrete phase influence only the 
discrete parts of the hybrid model. Hence, states and 
transitions of the state chart diagram are under special 
focus. But the model structure of the continuous sub-
model (including the DAE set belonging to) and the 
discrete variables may be affected, too. 

At start of numerical simulation, all state machines 
must be initialized by evaluating the initial states and 
their associated transitions. The main loop of the 
discrete phase consists of one or more updating proc-
esses of the state machines and, after every updating 

process, the question for new events which may be 
raised within the last update. During every updating 
process, two sets of events are to be distinguished: the 
set of active events and that of waiting events. One 
updating process handles all active events and fires 
the associated transitions successively. New events, 
which may be raised by fired transitions or by exit 
actions or entry actions of the associated states, are 
collected in the set of waiting states. If no more active 
events are available, one updating process is finished. 
If now the set of waiting events is empty then the 
main loop can be closed. Otherwise, another updating 
process is necessary. For this purpose, all waiting 
events are transferred into the set of active events and 
the next update is started. 

After leaving the main loop, it has to be proved 
whether the model structure has changed. This can be 
done in a very simple way assuming that different 
activation configurations of the state machines before 
and after the current discrete phase refer to a change 
of the structure of the continuous submodel. If the 
structure is unchanged, the discrete phase can be 
finished and the following continuous phase is ready 
to go. In case of structural changes, the set of behav-
ioral equations has to be changed, too. The new set of 
differential-algebraic equations has to be chosen 
according to the currently active states in all state 
machines. At start of the following continuous phase, 
consistent initial conditions have to be found. To 
simplify this task—or even perhaps to enable a solu-
tion—it may be necessary for the user to define a 
mathematical algorithm how some initial values of 

Figure 6. Discrete phase of hybrid simulation algorithm. 

Figure 5. A hybrid simulation algorithm 
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the new model structure are to be calculated from the 
values of the old one. Such an algorithm would have 
to be specified within the transitions which are re-
sponsible for the appropriate structural change. 

4.3 Continuous phase 
A more detailed outline (compared to Fig. 5) of the 
continuous phase of the hybrid simulation algorithm 
is shown in Fig. 7. Please note that within this phase, 
the structure of the complete hybrid model keeps 
unchanged. The algorithms of the continuous phase 
only affect the continuous parts of the hybrid model. 
Hence, finding consistent initial values (see e.g. [24, 
25, 26]) as well as solving the present set of differen-
tial-algebraic equations is the main issue of this 
phase. But the recognition of possibly occurring 
events is also important. 

The continuous phase begins with an initialization 
process. In case of carrying out this step for the first 
time ( 0t ), the user-given initial values for physical 
quantities of the continuous model are accepted. Oth-
erwise, the values of the physical quantities calcu-
lated within the last discrete phase are used as initial 
values. Using these values as a start configuration, 
consistent initial values—i.e. values, which fulfill the 
constraints of the DAE—have to be found in the next 
step.

The main task of the continuous phase is to solve 
numerically an initial value problem of the form 

0 0 0 0

( , , ) 0
( ) , ( )

F t y y
y t y y t y

 (1) 

where 0y  and 0y  are consistent initial values, i.e. they 
fulfil the residuum ( , , ) 0F t y y . The vector y  con-
sists of both differential variables (the relevant y -
element appears in the DAE) and algebraic variables 
(no relevant y -element appears in the DAE). An 
appropriate numeric solver can be used to solve the 
problem (1) with advancing time. (In Mosilab, the 
numeric solver IDA [27] is used.) The numerical 
integration process may possibly be continued until 
the end time of simulation endt  is reached. However, 
there are some reasons for stopping the numerical 
integration at an earlier point in time. 

The first reason is the possible appearance of a struc-
tural change. In such a case, the numeric solver 
would have to be stopped at a point in time which lies 
as near as possible to the moment of event. In order to 
recognize structural changes, so-called “event vari-
ables” are defined. These variables are differential or 

algebraic variables which may cause an event in the 
sense of structural dynamics. The event variables are 
monitored during the numerical integration process. 

After each time step of the solver, all event variables 
are compared to their values before the last integra-
tion step. If a change of an event variable is detected 
then the first moment of changing this variable within 
the current integration interval must be determined. 
This can be done e.g. by a root finding algorithm. In 
this context, it is important to use only numerical 
solutions at points in time before the event occurs. 
Otherwise, the accuracy of the calculated moment of 
event may be affected negatively. After determination 
of event point in time, the continuous phase is fin-
ished and the next discrete phase is started. 

The second reason for stopping the numerical integra-
tion before reaching endt  is the possible jump of a so-
called “non event”-variable. Such variables are dif-
ferential or algebraic variables which are not associ-
ated to any event of structural changes. In case of 
jumping of such a variable, the IDA’s integration 
interval becomes smaller and smaller. If the integra-
tion interval drops below a certain border value (de-
noted by mint ), the solver is reinitialized at the point 
in time 1 mini it t t  and new consistent initial val-
ues are computed. After that, a new numerical inte-
gration process is started. 

4.4 Special aspects 
The necessary calculation of consistent initial values 
at each beginning of a continuous phase or after a 

Figure 7. Continuous phase of hybrid simulation algorithm
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jump of a non event variable is sometimes a crucial 
task. Therefore, the finding procedure may fail. Some 
helping methods were implemented into hybrid simu-
lation algorithm of Mosilab to overcome this prob-
lem. One of them, the homotopy method, shall be 
mentioned here. 

The homotopy method is a procedure to calculate the 
solution of the problem 

( ) 0H z  (2) 

starting from a known solution 0z . For this purpose, 
the original problem (2) is substituted by the follow-
ing problem 

0( , ) ( ) (1 ) ( ) 0H z H z H z  (3) 

If 0 , this equation is trivial. By increasing 
stepwise, new problems of the form (3) are estab-
lished. Generally, the solution 1kz  of the preceding 
problem (3) is used to find a solution kz  of the cur-
rent problem (3). In case of convergence, this solution 
is used in the next step (with furthermore increased 

). If no solution kz  can be found then  is de-
creased and a new trial is started using 1kz . The com-
plete algorithm as used in Mosilab is shown in Fig. 8. 

5 Simulation experiment 
In order to show the function of the presented algo-
rithm, some simulation results of a simple 2D string 

pendulum are given. A detailed sketch of the example 
is shown in Fig. 9. 

A point mass (having the mass parameter m ) is at-
tached to a fixed point by a non-elastic thread. The 
maximum length of the thread shall be denoted to as 
L . The mass can perform two kinds of movements: a 
circular movement in case of a fully stretched thread 
(Fig. 9, left hand side) and a free movement in case of 
a non-stretched thread (Fig. 9, right hand side). An 
appropriate state chart is depicted in Fig. 10. The 
model has two states called bound and free. Within 
the circular movement, one differential equation of 
second order is valid (having the state quantities 
and , where g  means the gravity constant and k
denotes a damping coefficient). Within the free 
movement, however, two differential equations of 
second order are needed (having the positions in x -
and y -direction and their time derivatives as state 
quantities, where k  means a damping coefficient and 
r  denotes the current distance between point mass 
and fixed point). 

The system remains in the bound state as long as the 
centrifugal force of the mass holds the thread at its 

Figure 10. State chart of string pendulum 

Figure 9. Sketch of string pendulum 

Figure 8. Homotopy method algorithm 
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full length. If the sum of forces acting on the mass 
drops below zero ( 0F ), this state will be leaved 
and the free state will become active. The relevant 
transition is called unstretch. Within this transition, 
the current position and velocities have to be calcu-
lated from the last valid values of the physical quanti-
ties of the bound state. On the other hand, the free 
state is valid as long as the distance between point 
mass and fixed point is less than the full length of the 
thread. If the full length is reached or exceeded 
( r L ), the system will change from the free state 
into the bound state. The relevant transition is called 
stretch. Within this transition, the current angle and 
angular velocity have to be calculated from the last 
valid values of the physical quantities of the free
state. Please note that the energy conservation law 
may not be fulfilled during this structural change. 

Fig. 11 shows an x - y -plot of the string pendulum 
under the assumption that the mass is located near its 
rest position at start of simulation and an initial veloc-
ity in positive x -direction is given. The pendulum 
performs two cycles followed by a decreasing oscilla-
tion. In the first cycle, two structural changes occur 
(denoted by no. 1 and 2). The first one switches from 
circular to free movement, the second one changes 
contrarily. The same appears within the second cycle 
(structural changes no. 3 and 4). After the fourth 
switch, the thread remains stretched to its full length 
during the decreasing oscillations. 

The following figures show time histories of some 
interesting physical quantities. Fig. 12 depicts the 
time association to the x - y -plot in Fig. 11. In case of 
free movement, x  and y  are differential variables of 
the DAE, while in case of circular movement, both 

variables have to be computed from the current angle. 
Contrary to this, Fig. 13 shows the angle  which is 
known during the circular movement and has to be 
calculated within the free movement. The structural 
changes can be determined best in the curves of the 
two monitoring variables: the force within the thread 
(see Fig. 14) and the distance between the mass and 
the fixed point (see Fig. 15). 

6 Conclusion
The numerical simulation of continuous systems with 
structural dynamics requires simultaneous handling 
of continuous-time dynamics and discrete-event dy-
namics. Hence, a tool suitable for simulating such 
systems must offer facilities to describe both phe-
nomena. In particular, the interactions between both 
worlds, i.e. triggering events by the continuous model 
as well as changing the continuous model’s structure 
by events, have to be taken into account. 

In the paper, different types of structural changes are 
listed. The full variety of these cases is hardly sup-
ported by well-known simulation tools. Hence, the 
paper presents a hybrid simulation algorithm consist-
ing of a discrete phase and a continuous phase. The 
simulator switches between these two phases at cer-
tain points in time in an appropriate way. The discrete 
phase influences only the discrete parts of the hybrid 

Figure 13. Simulation result: angle 

Figure 12. Simulation result: x - and y -coordinates

Figure 11. Simulation result: x - y -plot
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model while the simulation time keeps constant. Exe-
cution of events and their consequences on changes 
of the model structure are under focus. The continu-
ous phase affects only the continuous parts of the 
hybrid model while the model structure keeps un-
changed. The main issue is to find consistent initial 
values and to carry out numerical integration of the 
DAE while monitoring relevant variables for recogni-
tion of possibly occurring events. 

Beyond that, a homotopy method for supporting the 
overcome of the consistent initial values finding 
problem is presented. Finally, some simulation results 
of a string pendulum are given. 
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Selection of Variables in Initialization of Modelica Models 

Mosoud Najafi, INRIA-Rocquencourt, Domaine de Voluceau, masoud.najafi@inria.fr

In Scicos, a graphical user interface (GUI) has been developed for the initialization of Modelica models. The 
GUI allows the user to fix/relax variables and parameters of the model as well as change their initial/guess 
values. The output of the initialization GUI is a pure algebraic system of equations which is solved by a nu-
merical solver. Once the algebraic equations solved, the initial values of the variables are used for the simu-
lation of the Modelica model. When the number of variables of the model is relatively small, the user can i-
dentify the variables that can be fixed and can provide the guess values of the variables. But, this task is not 
straightforward as the number of variables increases. In this paper, we present the way the incidence matrix 
associated with the equations of the system can be exploited to help the user to select variables to be fixed 
and to set guess values of the variables during the initialization phase. 

Introduction 
Scicos (www.scicos.org) is a free and open source 
simulation software used for modeling and simulation 
of hybrid dynamical systems [3, 4]. Scicos is a tool-
box of SciLab (www.scilab.org) which is also free 
and open-source and used for scientific computing. 
For many applications, the SciLab/Scicos environ-
ment provides an open-source alternative to Mat-
Lab/Simulink. Scicos includes a graphical editor for 
constructing models by interconnecting blocks, repre-
senting predefined or user defined functions, a com-
piler, a simulator, and code generation facilities. A 
Scicos diagram is composed of blocks and connection 
links. A block corresponds to an operation and by 
interconnecting blocks through links, we can con-
struct a model, or an algorithm. The Scicos blocks 
represent elementary systems that can be used as 
building blocks. They can have several inputs and 

outputs, continuous-time states, discrete-time states, 
zero-crossing functions, etc. New custom blocks can 
be constructed by the user in C and Scilab languages. 
In order to get an idea of what a simple Scicos hybrid 
models looks like, a model of a control system has 
been implemented in Scicos and shown in Figure 1.  

Besides causal or standard blocks, Scicos supports a 
subset of the Modelica (www.modelica.org) language 
[7]. The diagram in Figure 2 shows the way a simple 
DC-DC Buck converter has been modeled in Scicos. 
The electrical components are modeled with Mode-
lica while the blocks that are used to control the 
On/Off switch are modeled in standard Scicos. The 
Modelica compiler used in Scicos has been developed 
in the SIMPA (Simulation pour le Procédé et 
l’Automatique) project. Recently the ANR/RNTL 
SIMPA2 project has been launched to develop a more 
complete Modelica compiler. The main objectives of 
this project are to extend the Modelica compiler re-
sulted from the SIMPA project to fully support inheri-
tance and hybrid systems, to give the possibility to 
solve inverse problems by model inversion for static 
and dynamic systems, and to improve initialization of 
Modelica models. 

Figure 2. Model of a DC-DC Buck converter in Scicos 
using Modelica components. Figure 1. Model of a control system in Scicos 
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An important difficulty when simulating a large 
Modelica model is the initialization of the model. In 
fact, a model can be simulated only if it is initialized 
correctly. The reason lies in the fact that a DAE (Dif-
ferential-Algebraic Equation) resulting from a Mode-
lica program can be simulated only if the initial val-
ues of all the variables as well as their derivatives are 
known and are consistent. 

A DAE associated with a Modelica model can be 
expressed as 

0 ( , , , )F x x y p  (1) 

where , , ,x x y p  are the vector of differential vari-
ables of size dN , derivative of differential variables 
of size dN , algebraic variables of size aN , and model 
parameters of size pN , respectively. ( )F  is a nonlin-
ear vector function of size ( d aN N ). Since, the 
Modelica compiler of Scicos supports index-1 DAEs 
[1, 2], in this paper we limit ourselves to this class of 
DAEs. 

In Scicos, in order to facilitate the model initializa-
tion, the initialization phase and the simulation phase 
have been separated and two different codes are gen-
erated for each phase: The initialization code (an 
algebraic equation) and the simulation code (a DAE). 
In the Initialization phase, x  is considered as an 
algebraic variable (i.e., dx ) and then an algebraic 
equation is solved. Modelica parameters p  are con-
sidered as constants unless they are relaxed by the 
user. There are ( d aN N ) equations and (2 dN aN

pN ) variables and parameters that can be considered 
as unknowns. In order to have a square problemsolv-
able by the numerical solver, ( p dN N ) vari-
ables/parameters must be fixed. The values of x  and 
p  are often fixed and given by the user and the val-
ues of dx  and y  are computed. But the user is free to 
fix or relax any of variables and parameters. For ex-
ample, in order to initialize a model at the equilibrium 
state, dx  is fixed and set to zero whereas x  is relaxed 
to be computed. Another example is parameter sizing 
where the value of a parameter is computed as a func-
tion of a fixed variable. 

In this case, the parameter p  is relaxed and the vari-
able x  is fixed. In the simulation phase, the values 
obtained for x , dx , y , p  are used for starting the 
simulation. During the simulation, the value of p
(model parameters) does not change. 

In Modelica, the start keyword can be used to set 
the start values of the variables. The start values of 

derivatives of the variables can be given within the 
initial equation section. For small programs, this 
method can easily be used but as the program size 
grows, it becomes difficult to set start values and 
change the fixed attribute of variables or parameters 
directly in the Modelica program; initialization via 
modifying the Modelica model is specially difficult 
for models with multiple levels of inheritance; the 
visualization and fixing and relaxing of the variables 
and the parameters are not easy. Furthermore, the user 
often needs to have a model with several initialization 
scenarios. For each scenario a copy of the model 
should be saved. 

In Scicos, a GUI has been developed to help the user 
to initialize the Modelica models. In this GUI, the 
user can easily change the attributes of the variables 
and the parameters such as initial/guess value,
max, min, nominal, etc. Furthermore, it is possible to 
indicate whether a variable, the derivative of a vari-
able, and a parameter must be fixed or relaxed in the 
initialization phase. 

In the following sections, the initialization methodol-
ogy for Modelica models and the initialization GUI 
features will be presented. 

1 Initialization and simulation of 
Modelica models 

The flowchart in Figure 3 shows how initialization 
and simulation of Modelica models are carried out in 
Scicos. The first step in both tasks is removing inheri-
tances. This provides access to all variables and gen-
erates a flat model. The flat model is used to generate 
the initialization and the simulation codes. Note that 
the initialization data used for starting the simulation 
is passed to the simulation part by means of an XML 
file containing all initial values. 

In Scicos, three external applications are used in 
initialization and simulation: Translator,
XML2Modelica, and ModelicaC.

Translator is used for three purposes: 

Modelica Front-end compiler for the simulation: 
when called with appropriate options, Transla-
tor generates a flat Modelica program. For that, 
Translator verifies the syntax and semantics of 
the Modelica program, applies inheritance rules, 
generates equations for connect expressions, 
expands for loops, handles predefined functions 
and operators, performs the implicit type conver-
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sion, etc. The generated flat model contains all 
the variables, the derivatives of differential vari-
ables, and the parameters defined with attribute 
fixed=false. Constants and parameters with the 
attribute fixed=true are replaced by their nu-
merical values. 
Modelica Front-end for initialization: when 
called with appropriate options, Translator 
generates a flat Modelica program containing the 
variables and the parameters defined with attrib-
ute fixed=false. The derivatives of the variables 
are replaced by algebraic variables. Furthermore, 
the flat code contains the equations defined in the 
initial equation section in the Modelica pro-
grams. Constants and parameters with the attrib-
ute fixed=true are replaced by their numerical 
values. 

XML generator: when called with -xml option, 
Translator generates an XML file from a flat 
Modelica model. The generated XML file con-
tains all the information in the flat model. 

Once the XML file generated, the user can change 
variable and parameter attributes in the XML file with 
the help of the GUI. The modified XML file have to 
be reconverted into a Modelica program to be com-
piled and initialized. This is done by XML2Modelica.

ModelicaC, which is a compiler for the subset of the 
Modelica language, compiles a flat Modelica model 
and generates a C program for the Scicos target. The 
main features of the compiler are the simplification of 
the Modelica models and the generation of the C 
program ready for simulation. It supports zero-
crossing and discontinuity handling and provides the 
analytical Jacobian of the model. It does not support 
DAEs with index greater than one. Another important 
feature of the Modelica compiler is the possibility of 
setting the maximum number of simplification carried 
out during the code generation phase. Thus, the com-
piler can be called to generate a C code with no sim-
plification or a C code with as much simplification as 
possible. This is an important feature for the debug-
ging of the model. 

A new feature of ModelicaC is generating the inci-
dence matrix. When a C code is generated, the corre-
sponding incidence matrix is generated in an XML 
file. The incidence matrix is used by the initialization 
GUI to help the user. 
As shown in Figure 3, once the user requests the 
initialization of the Modelica model, the Modelica 

front-end generates a flat Modelica model as well as 
its corresponding XML file. The XML file is then 
used in the initialization GUI. In the GUI, the user 
can change the variable and parameter attributes 
defined in the XML file. The modified XML file is 
then translated back to a Modelica program. The 
Modelica program is compiled with the Modelica 
compiler and a C program is generated. The C pro-
gram is used by the Scicos simulator to compute the 
value of unknowns. Once the initialization finished, 
whether succeeded or failed, the XML file is updated 
with the most recent results. The GUI automatically 
reloads and displays the results. The user can then 
decide whether the simulation can be started or not. 

In order to simulate the Modelica model, similar to 
the model initialization, a flat model is generated. 
Then, the Modelica compiler simplifies the model 
and generates the simulation code. The generated 
code is simulated by a numerical solver. The initial 

Figure 3. Initialization flowchart in Scicos 
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values, needed to start the simulation, are read di-
rectly from the XML file. The end result of the simu-
lation can also be saved in another XML file to be 
used as a starting point for another simulation. 

2 Initialization GUI 
In Scicos, a GUI can be used for the initialization of 
the Modelica models. Figure 4 illustrates a screen 
shot of the GUI corresponding to the Modelica parts 
of the Scicos diagram of Figure 2. In this GUI, the 
Modelica model is displayed in the hierarchical from, 
as shown in Figure 4. Main branches of the tree rep-
resent components in the Modelica model. Sub-
branches are connectors, partial models, etc. If the 
user clicks on a branch, the variables and parameters 
defined in that branch are displayed and the user can 
modify their attributes. In the following subsections, 
some main features of the GUI will be presented. 

2.1 Variable/parameter attributes 
Any variable/parameter has several attributes which 
are either imported directly from the Modelica model 
such as name, type, fixed etc. or defined and used by 
the GUI i.e., id and selection.

name is the name of the variable/parameter used 
in the Modelica program. The user cannot 
change this attribute in the GUI. 
id is an identification of the variable/parameter 
in the flat Modelica program. The user cannot 
change this attribute in the GUI. 
type indicates whether the original type has 
been parameter or variable in the Modelica 
program. The user cannot change this attribute in 
the GUI. 
fixed represents the value of the ’fixed’ at-
tribute of the variable/parameter in the Modelica 
program. The user cannot change this attribute in 
the GUI. 
weight is the confidence factor. In the current 
version of Scicos, it takes either values 0 or 1. 
weight=0 corresponds to the fixed=false in 
Modelica whereas weight=1 corresponds to 
fixed=true. The default value of weight for the 
parameters and differential variables is one, 
whereas for the algebraic variables and the de-
rivatives of differential variables (converted to 
variables) is zero. 
value is the value of the variable/parameter. If 
the weight=1, the given value is considered as 

the final value and it does not change in the ini-
tialization. If weight=0, the given value is con-
sidered as a guess value. If the user does not pro-
vide any value, it is automatically set to zero. 
The user can modify this value in the GUI. 

selection is used to mark the variables and parame-
ters. This information will be used by the GUI for 
selective display of variables/parameters and to influ-
ence the Modelica compiler in the model simplifica-
tion phase. 

Note that if the user sets the weight attribute of a 
variable to one, it will be considered as a constant and 
in the initialization phase it will be replaced by its 
numerical value. On the other hand, if the user sets 
the weight attribute of a parameter to zero, the pa-
rameter will be considered as an unknown and its 
value will be computed in the initialization phase. 
This is in particular useful when the user tries to find 
a parameter value as a function of a variable in the 
Modelica model. 

2.2 Display modes 
Accessing to variables and parameters of the model 
becomes easier, if different display modes of the GUI 
are used: 

Normal mode is the default display mode. Click-
ing on each branch of the model tree, the user 
can visualize/ modify the variables/parameters 
defined in that part of the Modelica model. 
Reduced mode is used to display the variables of 
the simplified model. When the user pushes the 
initialization button, the flat Modelica model is 
compiled and a simplified model is generated. In 
this display mode, only the remaining variables 
are displayed. This display mode is in particular 
useful when the numerical solver cannot con-

Figure 4. Screenshot of the initialization GUI in Scicos for 
the electrical circuit of figure 2. 
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verge and the user should help the solver either 
by influencing the compiler to eliminate the un-
desirable variables or by giving more accurate 
guess values. 
Selected mode is used to display only the 
marked variables and parameters of the active 
branch. A variable or parameter can be marked 
by putting ’y’ in its selection field in the GUI. 
By default, all parameters, all differential vari-
ables and all algebraic variables whose start val-
ues are given are marked. Marking is useful in 
particular when a branch has many vari-
ables/parameters whereas the user is interested in 
a few ones. In this display mode, unmarked vari-
ables/parameters are not shown. 
Selected (all) mode is used to display all marked 
variables and parameters of the Modelica model. 
Changed mode is used to display the variables 
and the parameters whose weight attributes have 
been changed, such as the relaxed parameters. 

2.3 Initialization methods 
Once the user modified the attributes of the variables 
and the parameters, the initialization process can be 
started by clicking on the "Initialize" button. The 
initialization consists of calling a numerical solver to 
solve the final algebraic equation. There are several 
algebraic solvers available in Scicos such as Sundi-
als and Fsolve [8, 9, 10]. 

Once the solver finished the initialization, the ob-
tained results, either successful or not, are put back 
into the XML file and new values are displayed in the 
GUI. If the result is not satisfactory, the user can 
either select another initialization method or help the 
solver by giving initial values more accurately. This 
try and error can be continued until satisfactory ini-
tialization results are obtained. Then, the simulation 
can be started.  

3 Problems in variable fixing and 
variable selection 

The initialization of DAE (1) can be formulated as 
the following algebraic problem 

0 0 0 00 ( , , , )F dx x y p  (2) 

where 0x , 0dx , and 0y  are solutions or the initial 
values of differential variables, derivative of differen-
tial variables, algebraic variables, and parameter 
values, respectively. The degree of freedom of the 
equation (2) is d pN N , therefore the user should fix 

d pN N  variables or parameters and let the solver 
find the values of the remaining d aN N  unknowns.  

Fixing the variables/parameters and giving the start 
values of the relaxed variables/parameters are essen-
tial in the initialization of models. But they are not 
easy and straightforward for large models. In the next 
subsections the way these problems are handled in 
Scicos will be explained. 

3.1 Fixing the variables 
Consider the following equation set, composed of two 
equations and three unknowns. 

0 ( )
:

0 ( , , )
f x

F
g x y z

 (3) 

Since the degree of freedom is one, the user should 
provide and fix the value of a variable. But, it is clear 
that x  cannot be fixed, because its value is imposed 
by the first equation. In this case, the GUI should 
prevent the user from fixing x .

Consider the next set of equations composed of three 
equations and five unknowns. 

0 ( , )
: 0 ( , )

0 ( , , , )

f x u
F g x z

h x y z v
 (4) 

Although the degree of freedom is two, the user can-
not fix ( , )u z , ( , )x z , or ( , )x u  at the same time. In 
general, it is not easy to identify the set of variables 
that can be fixed. This is in particular important when 
the number of equations increases. In this case, if the 
user tries to fix an inadmissible variable, the GUI 
should raise an error message and prevent the user 
from fixing the variable. 

This problem can be solved using the incidence ma-
trix of the Modelica model. For example, this is the 
incidence matrix of (3): 

1 0 0 0 1
1 0 1 0 0
1 1 1 1 0

Fixing u  and z  means removing u  and z  from the 
equations which results in the following equation set 
and the incidence matrix. 

0

0

0

0 ( , ) 1 0 0
: 0 ( , ) 1 0 0

0 ( , , , ) 1 1 1

f x u
F g x z

h x y z v
 (5) 
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Although, there are three unknowns and three equa-
tions, the incidence matrix is not structurally full 
rank. This means that u  and z  cannot be fixed at the 
same time. Computing the structurally rank of the 
incidence matrix is a straightforward way to deter-
mine if the user is allowed to fix variables or parame-
ters of the model. Since the incidence matrix is very 
often large and sparse in practical models, we should 
use special methods for sparse matrices. In the GUI, a 
maximum matching method (also called a maximum 
transversal method) is used to compute the structural 
rank of the incidence matrix. The maximum matching 
method is a permutation of the matrix so that its kth

diagonal is zero-free and | |k  is uniquely minimized. 
With this method, the structural rank of the matrix is 
the number of non-zero elements of the matrix diago-
nal [6]. When the user tries to fix a variable or a pa-
rameter, the initialization GUI computes the new 
structural rank of the incidence matrix. If the fixing 
operation lowers the rank, an error message will 
raised and the modification will be inhibited. 

3.2 Selection of variables to be eliminated 
Another recurrent problem in solving algebraic equa-
tions is the convergence failure of the solver. Newton 
methods are convergent if the initial guess values of 
unknowns are not too far from the solution. So, the 
user should provide reasonable initial guess values. If 
the problem size is small and the user knows the 
nominal values of the unknowns, the user can provide 
the guess values. But in large models, it is nearly 
impossible to give all guess values. In medium size 
Modelica models, we usually end up with models 
with many variables whose start values are not speci-
fied by the user. In this case, their initial guess values 
are automatically set to zero which is not often a good 
choice. Furthermore, many variables of a model are 
redundant and the user does not know for which ones 
the initial guess should be given. This often happens 
with variables linked by the connect operator in 
Modelica. Suppose that two Modelica components 
are connected via a connector, e.g.,

connect(Block1.x, Block2.y); 

During the model simplification, the compiler may 
eliminate either Block1.x or Block1.y. Even if the 
user knows the guess values of both, it is not reason-
able to ask the user to provide them. Since the user 
has no influence on the compiler’s variable selection, 
this may cause a problem in solving the initialization 
equation. Consider, e.g., the following situation. 

2

30 0.1
( 3) 1:

0

x
xF

x y
 (6) 

Here, if the user sets the initial guess of y  to 10 and 
leaves the guess value of x  unspecified i.e., 0x ,
although 10y  is close to the solution, the Newton’s 
method will likely fail. The reason is that the solver 
ignores the initial value of y  and uses that of x . In 
fact, there is no way to tell the solver the guess value 
which is "more" correct than the others. 

The solution is to formally simplify the equations by 
eliminating the variables whose guess-values are not 
given, by replacing them with the variables having 
given guess values. For that, in the initialization GUI, 
variables with known guess-values are marked and 
the Modelica compiler is told to eliminate the un-
marked variables. The user, of course, can modify the 
list of these marked variables. 

The compiler tries to eliminate the variables as much 
as possible, but a problem may arise when the com-
piler fails to eliminate all of unmarked variables. 
Since, the simulator sets their guess-value to zero, the 
original problem still persists. In this case, the user 
should be asked to provide the guess-value of the 
remaining variables. But, usually the user has no idea 
about the nominal values of the remaining variables 
or even does not know the physical interpretation of 
them. As an example, consider the following set of 
equations for which no guess-values are given. 

0 ( )
:

0
f x

F
x y

 (7) 

Suppose that the compiler eliminates y , but the user 
does not know the start value of x  while y  has a 
physical interpretation and its nominal value can be 
given. In this case, the initialization GUI should pro-
pose the user all variables that can replace x , i.e., y .

Proposing alternative variables for formal simplifica-
tion is done in the initialization GUI. In the next sec-
tions, it will be shown the way these problems can be 
handled by the use of the incidence matrix of the 
model. This is done using the maximum flow algo-
rithms. 

4 Maximum flow problem 
The maximum flow problem is to find the maximum 
feasible flow through a single-source, single-sink 
flow network [5]. The maximum flow problem can be 
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seen as a special case of more complex network flow 
problems. A directed graph or digraph G  is an or-
dered pair : ( , )G V A  with 

V  is the set of vertices or nodes, 
A  is the set of ordered pairs of vertices, called 
directed edges or arcs. 

An edge ( , )e u v  is considered to be directed from 
u  to v ; v  is called the head and u  is called the tail of 
the edge; v  is said to be a direct successor of u , and 
u  is said to be a direct predecessor of v . The edge 
( , )v u  is called the inverted edge of ( , )u v .

Given a directed graph ( , )G V E , where each edge u ,
v  has a capacity ( , )c u v , the maximal flow f  from 
the source s  to the sink t  should be found. There are 
many ways of solving this problem, such as linear 
programming, Ford-Fulkerson algorithm, Dinitz 
blocking flow algorithm, etc [12, 11]. 

4.1 Ford-Fulkerson algorithm 
The Ford-Fulkerson algorithm computes the maxi-
mum flow in a flow network. The name "Ford-
Fulkerson" is often also used for the Edmonds-Karp 
algorithm, which is a specialization of Ford-
Fulkerson. The idea behind the algorithm is very 
simple: as long as there is a path from the source to 
the sink, with available capacity on all edges in the 
path, we send flow along one of these paths. Then we 
find another path, and so on. A path with available 
capacity is called an augmenting path. 

Algorithm:   Consider a graph ( , )G E V , with capac-
ity ( , )c u v  and flow ( , ) 0f u v  for the edge from u
to v . We want to find the maximum flow from the 
source s  to the sink t . After every step in the algo-
rithm the following is maintained: 

( , ) ( , )f u v c u v . The flow from u  to v  does not 
exceed the capacity. 

( , ) ( , )f u v f v u . Maintain the net flow be-
tween u  and v . If in reality a  units are going 
from u  to v , and b  units from v  to u , maintain 

( , )f u v a b  and ( , )f v u b a .
( , ) 0 ( ) ( )in outv

f u v f u f u  for all nodes 
u , except s  and t . The amount of flow into a 
node equals the flow out of the node. 

This means that the flow through the network is a 
legal flow after each round of the algorithm. We de-
fine the residual network ( , )f fG V E  to be the network 
with capacity ( , ) ( , ) ( , )fc u v c u v f u v  and no flow. 

Notice that it is not certain that fE E , as sending 
flow on ,u v  might close ,u v  (it is saturated), but 
open a new edge ,v u  in the residual network. 

1. ( , ) 0f u v  for all edges ( , )u v
2. While there is a path p  from s  to t  in fG , such 

that ( , ) 0fc u v  for all edges ( , )u v p :

a. Find ( , )( ) min ( , )f u v p fc p c u v

b. For each edge ( , )u v p
i. ( , ) ( , ) ( )ff u v f u v c p

ii. ( , ) ( , ) ( )ff v u f v u c p

The path p  can be found with, e.g., a breadth-first 
search or a depth-first search in ( , )f fG V E . The for-
mer which is called the Edmonds-Karp algorithm has 
been implemented in Scicos. 

By adding the flow augmenting path to the flow al-
ready established in the graph, the maximum flow 
will be reached when no more flow augmenting paths 
can be found in the graph. When the capacities are 
integers, the runtime of Ford-Fulkerson is bounded by 

max( )O E f , where E  is the number of edges in the 
graph and maxf  is the maximum flow in the graph. 
This is because each augmenting path can be found in 

( )O E  time and increases the flow by an integer 
amount which is at least 1. The Edmonds-Karp algo-
rithm that has a guaranteed termination and a runtime 
independent of the maximum flow value runs in 

2( )O V E  time. 

4.2 Problem of proposition of alternative 
variables 

In order to handle this problem, we build the bipartite 
graph shown in Figure 5. The left-hand side vertices 
indicate unknowns, and each vertex at the right-hand 
side indicates an equation. The edges are bidirectional 
and their capacity is infinite. 

Figure 5. Bipartite graph of variables and equations. 
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Note that, at this stage of initialization, the number of 
unknowns and the number of equations are identical 
and the incidence matrix is full rank. 

For the problem of proposing alternative variables 
that can be initialized instead of a variable iV , based 
on the bipartite graph in Figure 5, we build another 
directed graph as shown in Figure 6. In this graph, a 
source vertex and a target (sink) vertex have been 
added to the graph. The edge connecting the source 
vertex to iV  has infinite capacity. All m  edges con-
necting the target vertex to the variable vertices have 
the capacity 1 (except the edge connected to the ver-
tex iV ). The edges are mono-directional. 

Now, the problem of finding all alternative variables 
for iV  is transformed into that of finding of all feasi-
ble paths from the source to the target. All predeces-
sors of the target are possible alternative variables 
that can be used instead of iV . In the initialization 
GUI, when the user double-clicks on a variable, its 
alternative variables are displayed. This is a useful 
help during the initialization. 

5 Initialization iterations 
The role of the GUI and the marking in the initializa-
tion loop (see the flowchart in the Figure 3) can be 
summarized in the following algorithm.  

1. The GUI automatically marks the model parame-
ters, the differential variables and the algebraic 
variables whose guess value are given. 

2. In the GUI, the user can 
a. visualize/modify the fixed attribute of the 

variables and the parameters. 
b. change the guess values of variables and pa-

rameters (final values if they are fixed). 
c. modify whether a variable or a parameter is 

marked or not. 
3. Initialization is invoked. 

a. If necessary, the model is compiled. The 
Modelica compiler tries to reduce the num-
ber of unknowns by performing several 
stages of substituting and elimination. In this 
phase the marked variables are more likely 
to be eliminated by the compiler. 

b. A numerical solver is used to find the solu-
tion of the reduced model. 

c. The obtained solution values are send back 
to the GUI to be displayed. 

4. If the obtained results are satisfactory, goto step 7. 
5. The user can readjust the guess values of the re-

maining unknowns. If there are still unmarked 
unknowns in the reduced model, either the user 
can provide more accurate guess values for them 
or can click on the variables to see their alterna-
tives variables. The alternative variables should 
be marked to be remained in the reduced model. 

6. Goto step 2 
7. Start the simulation 

6 Example
The model of a thermo-hydraulic system is shown in 
Figure 7. In this model, there are a pressure source, 
two pressure sinks, three pipes (pressure losses), a 
constant volume chamber, and two flow-meter sen-
sors linked to a Scicos scope. 

As shown in Figure 8, the initial non-simplified 
model is composed of 132 equations, 131 relaxed 
variables and 1 relaxed parameter (i.e., 132 un-
knowns). The number of fixed parameters and vari-
ables are 36 and 1, respectively. 

When the model is simplified, the model size is re-
duced to only 11 unknowns. In Figure 9, where the 
display mode is Reduced, the remaining variables as 
well as their solution values are shown. 

Figure 6. Directed graph for the problem of proposing all 
alternative variables for iV .

Figure 7. A thermo-hydraulic system. 
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7 Conclusion
In the Modelica models, initialization is an important 
stage of the simulation. At the initialization, variables 
and parameters can be fixed or relaxed and their start 
values can be changed by the user. In this paper, we 
presented a special GUI to facilitate the task of select-
ing fixed and relaxed variables. 
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Figure 8. The initialization GUI for the model in Figure 6 
(the display mod is normal and the variables and the 

parameters of the block Volume are shown) 

Figure 9. The remaining variables as well as their initial 
values after the model simplification. The display mode is 

reduced. 
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Introducing Messages in Modelica for Facilitating Discrete-Event 
System Modeling 

Victorino Sanz, Alfonso Urquia, Sebastian Dormido, ETSII Informática, UNED, Spain 
{vsanz,aurquia,sdormido}@dia.uned.es 

The work performed by the authors to provide to Modelica more discrete-event system modeling functional-
ities is presented. These functionalities include the replication of the modeling capacities found in the Arena 
environment, the SIMAN language and the DEVS formalism. The implementation of these new functional-
ities is included in three free Modelica libraries called ARENALib, SIMANLib and DEVSLib. These librar-
ies also include capacities for random number and variates generation, and dynamic memory management. 
They are freely available for download at http://www.euclides.dia.uned.es/. As observed in the work 
performed, discrete-event system modeling with Modelica using the process-oriented approach is difficult 
and complex. The convenience to include a new concept in the Modelica language has been observed and is 
discussed in this contribution. This new concept corresponds to the model communication mechanism using 
messages. Messages help to describe the communication between components in a discrete-event system. 
They do not substitute the current discrete-event modeling capabilities of Modelica, but extend them. The 
proposed messages mechanism in Modelica is discussed in the manuscript. An implementation of the mes-
sages mechanism is also proposed. 

Introduction 
Several Modelica libraries have been developed by 
the authors in order to provide to Modelica more 
discrete-event system modeling capabilities. The 
work performed is specially based in modeling sys-
tems using the process oriented approach, reproduc-
ing the modeling functionalities of the Arena simula-
tion environment [10] in a Modelica library called 
ARENALib. The functionalities of the SIMAN mod-
eling language [18], used to describe components in 
Arena, have also been reproduced in a Modelica 
library called SIMANLib. One objective of the de-
velopment of this library is to take advantage of the 
Modelica object-oriented capabilities to modularize 
as much as possible the development of discrete-
event system models. Also, the use of a formal speci-
fication to describe SIMANLib components helped to 
understand, develop and maintain them. SIMANLib 
blocks can be described using DEVS specification 
formalism [21]. Event communication in DEVS and 
block communication in SIMANLib match perfectly. 
An implementation of the Parallel DEVS formalism 
[23] has been developed in a Modelica library called 
DEVSLib, and used to describe the components in 
SIMANLib. All the performed work with Modelica 
has been developed using the Dymola modeling envi-
ronment [1]. The problems encountered during the 
development of the ARENALib, SIMANLib and 
DEVSLib Modelica libraries, and the solutions ap-
plied to those problems are discussed. 

The Modelica language includes several functional-
ities for discrete-event management, such as if ex-
pressions to define changes in the structure of the 
model, or when expressions to define event condi-
tions and the actions associated with the defined 
events [16]. 

Other authors have contributed to the discrete-event 
system modeling with Modelica. Depending on the 
formalism used to define the discrete-event system, 
contributions can be found using finite state machines 
[7, 14, 17], Petri nets [15] or the DEVS formalism [2, 
3, 4, 8]. On the other hand, other authors have devel-
oped tools to simulate discrete event systems in con-
junction with Modelica. For example, translating 
models developed using a subset of the Modelica 
language to the DEVS formalism. The translated 
models are then simulated using the CD++ DEVS 
simulator [5]. Also, other authors describe the dis-
crete-event system with an external tool that trans-
lates a block diagram to Modelica code [19]. 
All these contributions use the event-scheduling ap-
proach for describing the discrete-event systems [12]. 
Events are scheduled to occur in a future time instant. 
The simulation evolves executing the actions associ-
ated with the occurrence of the events. 

Due to the difficulties and problems encountered 
during the development of the mentioned Modelica 
libraries, the convenience of introducing a new con-
cept in Modelica has been identified. This new con-
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cept will facilitate the development of discrete-event 
systems, extending the current Modelica capacities. 
This new concept is the model communication using 
the messages mechanism. The main characteristics 
and functionalities of this mechanism are also dis-
cussed in this manuscript. 

1 Process-oriented modeling in Modelica 
A discrete-event system modeled using the process-
oriented approach is described from the point of view 
of entities [10]. These entities flow through the com-
ponents of the system, and some processes are ap-
plied to them using the available resources of the 
system. Some of the information associated with the 
entities are the serial number, the type, the statistical 
indicators, the attributes, the creation time, and the 
processing time among others. An example of this 
kind of system can be a beverage manufacturing 
system. The entities of this system are the bottles. A 
tank fills bottles with the beverage. Once filled, the 
bottles are labeled and quality controlled before they 
are accepted for distribution (first and second class 
bottles). Bottles without the required quality are 
cleaned and re-labeled. The components of this kind 
of systems are usually stochastic. For example, the 
labeling and cleaning processes are modeled using 
the Triangular probability distribution. The quality 
controls are represented by two-way decisions whose 
percentage is based on the values of uniform random 
variates.
The process-oriented approach is supported by the 
Arena simulation environment to model discrete-
event systems. Arena has data modules, that represent 
the entities, the resources, and some other static ele-
ments of the system, and flowchart modules, that 
represent the processes performed on the entities 
across the system. The implementation of the bever-
age manufacturing system using Arena is shown in 
Figure 1a. It is modeled as a hybrid system, because 
the tank is represented by a continuous time model. 

Arena allows some simple hybrid modeling by de-
scribing level variables that change continuously over 
time, and rate variables, that represent how fast the 
level variable changes its value. Each pair of 
level/rate variables represents a differential equation 
that is simulated using Euler, RKF or any user-
implemented integration method. 

1.1 ARENAlib 
ARENALib reproduces the Arena data and flowchart 
modules that have to be combined and connected to 

model the system. This library is freely available for 
download at [6]. At the moment, the Create, Process, 
Dispose and Decide flowchart modules and the En-
tity, Queue, Resource and Variable data modules, of 
the Arena Basic Process panel, have been imple-
mented. 

The library also allows hybrid system modeling, 
combining the current Modelica continuous-time 
system modeling functionalitieswith the components 
of ARENALib.A detailed description of the library 
can be found in [20]. The model of the beverage 
manufacturing system composed using ARENALib is 
shown in Figure 1b. In this figure, the Bottle_filling 
module corresponds to a Create module, Labeling and 
Cleaning correspond to Process modules, Qual-
ity_control and Quality_control_2 are Decide mod-
ules and the FirstClass_bottle and Second-
Class_bottle are Dispose modules. Entities, queues
and resources contain the data modules required for 
this system. 

The main tasks accomplished during the development 
of the ARENALib library were: a) the model com-
munication mechanism; b) the entity management; c) 
the management of the statistical information and; d) 
the generation of stochastic data. These tasks and the 
solutions proposed and implemented to the problems 
encountered during the development of the ARE-
NALib library are discussed below. 

a)

b)

Figure 1. Beverage manufacturing system. An example of 
hybrid discrete-event system developed using: a) Arena; 

and b) ARENALib. 
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1.2 Model communication mechanism 
Entities are generated in the system during the simu-
lation, flow across the components of the system and, 
if necessary, are disposed. Generally, the number of 
entities in the system changes during the simulation 
run, depending on the behavior of the system. 

Usually an entity arrives to a module, is processed 
and sent to the following module. Entity communica-
tion is an important part of the simulation process. 

Model interaction in Modelica can be performed 
using connectors. A connector is an special class and 
contains some variables that are linked with the ones 
in another connector using a connect equation. The 
connect equation relates variables either equaling 
them, or summing them and equaling the sum to zero. 

Several approaches have been studied, implemented 
and evaluated during the development of ARENALib 
in order to perform the entity transmission between 
modules. The approach used to perform the entity 
transmission is completely transparent for the end 
user. At the user level, the communication is just 
defined by connecting the output ports of some mod-
ules to the input ports of other modules. The men-
tioned approaches are discussed next. 

Direct transmission 
It consists of specifying all the variables that define a 
type of entity inside the connector. The values as-
signed to the variables of one connector represent an 
entity. These values are assigned, because of the con-
nect equation, to the connector of the next model. In 
this way, an entity is directly transmitted from one 
model to another. Different types of entities require 
different connectors, one for each type. This is the 
simplest way for communicating models, but presents 
a problem: the simultaneous reception of several 
entities at one model. There are three possible situa-
tions for this problem: 

One-to-one connection: one model sends several 
entities to another model at the same time. 
Many-to-one connection: several models simul-
taneously send one entity to another model. 
A combination of the previous cases: several 
models simultaneously send one, or more, enti-
ties to another model. 

The two following solutions have been applied to this 
problem: 

1. Synchronizing the entity transmission between 
models using semaphores. The synchronization 
allows the sender and receiver to manage the 
flow of entities between both models, using a 
send/ACK mechanism like in the TCP/IP com-
munication. Thus, the sender model will send an 
entity to the receiver and wait for an ACK. On 
the other hand, the receiver model will receive 
entities when it is ready to process them, and 
only send the ACK back if still ready to continue 
processing more entities. A model of the sema-
phore synchronizationmechanism, based on a 
previous work by Lundvall and Fritzson [9], has 
been implemented and is freely available for 
download at [6]. A disadvantage of this solution 
is the performance degradation due to the event 
iteration that takes place during the synchroniza-
tion phase of the entity transmission. 

2. Including in the connector a flow variable that 
represents the number of entities sent from a 
model. So, the model receiving the entities will 
know the number of entities received, even with 
many senders. However, the information that de-
scribes several entities can not be transmitted si-
multaneously using the direct transmission ap-
proach. The variables of the connector that de-
scribe the entity can not be assigned with differ-
ent values, that represent the different transmitted 
entities, at the same time. Anyway, the text file 
storage and dynamic memory storage ap-
proaches, discussed below, allow to solve this 
problem using the flow variable. 

Text file storage 
The idea is to define an intermediate storage for the 
transmitted entities. This storage behaves as a com-
munication buffer between two or more modules. 

The storage is implemented in a text file that stores in 
each line of text the information related to each 
transmitted entity. The connector contains a reference 
to the text file, its file-name, and the flow variable 
indicating the number of entities received. This refer-
ence is shared between the models connected to that 
connector, allowing them to access the file. Each 
module is able to receive entities, creates an storage 
text file and sets the reference to that file in the con-
nector. Functions to read/write entities from/to the file 
have been developed. A model writes one or several 
entities to the file using the write function. Another 
function is used by the receiver to check the number 
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of entities in the file. When there is any entity to be 
read, the receiver reads the entities and processes 
them. Thus, this approach allows the simultaneous 
reception of several entities. 

A disadvantage associated with this approach is the 
poor performance due to the high usage of I/O opera-
tions to access the files. Also, the structure of the 
information stored in the files is not very flexible if 
any additional information has to be included. If new 
types of entities need to be used, or the attributes of 
an entity have to be changed, the file management 
functions (i.e. read and write) have to be re-
implemented to correctly parse the text file to support 
these new changes. 

Dynamic memory storage 
In order to improve the performance of the text file 
approach, the intermediate storage was moved from 
the file system to the main memory. Using the Mode-
lica external functions interface, a library in C was 
created to manage the intermediate storage using 
dynamic memory allocation. An entity is represented 
in Modelica using a record class, and in C using its 
equivalent struct data structure. Entities are stored 
using linked-lists structures during their transmission 
from one model to another. This library is freely dis-
tributed together with the ARENALib Modelica li-
brary. 

Instead of a reference to the file, the connector con-
tains a reference to the memory space that stores the 
entities, together with the flow variable that indicates 
the number of entities received. That reference is the 
memory address pointing to the beginning of the 
linked-list. It is stored in an integer variable in the 
connector. Similarly to the text file approach, each 
model able to receive entities initializes the linked-list 
and sets the reference to it in the connector. Entities 
can be transferred to the queue using the write func-
tion, and can be extracted using the read function. 
Another function is used to check the availability of 
received entities, in order to process them. 

This approach also allows the simultaneous reception 
of several entities. The performance is highly in-
creased compared to the text file approach. And, the 
structure of the information only depends on the data 
structures managed by the functions. To modify any 
attribute or entity type, it is only necessary to change 
a data structure and not all the functions used to man-
age that structure. 

1.3 Entity management 
Regarding the entity management, it has to be men-
tioned that an additional problem appears when im-
plementing processes that delay the entity. Arena 
process module can include a delay time that repre-
sents the time spent processing the entity. This delay 
time is usually randomly selected from a probability 
distribution. It has to be noticed that since the delay 
time is usually random, the order of the arrived enti-
ties need not correspond to the order of the entities 
leaving the process. These processes have to include a 
temporal storage for the entities that are being de-
layed. This problem can be solved using the text file 
storage or the dynamic memory storage as an addi-
tional storage for delayed entities. Due to perform-
ance reasons, the dynamic memory approach was 
used to manage entity storage during delays in ARE-
NALib and SIMANLib. 

Together with the initialization of the linked-queue 
for entity communication, a process module initial-
izes a temporary storage, represented by a linked-list 
in memory, for delayed entities. The reference to that 
list is also stored in an integer variable. Every time 
the process module has to delay an entity, it stores the 
entity in the list using a write function. Entities are 
inserted in the list in increasing order, according to 
the time they must leave the process. The insertion of 
an entity in the list returns the leaving-time for the 
first entity in the queue. When the simulation time 
reaches the next leaving-time, the entity or entities 
leaving the process are extracted from the list and 
sent to the next module. 

1.4 Stochastic data generation 
Discrete-event models usually contain some kind of 
stochastic information. Random processing times, 
delays or inter-arrival times help to construct a more 
realistic model of a given system. 

The Modelica language specification does not include 
any functionality for random number generation. 
Dymola, the modeling environment used to develop 
and test the mentioned Modelica libraries, includes 
two functions for generating random uniform and 
random normal variates [1]. The generation of ran-
dom variates following other probability distributions 
is not covered by these random number generation 
functions. Also, the application of variance reduction 
techniques is not supported by these functions. 

A random number generator (RNG) was developed 
by the authors. The RNG algorithm selected for its 
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implementation in Modelica is the same that is used 
in the Arena environment. This allows the validation 
of the ARENALib models using the Arena environ-
ment, because both use the same source of random 
numbers. This RNG algorithm was proposed by Pi-
erre L’Ecuyer and is called Combined Multiple Re-
cursive Generator. A detailed description of the RNG 
is given in [13]. 

Additionally to the implementation of the RNG, some 
functions for generating random variates were also 
developed by the authors of this manuscript. The new 
RNG and the random variates generation functions 
are packaged in a Modelica library called Random-
Lib, which is freely available for download at [6]. 

1.5 Statistical information management 
Simulation results are usually reported using statisti-
cal indicators, due to the stochastic nature of discrete-
event systems. Some of these statistical indicators 
have to be calculated during the simulation and some 
others at the end. The amount of data that has to be 
stored to calculate some of these indicators changes 
depending on the length of the simulation. 

Modelica does not allow the declaration of variables 
with an undefined length or size, which are required 
to store the statistical data. A mechanism to declare 
variables of undefined length in Modelica needs to be 
defined, giving the possibility to increase or decrease 
the size of the variable during the simulation run. 

This problem is very similar to the previously men-
tioned one about intermediate entity storage for 
transmission or delay management. So, the mentioned 
dynamic memory storage has been used in ARE-
NALib to record the information regarding the statis-
tical indicators of the simulation. The indicators cal-
culated in each ARENALib module are shown in Tab. 
1. Statistical indicators calculated include the number 
of entities arrived, the number of entities departed, 
processing times, the number of entities in queue, and 
the number of entities in the ystem, among others. 
The information calculated for each indicator is the 
mean, the maximum value, the minimum value, the 
final value and the number of observations. These 
values are updated during the simulation. On the 
other hand, all the intermediate values have to be 
recorded and used to calculate the confidence interval 
at the end of the simulation. A variable in Modelica 
stores a reference to the memory space that contains 
the stored data for each indicator. That space is man-
aged using external functions written in C. 

1.6 SIMANLib 
The first approach for the development of ARE-
NALib was to write all its components, except the 
mentioned external functions and data types which 
are written in C, in plain Modelica code. This gener-
ated large and complex models that were difficult to 
understand, maintain and extend. 

The idea then was to divide the actions performed by 
each module into simpler actions that combined will 
offer the same functionality than the original module. 

The same structure can be observed in the Arena 
environment, where the modules are based and con-
structed using a lower level simulation language 
called SIMAN [18]. 

SIMANLib contains low-level components for dis-
crete event system modeling and simulation. These 
are low-level components compared to the modules 
in ARENALib, which represent the high-level mod-
ules for system modeling. Flowchart modules of both 
libraries are shown in Figure 2. ARENALib modules 
can be described using a combination of SIMANLib 
components. For example, the process module of 
ARENALib is composed by the Queue, Seize, Delay 
and Release blocks of SIMANLib, as shown in Fig. 3. 

Components in SIMANLib are divided, as well as in 
the SIMAN language, in two groups: blocks and 
elements. The blocks represent the dynamic part of 
the system, and are used to describe its structure and 
define the flow of entities from their creation to their 
disposal. The elements represent the static part of the 
system, and are used to model different components 
such as entities, resources, queues, etc. 

Module Indicator Values 
Create System.NumberIn Obs 
Process NumberIn 

NumberOut 
VATime Per Entity 
NVATime Per Entity 
TotalTime Per Entity 
Queue.NQ
Queue.WaitTime 

Obs
Obs
Avg, Min, Max, Final, Obs 
Avg, Min, Max, Final, Obs 
Avg, Min, Max, Final, Obs 
Avg, Min, Max, Final 
Avg, Min, Max, Final, Obs 

Dispose System.NumberOut Obs 
EntityType NumberIn 

NumberOut 
VATime 
NVATime 
TranTime 
WaitTime 
OtherTime 
Work In Progress 

Obs
Obs
Avg, Min, Max, Final, Obs 
Avg, Min, Max, Final, Obs 
Avg, Min, Max, Final, Obs 
Avg, Min, Max, Final, Obs 
Avg, Min, Max, Final, Obs 
Avg, Min, Max, Final 

Table 1. Statistical indicators and values calculated in the 
ARENALib modules 
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An example of a model developed using SIMANLib 
is shown in Figure 4. This system is very similar to 
the beverage manufacturing system mentioned above. 
The entities are pieces to be machined. The pieces 
arrive to the system and are processed by a machine, 
one at a time. After processed, the pieces are in-
spected by a supervisor and classified as Good, Re-
ject and Repair. Repaired pieces are sent back for re-
processing. 

2 Parallel DEVS in Modelica 
The main objective of the implementation of the 
DEVSLib library has been to closely follow the defi-
nition of the Parallel DEVS formalism and implement 
all its features without restrictions. The functionalities 
of DEVSLib are similar to the ones offered by other 
DEVS environments such as DEVSJAVA [24] or 
CD++ [22]. These similarities include the new atomic 
and coupled models construction based on predefined 
classes, the redefinition of the internal, external, out-
put and time advance functions in each atomic model 
as required by the user and the management of model 

input and output ports as needed. However, due to the 
capacities of the Modelica language, DEVSLib still 
presents some restrictions that will be discussed be-
low. 

2.1 DEVSLib architecture 
The architecture of the library is rather simple. It is 
shown in Figure 5a. It contains two main models, 
atomicDraft and coupledDraft, that represent the 
basic structures for building any new atomic or cou-
pled DEVS models. Together with the main models 
there are several auxiliary models and functions for 
managing event transmission. Additionally, some 
examples of atomic and coupled systems have been 
included. One of the included examples is the hybrid 
model of a pendulum clock [11], which is shown in 
Figure 5b. In this system a continuous-time model of 
a pendulum generates tics, acting as the motor of the 
clock. The rest of the clock receives the tics, calcu-
lates the current time (in hours and minutes) and 
manages the alarm of the clock. 

2.2 Model development with DEVSLib 
When building a new atomic model, the user has to 
specify the actions to be performed by the external 

a)     b) 

Figure 2. Flowchart modules: (a) ARENALib; and (b) 
SIMANLib

a)   b) 

Figure 5. The DEVSLib Modelica library: a) architecture; 
b) case of use (model of a pendulum clock). 

a)

b)

Figure 3. ARENALib process module: a) icon; b) internal 
structure composed using SIMANLib components. 

Figure 4. Manufacturing system model composed using 
SIMANLib components 
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transition, internal transition, output and time advance 
functions. This can be performed by re-declaring the 
functions Fext, Fint, Fout and Fta, initially declared 
in the atomicDraft model. The user can specify any 
desired behavior for these functions, while maintain-
ing the defined function declaration. Any new atomic 
model has to extend the AtomicDEVS model and to 
re-declare the mentioned functions. The Modelica 
code of a processor system [23] developed using 
DEVSLib is shown in Listings 1, 2 and 3. 

The desired number of input and output ports can also 
be included in the new model and managed with the 
mentioned functions. The user can drag and drop new 
input and output ports into the model. The prototypes 
of the external transition and the output function 
allow the user to check the port where an incoming 
event has been received, or to specify the output port 
to send the event. All these ports could be connected 
later to other models. 
A coupled DEVS model, like the one shown in Figure 
5b, can be easily build using previously defined 
atomic or coupled models, and connecting them as 
required. The input and output ports have to be in-
cluded and connected to any of the model compo-
nents  

2.3 DEVSLib modeling restrictions 
One restriction in DEVSLib is the impossibility to 
perform one-to-many connections. These kinds of 
connections are not considered in ARENALib or 
SIMANLib because neither Arena nor SIMAN per-
mits them. However, the Parallel DEVS formalism 
allows this kind of connection so they have been 
taken into account. 

model processor
extends AtomicDEVS(redeclare record State = st); 

redeclare function Fcon = con; 
redeclare function Fint = int; 
redeclare function Fext = ext; 
redeclare function Fta = ta; 
redeclare function initState =

      initst(dt=processTime); 
parameter Real processTime = 1; 
Interfaces.outPortManager outPortManager1( 

redeclare record State = st, 
redeclare function Fout = out, n=1); 

Interfaces.outPort outPort1; // output port 
Interfaces.inPort inPort1; // input port 
equation

       iEvent[1] = inPort1.event; 
       iQueue[1] = inPort1.queue; 
       connect(outPortManager1.port, outPort1); 
end processor; 

Listing 1. Modelica code of a processor system modeled 
using DEVSLib 

function con "Confluent Transtition Function" 
input st s, Real e, Integer q, Integer port; 
output st sout, soutput; 

algorithm
   soutput := s; 
   sout := ext(int(s),e,q,port); 
end con; 

function int "Internal Transition Function" 
   input st s; 
   output st sout; 
algorithm
   sout := s; 
   sout.phase := 1; sout.job := 0; 
   sout.delta := Modelica.Constants.inf; 
end int; 

function ext "External Transition Function" 
input st s, Real e, Integer q, Integer port; 
output st sout; 

protected
Integer numreceived; 

   stdEvent x; 
algorithm
   sout := s; 
   numreceived := numEvents(q); 

if s.phase == 1 then
for i in 1 : numreceived loop

         x := getEvent(q); 
if i == 1 then

            sout.job := x.Value; 
Modelica.Utilities.Streams

              .print("* Event to process"); 
else

Modelica.Utilities.Streams
              .print("* Event balked"); 

end if;
         sout.received := sout.received + 1; 

end for;
      sout.phase := 2; // active 
      sout.delta := s.dt; // processing_time 

else
      sout.delta := s.delta -e; 

end if;
end ext; 

function out "Output Function" 
input st s, Integer port, Integer queue; 
output Boolean send; 

protected
   stdEvent y; 
algorithm

if s.phase == 2 then
      send := true;
      y.Type := 1; 
      y.Value := s.job; 
      sendEvent(queue,y); 

else
      send := false;

end if;
end out; 

function ta "Time Advance Function" 
input st s; 
output Real delta; 

algorithm
   delta := s.delta; 
end ta; 

Listing 2. Modelica code of the functions redeclared in the 
processor system. 
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This restriction appears because the way the port and 
the event communication mechanism is managed, 
using dynamic memory storage. As mentioned before, 
each receiver initializes its linked-queue to receive 
entities. A one-to-many connection cannot be per-
formed because the sender can not store in just one 
integer variable the references to all the linked-queues 
created by the receivers. A solution has been imple-
mented in the DEVSLib library. This solution con-
sists in an intermediate model that can be used to 
duplicate the events and send them to the receivers. 
Examples of this intermediate model are the Min-
Value and the HourValue models shown in Figure 5b. 

By default, the information transmitted between 
models in DEVSLib, at event instants, is composed 
by two values: the type of the event and a real value. 
The information communication mechanism using 
dynamic memory is relatively complex. It will not be 
easy for a user to change the structure of the informa-
tion, type and value, transmitted in events. Anyway, it 
can be performed modifying the Modelica and C data 
structures that support the communication mecha-
nism. In order to improve the mechanism for manag-
ing the information transmitted in events, additional 
information structures will be included to the 
DEVSLib library, e. g., giving the possibility to trans-
mit arrays or matrices instead of only real values. 

3 Introducing messages in Modelica 
A conclusion of the performed work is that discrete 
event system modeling with Modelica, using the 
process-oriented approach, is not an easy task. The 
components required for modeling these kind of sys-

tems and the solutions proposed for the problems are 
relatively complex. The developed libraries provide 
some functionalities for discrete-event system model-
ing with Modelica, using the process-oriented ap-
proach. Still, there are some problems without a solu-
tion, like the one-to-many connections in DEVSLib 
and the polymorphism of the information transmitted 
at event instants. 

In this section the model communication using mes-
sages in Modelica is presented. The authors also 
propose a possible implementation of this mechanism 
that will be discussed in Section 4. 

3.1 Motivation 
The main difficulty observed in the presented work is 
the model communication mechanism. This is the 
way models are connected and communicate. 

The connection of models in Modelica is represented 
by the connect equation. In a connection equation 
the value of the variables at the ends of the connec-
tion are either equaled, or summed and equaled to 
zero. A connection between discrete-event models 
does not establish any relation between variables of 
both models, but is used to communicate some in-
formation that has been generated in one model and is 
transmitted to another. Both connection concepts 
mean different things. 

Event management is also different between Mode-
lica and DEVS discrete-event systems. An event in 
Modelica involves a change in the value of a boolean 
condition that either makes the structure of the model 
to change, or performs a change in the discrete time 
variables or the state variables of themodel. Events in 
DEVS discrete-event systems represent a change in 
the state of the system or its discrete time variables, 
and usually also involves the exchange of information 
between models. This is an instantaneous transmis-
sion/reception of an impulse of information between 
models at the time of an event. Event management in 
discrete-event systems involve additional things than 
in Modelica, because of this information communica-
tion. 

In order to make the development of discrete-event 
systems more simple and easy, a new concept is pro-
posed and introduced in Modelica. This concept is the 
messages communication mechanism. The messages 
mechanism provides the capacity for communicating 
impulses of information between models at event 
instants. 

record st "State of the model" 
Integer phase; // 1 = passive, 2 = active 
Real delta; // internal transitions interval 
Real job; // current processing job 
Real dt; // default processing time 
Integer received; // num of jobs received 

end st; 

function initst "State Initialization Function" 
input Real dt; 
output st out; 

algorithm
  out.phase := 1; // passive 
  out.delta := Modelica.Constants.inf;
  out.job := 0; 
  out.dt := dt; 
  out.received := 0; 
end initst; 

Listing 3. Modelica code of the state and state initialization 
of the processor system. 
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3.2 Messages and mailboxes 
The model communication mechanism using mes-
sages involves two parts: the message itself and the 
mailbox. The message represents the information 
either traveling from one model to another, or inside a 
model itself. The mailbox receives the incoming 
messages and stores them until they are read. The 
mailbox also represents the concept of a bag of events 
in the Parallel DEVS formalism. 

The characteristics of the model communication us-
ing messages are the following: 

A message can be sent to any available mailbox. 
Available mailboxes are the ones that can be ref-
erenced from the model that sends the message, 
either accessing directly or using a connection. 
The mailbox warns the model when new incom-
ing messages are received. 
Once received, the message can be read from the 
mailbox. 
The transmission of messages between models 
has to be performed instantly. Any message sent 
from one model will be immediately received by 
another model. 
Messages can be received simultaneously, either 
in the same or different mailboxes. 
The information transported by a message, the 
content, is independent from the message com-
munication mechanism. It is a task of the user to 
define the structure of that information using the 
existing components of the Modelica language, 
so it can be managed by the models. 
Messages can be of different types. A mailbox 
can store any message independently of its type. 
The type of the message has also to be independ-
ent from the content of the message. 
Received messages have to be stored temporarily 
in the mailbox, until they are read. 
Message communication has to be performed in 
two stages: sending and reception. The sending 
involves the transmission of any message in the 
system at a given point in time, so all the mes-
sages sent are stored in the mailbox at the end. 
After the sending, all the messages are available 
for reception in each mailbox and can be read 
and managed as required. If a model sends sev-
eral messages to the same mailbox, all the sent 
messages have to be stored in the mailbox before 
the first message can be read by the receiver. 

3.3 Message sending, transmission, detection 
and treatment 

A message can be sent from one model to any other 
model that contains a mailbox, even if no connection 
between models is available. 

Mailboxes can also be shared between models. Shar-
ing a mailbox represent that several models can ac-
cess to the message storage that it represents. Each 
model sharing the mailbox can access the messages 
stored, reading or extracting them from it. Read mes-
sages are kept in the mailbox until they are extracted, 
or fetched, from it. 

A special case of mailboxes are the ones defined 
inside connectors. Two mailboxes, inside connectors, 
connected using a connect equation represent a bidi-
rectional message communication pipe. They will act 
as input/output mailboxes instead of only receiving 
messages. A message sent to one end of the pipe will 
be transported to the opposite end, and vice-versa. If 
more than two models are connected to the same 
pipe, a copy of the message will be transported to 
each receiver connected to the pipe. This provides a 
message broadcast functionality that also emulates 
the event transmission in DEVS, however in DEVS 
the communication is not bidirectional. The connect 
equation functionalities in Modelica have to be ex-
tended in order to support this mailbox behavior. An 
example of this behavior is shown in Figure 6. 

The detection of a message is implicit in the action of 
sending it, since they are transferred instantly. Every 
time a model sends a message to a mailbox, the simu-
lator knows that the message will be received by 
another model and will have to be treated properly. 

The treatment of each message has to be defined by 
the user. The mailbox warns when a new message has 
arrived. The mailbox activates a listener function that 
can be used as a condition to detect any incoming 
message, used with statements like when or if in 
Modelica. This does not mean that the new message 
condition has to be effectively checked at each simu-
lation step, because it is notified by the send message 
operation. Once a new message arrives to a mailbox, 
the arrived message or messages have to be read and 
treated.

4 Proposal of implementation 
This section contains a proposal of implementation in 
Modelica of the previously described message com-
munication mechanism. This implementation is based 
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on the definition of data structures that support the 
message and mailbox concepts, and the definition of 
the operations that can be performed with both data 
structures. Messages and mailboxes have to be de-
fined as new predefined classes that have to be 
treated in a singular way, allowing objects of type 
message or mailbox. Due to the current Modelica 
language specification, the proposed implementation 
differs from the mechanism described above. The 
Modelica language will need to be extended in order 
to support the messages mechanism. 

4.1 Data structures 
There are two data structures needed to manage the 
messages mechanism. These are the definition of the 
message itself and the structure to support the mail-
box that receives the defined messages. 

The message structure contains two components: the 
type and the content. The type of a message can be 
represented with an integer value. It is used to sepa-
rate the messages of the system in different classes. 
The content represents the information transported by 
the message. The content of a message is defined by 
the user and has to be independent from the message 
management mechanism. Thus, any mailbox can 
receive messages with any content and of any type. It 
is a task of the user to distinguish between the types 
of the messages and their contents. The content of the 
message is represented by a reference to an external 
data structure in C defined by the user. The user has 

to provide this data structure and the functions re-
quired to manage it using the reference in Modelica. 
Because of this definition, a message will be com-
posed by two integer values: the type and the refer-
ence to the content. 

The second structure required in the messages 
mechanism is the mailbox. A mailbox is a temporary 
storage for messages. If a message is sent to a mail-
box, it is stored in the mailbox until the receiver reads 
it. The number of stored messages in a mailbox is not 
limited, so this structure has to be able to change its 
dimension depending on the number of stored mes-
sages. The implementation of a mailbox is very simi-
lar to the currently implemented linked-lists for stor-
ing delayed entities during processes. 

4.2 Operations
The operations that can be performed with the previ-
ously described structures are defined below. Each 
operation is defined with its parameters and a short 
description of its behavior. 

Mailbox operations 
newmailbox(mailbox). Initializes the mailbox. 

checkmsg(mailbox). Warns about the arrival of a 
new message. It changes its value from false to 
true and immediately back to false at each mes-
sage arrival event. 

newmsg(). Detects the arrival of a message to any 
of the mailboxes declared in the model. This 
helps to manage the simultaneous arrival of mes-
sages in different mailboxes. 

nummsg(mailbox). Returns the number of wait-
ing messages stored in the mailbox. 

readmsg(mailbox,select). Reads a message 
from the mailbox. The select parameter repre-
sents a user-defined function used to select the 
desired message to be read from the mailbox. 

getmsg(mailbox,select). Fetches a message 
from the mailbox, deleting it. The select parame-
ter is used in the same way as in the readmsg 
function. 

putmsg(mailbox,message). Sends the message 
to the mailbox. 

Figure 6. Model communication with messages using 
connectors.
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Message operations 
newmsg(content,type). Creates a new message 
with the defined type and content. 

gettype(message). Returns the type of the mes-
sage.

settype(message,newtype). Updates the type of 
the message to the value of newtype. 

getcontent(message). Reads the content of the 
message. 

setcontent(message,newcontent). Inserts the 
newcontent into the message. 

An example of a SIMAN single-queue system, with 
the Create, Queue, Seize, Delay, Release and Dispose 
blocks, modeled using the described messages 
mechanism is shown in Figure 7. Each block of the 
figure contains the pseudo-code that implements the 
basic actions for the entity management and commu-
nication. The select function, in the readmsg and
getmsg functions, has been simplified and only 
represents the type of message to be read or extracted. 

5 Conclusions
It has been observed that process-oriented modeling 
of discrete-event systems in Modelica is a difficult 
task. Several Modelica libraries have been developed 
to provide more discrete-event system modeling func-

tionalities to Modelica, especially for modeling sys-
tems using the process-oriented approach. The im-
plementation of these libraries present some problems 
and restrictions, and the solutions proposed and im-
plemented are complex, hard to understand and diffi-
cult to maintain. In order to facilitate the development 
of discrete-event system models in Modelica, the 
message communication mechanism has been intro-
duced and described. A possible implementation of 
this mechanism in Modelica has also been proposed. 
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Multi-Aspect Modeling in Equation-Based Languages 

Dirk Zimmer, Inst. of Computational Science, ETH Zürich, Switzerland, dzimmer@inf.ethz.ch

Current equation-based modeling languages are often confronted with tasks that partly diverge from the 
original intended application area. This results out of an increasing diversity of modeling aspects. This paper 
briefly describes the needs and the current handling of multi-aspect modeling in different modeling lan-
guages with a strong emphasis on Modelica. Furthermore a small number of language constructs is sug-
gested that enable a better integration of multiple aspects into the main-language. An exemplary implementa-
tion of these improvements is provided within the framework of Sol, a derivative language of Modelica. 

Motivation 
Contemporary equation-based modeling languages 
are mostly embedded in graphical modeling environ-
ments and simulators that feature various types of 
datarepresentation. Let that be for instance a 3D-
visualization or a sound module. Consequently the 
corresponding models are accompanied by a lot of 
information that describes abundantly more than the 
actual physical model. This information belongs to 
other aspects, such as the modeling of the icono-
graphic representation in the schematic editor or the 
preference of certain numerical simulation tech-
niques. Hence, a contemporary modeler has to cope 
with many multiple aspects. 

In many modeling languages such kind of informa-
tion is stored outside the actual modeling files, often 
in proprietary form that is not part of any standard. 
But in Modelica [6], one of the most important and 
powerful EOO-languages, the situation has developed 
in a different way. Although the language has been 
designed primarily on the basis of equations, the 
model-files may also contain information that is not 
directly related to the algebraic part. Within the 
framework of Modelica, the most important aspects 
could be categorized as follows: 

Physical modeling: The modeling of the physical 
processes that are based on differential-algebraic 
equations (DAEs). This modeling-aspect is also 
denoted as the primary aspect. 
System hints: The supply of hints or information 
for the simulation-system. This concerns for ex-
ample hints for the selection of state-variables or 
start values for the initialization problem. 
3D Visualization: Description of corresponding 
3Dentities that enable a visualization of the mod-
els

GUI-Representation: Description of an icono-
graphic representation for the graphical user-
interface (GUI) of the modeling environment. 
Documentation: Additional documentation that 
addresses to potential users or developers. 

We will use this classification for further analysis, 
since it covers most of the typical applications fairly 
well. Nevertheless, this classification of modeling 
aspects is of course arbitrary, like any other would be. 

Let us analyze the distribution of these aspects with 
respect to the amount of code that is needed for them. 
Figure 1 presents the corresponding pie-charts of 
three exemplary models of the Modelica standard 
library. These are the “FixedTranslation” component 
for the MultiBodylibrary, the PMOS model of the 
electrical package and the “Pump and Valve” model 
in the Thermal library. The first two of them represent 
single components; the latter one is a closed example 
system. 

In the first step of data-retrieval, all unnecessary 
formatting has been removed from the textual model-
files. For each of these models, the remaining content 
has then been manually categorized according to the 
classification presented above. The ratio of each as-
pect is determined by counting the number of charac-
ters that have been used to model the corresponding 
aspect.

The results reveal that the weight of the primary as-
pect cannot be stated to be generally predominant. 
The distribution varies drastically from model to 
model. It varies from only 14% to 53% for these 
examples.  

Yet one shall be careful by doing an interpretation of 
the pie-charts in figure 1. The weight of an aspect just 
expresses the amount of modeling code with respect 
to the complete model. This does not necessarily 
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correlate with the invested effort of the modeler and 
even less it does correlate with the overall importance 
of an aspect. It needs to be considered that code for 
the GUIrepresentation is mostly computer-generated 
code that naturally tends to be lengthy. On the other 
hand side, the code that belongs to the primary aspect 
of equation-based modeling is often surprisingly 
short. This is due to the fact that this represents the 
primary strength of Modelica. The language is opti-
mized to those concerns and enables convenient and 
precise formulations. Unfortunately, this can hardly 
be said about the other aspects in our classification. 

The discussion about the Modelica and other 
EOOlanguage is often constrained to its primary 
aspect of physical modeling. But in typical models of 
the Modelica standard-library this primary aspect 
often covers less than 25% of the complete modeling 
code. Any meaningful interpretation of figure 1 re-
veals that the disregard on other modeling aspects is 
most likely inappropriate especially when we are 
concerned with language design. For any modeling 
language that owns the ambition to offer a compre-
hensive modeling-tool, the ability to cope with multi-
ple aspects has become a definite prerequisite. 

It is the aim of this paper to improve modeling lan-
guages with respect to these concerns. To this end, we 
will suggest certain language constructs that we have 
implemented in our own modeling language: Sol. The 
application of these constructs will be demonstrated 
by a small set of examples. But first of all, let us take 
a look at the current language constructs in Modelica 
and other modeling languages. 

1 Current handling of multiple aspects 

1.1 Situation in VHDL-AMS, Spice, gPROMS, 
Chi

The need for multiple aspects originates primarily 
from industrial applications. Hence this topic is often 
not concerned for languages that have a strong aca-
demic appeal. One example for such a language is 
Chi [3]. For the sake of simplicity and clarity, this 
language is very formal and maintains its focus on the 
primary modeling aspect. 

In contrast, languages like SPICE3 [9] or VHDL-
AMS [1,10] and Verilog-AMS[12] are widely used in 
industry. Unlike Modelica, these languages do typi-
cally not integrate graphical information into their 
models. The associated information that describes the 
schematic diagram and the model icons is often sepa-

rately stored, often in a proprietary format. For in-
stance, the commercial product Simplorer [11] gener-
ates its own proprietary files for the model-icons. The 
corresponding VHDL-code does not relate to these 
files.
However, different solutions are possible: both AM-
Slanguages contain a syntax-definition for attributes. 
These can be used to store arbitrary information that 
relate to certain model-items. Since there is only a 
small-number of predefined attributes (as unit de-
scriptors, for instance), most of the attributes will 
have to be specified by the corresponding processing 
tools. 
Furthermore these two languages and SPICE3 own an 
extensive set of predefined keywords. This way it is 
possible to define output variables or to configure 
simulation parameters. The situation is similar in 
ABACUSS II [5], which is the predecessor to 
gPROMS [2]. This language offers a set of predefined 
sections that address certain aspects of typical simula-
tion run like initialization or output. 

1.2 Multiple aspects in Modelica 
The Modelica language definition contains also a 
number of keywords that enable the modeler to de-
scribe certain aspects of his model. For instance, the 
attributes stateSelect or fixed represent system-
hints for the simulator. In contrast to other modeling 
languages, Modelica introduced the concept of anno-
tations. These items are placed within the definitions 
of models or the declarations of members and contain 
content that directly relates on them. Annotations are 
widely used within the framework of Modelica. The 
example below presents an annotation that describes 
the position, size and orientation of the capacitor icon 
in a graphic diagram window. 

1 Capacitor C1(C=c1) “Main capacitor” 
2 annotation (extent  =[50, -30; 70, -10], 
3                rotation=270); 

Listing 1. Use of an annotation in Modelica 

Since annotations are placed alongside the main 
modeling code, they inflate the textual description 
and tend to spoil the overall clarity and beauty. A lot 
of annotations contain also computer-generated code 
that hardly will be interesting for a human reader. 
Thus, typical Modelica editors mostly hide annota-
tions and make them only visible at specific demand 
of the user. However, this selection of code-visibility 
comes with a price. First it reduces the convenience 
of textual editing, since cut, copy and paste opera-
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tions may involve hidden annotations. Second, the 
selection of visibility happens on a syntactical level 
not on a semantic level. 
Storing data for GUI-representation or other specific 
hints and information has been initially a minor topic 
in the design process of Modelica. Still, there was a 
compelling need for it. To meet these urgent require-
ments, the Modelica community decided to introduce 
the concept of annotations into the modeling lan-
guage. Already the first language definition of Mode-
lica contained the concept of annotations and also 
presented some applications for GUI-representation 
and documentation. The corresponding annotations 
have been used as a quasi-standard despite the fact 
that they only have been weakly documented. Anno-
tations served also as an official back-door entrance 
to non-official, proprietary functionalities. Since it 
happens frequently in software engineering that cer-
tain things just grow unexpectedly, many further 
annotations have been introduced meanwhile. Nowa-
days, annotations contain a lot of crucial content that 
revealed to be almost indispensable for the generation 
of effective portable code. Therefore it is no surprise 
that just recently a large set of annotations had to be 
officially included in version 3 of the Modelica lan-
guage definition [8]. This way, what started out as a 
small, local and semi-proprietary solution, became 
now a large part in the official Modelica standard. 

To store the information that belongs to certain as-
pects, different approaches are used in Modelica and 
often more than one language-tool is involved. The 
following list provides a brief overview on the current 
mixture of data representation: 

The physics of a model is described by DAEs 
and is naturally placed in the main Modelica 
model. 

Hints or information for the simulation-system 
are mostly also part of the main Modelica lan-
guage but some of them have to be included in 
special annotations. 
Information that is used by the GUI is mostly in-
cluded in annotations. But the GUI uses also uses 
information from textual descriptions that are 
part of the main-language. 
The description of 3D-visualization is done by 
dummy-models within main-Modelica code. 
Documentation may be extracted from the tex-
tual descriptions that accompany declarations 
and definitions, but further documentation shall 
be provided by integrating HTML-code as a text-
string into a special annotation. Other annota-
tions store information about the author and the 
library version. 

1.3 Downfalls of the current situation 
Obviously, this fuzzy mixture of writings and lan-
guage constructs reveals the lack of a clear, concep-
tual approach. As nice as the idea of annotations ap-
pears in the first moment, it also incorporates a num-
ber of problematic insufficiencies. 

The major drawback is that only pre-thought func-
tionalities are applicable. The modeler has no means 
to define annotation by its own or to adapt given 
constructs to his personal demands. Furthermore, 
syntax and semantics of each annotation needs to be 
defined in the language definition. Since there is 
always a demand for new functionalities, the number 
of annotations will continue to increase. This leads to 
a foreseeable inflation of the Modelica language 
definition. 

Figure 1. Code distribution of aspects in Modelica models. 
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1.4 Lack of expressiveness 
These downfalls originate from a lack of expressive-
ness in the original Modelica language. Whenever 
one is concerned with language design [7], it is im-
portant to repetitively ask some fundamental ques-
tions. How can it be that a language so powerful to 
state highly complicated DAE-systems is unable to 
describe a rectangle belonging to an iconographic 
representation? Why do we need annotations at all? 

These questions are clearly justified and point to the 
fact that the development scope of the Modelica lan-
guage might have been too narrowly focused on the 
equation based part. Therefore, extension that would 
have been of great help in other domains, have been 
left out: 

There is no suitable language construct that en-
ables the declaration of an interface to an envi-
ronment that corresponds to a certain aspect. 
Instances of objects cannot be declared anony-
mously within a model. 
The language provides no tool for the user that 
enables him or her to group statements into se-
mantic entities. 
The language offers no means to refer on other 
(named) objects, neither statically nor dynami-
cally. 

By removing these four lacks, we will demonstrate 
that the use of annotations can be completely avoided 
and that the declarative modeling of multiple aspects 
can be handled in a conceptually clear and concise 
manner. The following section will discuss this in 
more detail and provide corresponding examples. 

2 Multi-aspect modeling in Sol 
Sol is a language primarily conceived for research 
purposes. It owns a relatively simple grammar (see 
appendix) that is similar to Modelica. Its major aim is 
to enable the future handling of variable-structure 
systems. To this end, a number of fundamental con-
cepts had to be revised and new tools had to be intro-
duced into the language. The methods that finally 
have become available suit also a better modeling of 
multiple aspects. These methods and their application 
shall now be presented. 

2.1 Starting from an example 
In prior publications on Sol [13,14] the “Machine” 
model has been introduced as standard example. It 
contains a simple structural change and consists of an 

engine that drives a flywheel. In the middle there is a 
simple gear box. Two versions of an engine are avail-
able: The first model Engine1 applies a constant 
torque. In the second model Engine2, the torque is 
dependent on the positional state, roughly emulating a 
piston-engine. Our intention is to use the latter, more 
detailed model at the machine’s start and to switch to 
the simpler, former model as soon as the wheel’s 
inertia starts to flatten out the fluctuation of the 
torque. This exchange of the engine model represents 
a simple structural change on run-time. 

1 model Machine
2 implementation:
3    static Mechanics.FlyWheel F{inertia<<1}; 
4    static Mechanics.Gear G{ratio<<1.8}; 
5    dynamic Mechanics.Engine2 E {meanT<<10}; 
6
7    connection c1(a << G.f2, b << F.f); 
8    connection c2(a << E.f, b << G.f1); 
9    when F.w > 40 then

10      E <- Mechanics.Engine1{meanT << 10}; 
11    end;
12 end Machine;

Listing 2. Simple machine model in Sol. 

The first three lines of the implementation declare the 
three components of the machine: fly-wheel, gear-box 
and the engine. The code for the corresponding con-
nections immediately follows. The third component 
that represents the engine is declared dynamically. 
This means that the binding of the corresponding 
identifier to its instance is not fixed and a new in-
stance can be assigned at an event. This is exactly 
what happens in the following declaration of the 
when-clause. A new engine of compatible type is 
declared and transmitted to the identifier E. The old 
engine-model is thereby implicitly removed and the 
corresponding equations are automatically updated. 
This model contains the physics part only. We now 
want to add other aspects to the model. We would like 
to add a small documentation and to specify the simu-
lation parameters. Furthermore we want to add in-
formation about model’s graphical representation in a 
potential, graphical user-interface. The following sub-
sections will present the necessary means and their 
step by step application. 

2.2 Environment packages and models 
Many modeling aspects refer to an external environ-
ment that is supposed to process the exposed informa-
tion. This environment may be the GUI of the model-
ing environment or a simulator program. Therefore it 
needs to be specified how a model can address a 
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potential environment. To this end, Sol features envi-
ronment packages and models that enable to define an 
appropriate interface. Let’s take a look at an example: 

1 environment package Documentation
2    model Author
3      interface:
4         parameter string name; 
5    end Author;
6    model Version
7      interface:
8         parameter string v; 
9    end Version;

10    model ExternalDoc
11      interface:
12         parameter string fname; 
13    end ExternalDoc;
14 end Documentation

Listing 3. Environment package. 

This example consists in a package that contains 
models which can be used to store relevant informa-
tion for the documentation of arbitrary models. The 
keyword environment does specify that the models 
of the corresponding package address the environ-
ment and are therefore not self-contained. They 
merely offer an interface instead. The actual imple-
mentation and semantics of the package remains to be 
specified by the environment itself. 

It is important to see that stipulating the semantics 
would be a misleading and even futile approach. 
Different environments will inevitable have to feature 
different interpretations of the data. For instance, a 
pure simulator will complete ignore the “Documen-
tion” models whereas a modeling editor may choose 
to generate an HTML-code out of it. Nevertheless it 
is very meaningful to specify a uniform interface 
within the language. This provides the modeler with 
an overview of the available functionalities. Further-
more the modeler may choose to customize the inter-
face for its personal demands using the available 
object-oriented means of the Sol-language. 

2.3 Anonymous declaration 
The language Sol enables the modeler to anony-
mously declare models anywhere in the implementa-
tion. The parameters can be accessed by curly brack-
ets whereas certain variable members of the model’s 
interface are accessible by round brackets. This way, 
the modeler can address its environment in a conven-
ient way just by declaring anonymous models of the 
corresponding package. An application of this meth-
odology is presented below in listing 4 for the Ma-
chine model. 

Anonymous declarations are an important element of 
Sol, since they enable the modeler to create new in-
stances on the fly, for example at the execution of an 
event. This is very helpful for variable-structure sys-
tems. However, within the context of multi-aspect 
modeling, anonymous declarations serve primarily 
convenience. It is of course possible to assign names 
to each of the documentation items. They can be 
declared with an identifier like any other model, but 
this is mostly superfluous and would lead to bulky 
formulations. 

1 model Machine
2   implementation:
3      […] 
4      when F.w > 40 then
5         E <- Mechanics.Engine1{meanT << 10 }; 
6      end;
7      Documentation.Author{name<<"DirkZimmer"}; 
8      Documentation.Version{v << "1.0"); 
9      Documentation.ExternalDoc 

                   {fname<<"MachineDoc.html"}; 
10 end Machine;

Listing 4. Use of anonymous declarations. 

2.4 Model sections 
Sol has been extended by the option for the modeler 
to define sections using an arbitrary package name. 
Sections incorporate three advantages: One, code can 
be structured into semantic entities. Two, sections add 
convenience, since the sub-models of the correspond-
ing package can now be directly accessed. Three, 
section enable an intuitive control of visibility. A 
modern text editor may now hide uninteresting sec-
tions. The user may then be enabled to toggle the 
visibility according to its current interests. This way, 
the visibility is controlled by semantic criteria and not 
by syntactical or technical terms. 

1 model Machine
2   implementation:
3      […] 
4      when F.w > 40 then
5         E <- Mechanics.Engine1{meanT << 10 }; 
6      end;
7      section Documentation:
8         Author{name << "Dirk Zimmer"}; 
9         Version{v << "1.0"}; 

10         ExternalDoc{fname<<"MachineDoc.html"}; 
11      end;
12      section Simulator:
13         IntegrationTime{t << 10.0}; 
14         IntegrationMethod{method<<"euler", 
15         step << "fixed", value << 0.01}; 
16      end;
17 end Machine;

Listing 5. Sections 
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The documentation part of the machine model has 
now been wrapped within a section. A second section 
addresses another environment called “Simulator” 
and shows an exemplary specification of some simu-
lation parameters. Both sections could be hidden by 
an editor if the user has no interest in their content. 

2.5 Referencing of model instances 
The provided methods so far, are fully sufficient for 
simple application cases. The proper implementation 
of a GUI-representation is yet a more complex task 
that demands a more elaborate solution. In the classic 
GUI-framework for object-oriented modeling, each 
model owns an icon and has a diagram window that 
depicts its composition from sub-models. Figure 2 
displays the aspired diagram of the exemplary ma-
chine-model that contains the icons of its three sub-
models. The connections are represented by single 
lines. The following paragraphs outline one possible 
solution in Sol. 

The problem is that many models will own GUI in-
formation but only the information of certain model 
instances shall be acquired. This originates in the 
need for language constructs that enable hierarchical 
or even mutual referencing between model-instances. 
Sol meets these requirements by giving model-
instances a first-class status [4]. This means that 
model-instances cannot only be declared anony-
mously but also these instances can be transmitted to 
other members or even to parameters. 

This capability had already been applied in listing 2 
to model the structural change of the engine. The 
statement 

E <- Mechanics.Engine1(meanT << 10) 

declares anonymously an instance of the model “En-
gine1” and then transmits this instance to the dynamic 
member E. Hence the binding of the identifier to its 
instance gets re-determined which causes a structural 
change.

A similar pattern will occur in our solution for the 
GUI-design. Let us take a look at the corresponding 
environment-package. 

environment package Graphics 
o model Line 
o model Rectangle 
o model Ellipse 
o model Canvas 

model Line 
model Rectangle 
model Ellipse 

o model GraphicModel 
Figure 3. Structure of the Graphics package. 

Figure 3 gives a structural overview of the environ-
ment package Graphics. This package provides ru-
dimentary tools for the design of model-icons and 
diagrams. These are represented by models for rec-
tangles, ellipses and lines. The package contains also 
a Canvas model that enables drawings on a local 
canvas. Furthermore the package contains a partial 
model GraphicModel that serves as template for all 
models that support a graphical GUI-representation. 
It defines two sub-models: one for the icon-
representation and one for the diagram representation. 
Models that own a graphical representation are then 
supposed to inherit this template model. Please note 
that the icon has a canvas model as parameter. 

1 model GraphicModel
2 interface:
3    model Icon
4    interface: 
5       parameter Canvas c;
6    end Icon; 
7    model Diagram
8    end Diagram; 
9 end GraphicModel;

Listing 6. A template for graphical models. 

A graphical modeling environment may now elect to 
instantiate one of these sub-models. This will cause 
further instantiations of models belonging to the 
“Graphics”-package that provide the graphical envi-
ronment with the necessary information. Below we 
present an exemplary icon model for our engine that 
corresponds to the icon in Figure 2. 
10 model Engine2 extends Interfaces.OneFlange; 
11 // that extends GraphicalModel 
12 interface:
13 parameter Real meanT; 
14 redefine model Icon 
15 implementation:
16      c.Ellipse(sx<<0.0, sy<<0.2, 

               dx<<0.6, dy<<0.8); 
17      c.Rectangle(sx<<0.9, sy<<0.45, 

                 dx<<1.0, dy<<0.55); 
18      c.Line(sx<<0.3, sy<<0.3, 

            dx<<0.9, dy<<0.5); 

Figure 2. Diagram representation 
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19 end Icon; 
20 implementation:
21    […] 
22 end Engine2; 

Listing 7. An implementation of an icon 

The icon of listing 7 “paints” on a local canvas that is 
specified by the corresponding parameter c. The 
transmission of this parameter is demonstrated in 
Listing 8 that represents the whole diagram of figure 
2. This model declares the icons of its sub-models 
and creates a local canvas for each of them by an 
anonymous declaration. The two connections c1 and 
c2 also own a Line-model for their graphical repre-
sentation. 

1 model Machine extends Graphics.GraphicalModel;
2 interface:
3    redefine model Diagram
4    implementation: 
5       section Graphics:
6          F.Icon{c<<Canvas{x<<10, y<<10, 

                          w<<10, h<<10}}; 
7          G.Icon{c<<Canvas{x<<30, y<<10, 

                          w<<10, h<<10}}; 
8          E.Icon{c<<Canvas{x<<50, y<<10, 

                          w<<10, h<<10}}; 
9          c1.Line(sx<<20, sy<<15, 

                 dx<<30, dy<<15); 
10          c2.Line(sx<<40, sy<<15, 

                 dx<<50, dy<<15); 
11          c.Rectangle(0,0,70,30); 
12       end;
13    end Diagram;
14 implementation:
15    […] 
16    section Documentation:
17    […] 
18    section Simulator:
19 […]
20 end Machine;

Listing 8. An implementation of a diagram 

The “GraphicalModel” involves another key-concept 
of Sol. The language enables the modeler to define 
models also as member-models in the interface sec-
tion. When instantiated, these models belong to their 
corresponding instance and are therefore not inde-
pendent. This means that the Diagram or Icon model 
always refer to their corresponding super-instance. 
Consequently, they also have access to all the relevant 
parameters and can adapt. 

Please note that the resulting GUI-models are poten-
tially much more powerful than their annotation-
based counterparts in Modelica. All the modeling 
power of Sol is now also available for the graphical 

models. For instance, only a minimal effort is needed 
to make the look of an icon adapt to the values of a 
model-parameter. No further language construct 
would be required. A model could even feature “ac-
tive” icons that display the current system-state and 
hence enable a partial animation of the system within 
the diagram-window. Even the structural change of 
the machine-model could be made visible in the dia-
gram during the simulation. Such extensions (if de-
sired or not) become now feasible and demonstrate 
the flexibility of this approach. 

However, the provided examples are merely a sugges-
tion and represent just one possible and convenient 
solution within the framework of Sol. There are also 
many other language constructs that would lead to 
feasible or even more general solutions. Many of 
them could easily be integrated into equation-based 
languages. Some of them are featured in Sol. With 
respect to Modelica, this is unfortunately not the case 
yet.

3 Conclusion
Handling complexity in a convenient manner and 
organizing modeling knowledge in a proper form 
have always been primary motivations for the design 
of modeling languages. The introduction of object-
oriented mechanism has yield to a remarkable success 
and drastically simplified the modeling of complex 
systems. Object-orientation essentially enabled the 
modeler to break models into different levels of ab-
straction. Hence, the knowledge could be organized 
with respect to depth. 

However, certain models combine many different 
aspects that have to be linked together at a top level. 
Here the knowledge needs to be organized with re-
spect to breadth. For those tasks, current mechanisms 
in EOOlanguages are underdeveloped. 

This paper focuses on four conceptual language con-
structs for EOO-languages that in combination drasti-
cally increase the ability to deal with multiple as-
pects. These are: 

1. Environment-packages that enable the as-
pectspecific declaration of interfaces. 

2. Anonymous declarations of model instances. 
3. Sections can be used to form semantic entities 

and control visibility. 
4. Referencing mechanisms between model-

instances. (In Sol, these mechanisms are pro-
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vided by giving model-instances a first class 
status and enabling socalled member-models.)  

The proposed constructs have been implemented in 
our experimental language Sol and their application is 
demonstrated by a set of corresponding examples. 
The resulting advantages of this approach are mani-
fold: 

The methods how to address a potential envi-
ronment are made available within the language. 
The modeler may browse through the provided 
functionalities like she or he is used to do it for 
standard libraries. 
The existing object-oriented mechanisms can be 
applied on these environment-models. Hence the 
modeler can customize the interface for its per-
sonal demands and is not constrained to a prede-
fined solution. 
Anonymous declarations enable a convenient us-
age of these models, anywhere in the implemen-
tation. The resulting statements are naturally 
readable and integrate nicely into the primary, 
equation-based part. 
User-defined sections help to organize the model 
and offer an excellent way to filter for certain 
modeling aspects. Uninteresting information may 
consequently be hidden without hindering the ed-
iting of the code. The filtering criteria are not 
based on syntax anymore, there are based on se-
mantic entities that have been formed by the 
modelers themselves. Furthermore sections en-
able a clear separation of computer generated 
modeling code. 
The embedment into an existing object-oriented 
framework enables a uniform approach for a 
wider range of modeling aspects. Furthermore, it 
increases the interoperability between these as-
pects.

However, the most important conclusion is that the 
ability of the language to help and to extend itself by 
its own means has been drastically improved with 
respect to other languages like Modelica. Further 
development is now possible within the language 
does not require a constant update and growth of the 
language definition. 

4 Appendix
The following listing of rules in extended Backus-
Naur form (EBNF) presents an updated version of the 
core grammar for the Sol modeling language. The 
rules are ordered in a top-down manner listing the 

high-level constructs first and breaking them down 
into simpler ones. Non-terminal symbols start with a 
capital letter and are written in bold. Terminal sym-
bols are written in small letters. Special terminal 
operator signs are marked by quotation-marks. Rules 
may wrap over several lines. 
The inserted modifications concern solely the model-
ing of multiple aspects. With respect to a prior ver-
sion of the grammar [13], the changes are minor and 
concern only 3 rules: ModelSpec, Statement and
Section.

Model = ModelSpec Id Header 
[Interface] [Implemen] end Id ";" 

ModelSpec = [redefine | partial | environment] 
  (model | package | connector | record) 

Header = {Extension} {Define} {Model}
Extension = extends Designator ";" 
Define = define (Const | Designator) as Id ";" 
Interface = interface ":" {(IDecl | ParDecl) ";"} {Model}
ParDecl = parameter Decl 
IDecl = [redelcare] LinkSpec [IOSpec] [CSpec] Decl 
ConSpec = potential | flow 
IOSpec = in | out 

Implemen = implementation ":" StmtList 
StmtList = [Statement {";" Statement }]
Statement = [ Section | Condition | Event |
  Declaration | Relation ]

Section = section Designator ":" StmtList end [section] 
Condition = if Expression then StmtList ElseCond 
ElseCond = (else Condition)|([else then StmtList]
  end [if]) 
Event = when Expression then StmtList ElseEvent 
ElseEvent = (else Event)|([else then StmtList]
  end [when] 
Declaration = [redeclare] LinkSpec Decl 
LinkSpec = static | dynamic 
Decl = Designator Id [ParList]

Relation = Expression Rhs 
Rhs = ("=" | "<<" | "<-") Expression 

ParList = "{" [Designator Rhs {"," Designator Rhs }] "}" 
InList = "(" [Designator Rhs {"," Designator Rhs }] ")" 

Expression = Comparis {(and|or) Comparis }
Comparis = Term [("<"|"<="|"=="|"<>"|">="|">")Term]
Term = Product {( "+" | "-" ) Product }
Product = Power { ("*" | "/") Power }
Power = SElement {"^" SElement }
SElement = [ "+" | "-" | not ] Element 
Element = Const | Designator [InList] [ParList]
  | "(" Expression ")" 
Designator = Id {"." Id }
Id = Letter {Digit | Letter}
Const = Number | Text | true | false 
Number = ["+"|"-"] Digit { Digit }
  ["." {Digit }] [e ["+"|"-"] Digit { Digit }]
Text = "\"" {any character} "\"" 
Letter = "a" | ... | "z" | "A" | ... | "Z" | "_" 
Digit = "0" | ... | "9" 

Listing 9. EBNF grammar of Sol 
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