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Editorial SNE Special Issue 
Object-oriented and Structural-dynamic Modelling and Simulation I 

The SNE special issues on Object-oriented and Structural-
dynamic Modelling and Simulation emphasize on recent 
developments in languages and tools for object-oriented 
modelling of complex systems and on approaches, languages 
and tools for structural-dynamic systems. 
Computer aided modelling and simulation of complex sys-
tems, using components from multiple application domains, 
have in recent years witnessed a significant growth of interest. 
In the last decade, novel equation-based object-oriented 
(EOO) modelling languages, (e.g. Modelica, gPROMS, and 
VHDL-AMS) based on acausal modelling using equations 
have appeared. These languages allow modelling of complex 
systems covering multiple application domains at a high level 
of abstraction with reusable model components.  
This need and interest in EOO languages additionally raised 
the question for modelling approaches and language concepts 
for structural dynamic systems. Appropriate control structures 
like state charts in EOO languages also allow composition of 
model components ‘in serial’ – an interesting new strategy for 
modelling structural- dynamic systems. 
There exist several different communities dealing with both 
subjects, growing out of different application areas. Efforts 
for bringing together these disparate communities resulted in 
a new workshop series, EOOLT workshop series, and estab-
lished special sessions on structural-dynamic modelling and 
simulation (SDMS) within simulation conferences. In August 
2007, the 1st International Workshop on Equation-Based 
Object-Oriented Languages and Tools – EOOLT 2007 – took 
place in Berlin, with thirteen papers, and a special session at 
EUROSIM 2007 Congress (September 2007, Ljubljana) with 
seven papers concentrated on structural dynamic modelling 
(EUROSIM 2007- SDMS Special Session). 
This SNE special issue on Object-oriented and Structural-
dynamic Modelling and Simulation – I presents selected con-
tributions from both events, presenting overview, state-of-the-
art and development in the investigated subjects (five contri-
butions from EOOLT, and two contributions from EUROSIM 
– SDMS). 
Clearly, Modelica, the new standard for object-oriented and 
component-based physical modelling, plays an important role 
in many contributions. The first two contributions deal with 
structural concepts in MODELICA using UML - ‘The Use of 
the UML within the Modeling Process of Modelica Models’ 
by Ch. Nytsch-Geusen, and ‘Towards Unified System Model-
ing with the Modelica ML UML Profile’ by A. Pop et al. The 
third paper ‘Hybrid Dynamics in Modelica: Should all Events 
be Considered Synchronous’ by R. Nikoukhah raises prob-
lems with hybrid and structural-dynamic systems in Modelica 
and discusses general approaches to state event handling. 
The fourth and the fifth paper, ‘Enhancing Modelica towards 
variable structure systems’ by D. Zimmer, and ‘Functional 
Hybrid Modeling from an Object-Oriented Perspective’ by 
H. Nilsson et al, link ideas of  component-based object-orien-
ted physical modelling and structural-dynamic modelling. 
The sixth contribution ‘Structure of Simulators for Hybrid and 

Structural-dynamic Systems’ by N. Popper et al., reviews 
features of simulators for structural-dynamic systems and 
introduces different classes of state events. The last paper 
‘Modeling Structural Dynamics Systems in Modelica / Dy-
mola, Modelica /Mosilab, and AnyLogic’ by G. Zauner et al, 
presents features for hybrid and structural-dynamic modelling 
in equations-based object-oriented simulation languages. 
Four contributions from EUROSIM SDS will be published 
together with EOOLT 2008 contributions in an SNE Special 
Issue ‘Object-oriented and Structural-dynamic Modelling and 
Simulation – II  in 2008. 
The editors would like to thank all authors for their co-
operation and for their efforts, e.g. for sending revised ver-
sions, and hope that the selected papers present a good over-
view and state-of-the-art in object-oriented and structural-
dynamic modelling and simulation. 
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The Use of UML within the Modeling Process of Modelica Models 

Christoph Nytsch-Geusen, Fraunhofer Institute, Germany, christoph.nytsch@first.fraunhofer.de  

This paper presents the use of the Unified Modeling Language (UML) in the context of object-oriented mod-
elling and simulation of hybrid systems with Modelica. The definition of a specialized version of UML for 
the graphical description and model based development of hybrid systems in Modelica—the UMLH—was  
taken place in the GENSIM project [1, 2]. For a better support of the modelling process, an UMLH editor 
with different views (class diagrams, statechart diagrams, collaboration diagrams) was implemented as a part 
of the Modelica simulation tool MOSILAB [3]. In the EOOLT-workshop the use of UMLH and its semantics 
will be demonstrated by the development of a simplified model of a Pool-Billiard game in Modelica. 

Introduction 
On the one hand, the Unified Modeling language 
(UML) is the established standard for the develop-
ment and graphical description of object-oriented 
software systems [4]. UML offers a couple of dia-
grams, which describe different views (e.g. class 
diagrams, statechart diagrams, collaboration dia-
grams) on object-oriented classes. On the other hand 
Modelica [5] is a pure textual simulation language, 
which means the program code of long and highly 
structured models might be often heavy to under-
stand. Thus, the combination of UML and Modelica 
was taken place within the GENSIM project. An 
UML editor for the Modelica based simulation tool 
MOSILAB was developed, which can be used for 
describing and generating Modelica models in a 
graphical way [3]. 
In this paper a special forming of UML for the model-
ling process of hybrid systems, the UMLH, will be 
presented. In a first step, the elements of the UMLH 

and their semantics for the Modelica-language will be 
introduced. After that, the use of UMLH will be illus-
trated by the example of a simplified version of a 
Pool-Billiard game. 

1 UMLH and Modelica 
The development of the UMLH was motivated by the 
following main reasons: 

• to support the user within the modelling process 
of complex Modelica models in a easy manner, 

• to have a method for the graphical documenta-
tion of the object-oriented construction of Mode-
lica-models, 

• to have a graphical analogy for the statechart ex-
tension of Modelica, which was introduced in the 
GENSIM project as a linguistic means of expres-
sion for model structural dynamics. 

The UMLH includes only a subset of the UML stan-
dard, which is necessary for the graphical description 
of Modelica models: the class diagram view, the 
statechart diagram view and the collaboration dia-
gram view. 

1.1 Class diagrams 
A class diagram in UMLH is a rectangle, which con-
tains in the upper part the class name and the Mode-
lica class type. The optional lower part comprises the 
attributes (parameters, variables etc.) of the Modelica 
class. Inheritance and composition is expressed in the 
same way as in UML (compare with Fig. 1.) 

Starting from this graphical notation, the correspon-
dent Modelica code can be generated automatically, 
e.g. with MOSILAB (here, the UMLH diagrams are 
directly integrated within the Modelica code by the 
use of specialized annotations). The following code 
shows the classes A, A1 and C, which are inner classes 
of the package UML_H: 

1 package UML_H 
2   annotation(UMLH( 

     ClassDiagram="<umlhclass><name>…")); 
3 class A 
4    annotation(UMLH(classPos=[31,53])); 
5 end A; 

Figure 1. UMLH class diagram 
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6 model A1 
7    annotation( 

     Icon(Text(extent=…,string="A1", …)); 
8    annotation(UMLH(classPos=[31,146])); 
9    extends A; 

10    event Boolean on; 
11    event Boolean off; 
12    Real x; 
13    input Real z; 
14    parameter Real y; 
15    C c; 
16    ... 
17 end A1; 
18 connector C     

   annotation(UMLH(classPos=[192,54])); 
19    Real u; 
20    flow Real i; 
21 end C; 
22 ... 
23 end UML_H; 

1.2 Collaboration diagrams 
Collaboration diagrams in UMLH are also rectangles, 
which contain the object name and the type or the 
icon of the Modelica class, divided by a horizontal 
line. Four different connections types exist between 
the objects (see with Fig. 2.): 

• Type 1: connections of connector variables (thin 
black line with filled squares at the ends) 

• Type 2: connections of scalar variables (thin blue 
line with unfilled squares at the ends) 

• Type 3: connections of scalar input/output vari-
ables (thin blue line with an arrow and a unfilled 
square) 

• Type 4: multi-connections as a mixture of differ-
ent connection types, e.g. type 1 and type 2 (fat 
blue line) 

The following Modelica code expresses the collabo-
ration-diagram of Fig. 2: 

1 model System 
2    annotation(CompConnectors( 

      CompConn(label="label2", 
      points=[-81,52; -81,43;  
              -24,43; 24,51]))); 

3 UML_H.A1 c1 
   annotation(extent=[-87,72; -74,52]); 

4 UML_H.A1 c2 annotation(extent=[…]); 
5 UML_H.A1 c3 annotation(extent=[…]); 
6 UML_H.B  b  annotation(extent=[…]); 
7 equation 

   // connection type 1 
8    connect(c1.c,c2.c)     

     annotation(points=[-74,62;-57,62]); 
 

9    // connection type 2 
10    c2.y=c3.y annotation(points=[…]); 

 

11    // connection type 4 (mixture of type 1 and 2): 
12    connect(c1.c,c3.c)  

       annotation(label="label2"); 
13    c1.x=c3.x 

       annotation(label="label2"); 
 

14    // connection type 3: 
15    b.y=c1.z  annotation(points=[…]); 
16 end System; 

1.3 State chart diagrams 
A statechart diagram in UMLH is represented as a 
rectangle with round corners. In general, a statechart 
diagram contains several states and the transition 
definition between the states. Figure 3 shows four 
different types of States: 

• Initial states, symbolized with a filled circle, 
• Final states, symbolized with a point in a unfilled 

circle, 
• Atomic states, with a flat internal structure, 
• Normal states, which can contain additional en-

try or exit actions and can be substructured in 
further statechart diagrams. 

The transitions between the states are specified with 
an optional label, an event, an optional guard and the 
action part. The following code shows the corre-
sponding code of the statechart section of the model 
A1 (The new introduced statechart section is part of 
the Modelica language extension for model structural 
dynamics [6]): 

Figure 3. UMLH statechart diagram 

 
Figure 2. UMLH collaboration diagram 
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1 model A1 
2 ... 
3 statechart 
4 state A1SC extends State 
5   annotation(extent=[-88,86; 32,27]); 
6   state State1 
7     extends State; 
8     exit action x:=0; end exit; 
9   end State1; 

10   State1 state1  
    annotation(extent=[-66,62;-41,48]); 

11   State A3 annotation(extent=...); 
12   State I5(isInitial=true)...; 
13   State F7(isFinal=true)...; 
14   transition I5->state1 end transition 
15     annotation(points=[-76,73;-64,71;…]); 
16   transition l1:state1->A3  

    event on action x:= 2.0; 
17   end transition annotation(points=...); 
18   transition l2:A3->state1  

    event off guard y < 5 action x:=3.0; 
19   end transition ...; 
20   transition state1->F7 end transition   

    annotation...; 
21 end A1SC; 
22 end A1; 

2 Example for UMLH modeling 
The modelling and simulation of a simplified Pool-
Billiard game shall demonstrate the advantages of the 
graphical modelling with UMLH. 

2.1 Model of a Pool-Billard game 
The system model of the Pool-Billiard game includes 
sub models for the balls and the table. The configura-
tion of the system model is illustrated in Fig. 4. Fol-
lowing simplifications are assumed in the model: 

• The Pool-Billiard game knows only a black, a 
white and a coloured ball. 

• The table has only one hole instead of 6 holes. 
• The collision-model is strong simplified. 

• The balls are moving between the collisions and 
reflections only on straight directions in the di-
mension x and y. 

• The reflections on the borders take place ideal 
without any friction losses. 

• The rolling balls are slowed down with a linear 
friction coefficient rf : 

 ,x
x r x

dv dxm v f v
dt dt

⋅ = − ⋅ =  (1) 

 ,x
x r y

dv dym v f v
dt dt

⋅ = − ⋅ =  (2) 

Fig. 5 shows the statechart diagram for the ball 
model. After the model enter the state Rolling, the 
ball knows four reflection events, for the four differ-
ent borders of the billiard table. Depending from the 
border event, the new initial conditions (velocity and 
position) after the reflections are set and the ball 
enters again the state Rolling: 

1 model Ball 
2   extends MassPoint(m=0.2); 
3   parameter SIunits.Length width; 
4   parameter SIunits.Length length; 
5   parameter SIunits.Length d = 0.0572   

      "diameter"; 
6   parameter Real f_r = 0.1 

      "friction coefficient"; 
7   SIunits.Velocity v_x, v_y; 
8   event Boolean reflection_left 

      (start = false); 
  ... 

9   equation 
10     reflection_left = if x < d/2.0; 
11     m * der(v_x) = - v_x * f_r; 
12     der(x) = v_x; 

  ... 
13   statechart 
14     state BallSC extends State; 

 
Figure 5. UMLH statechart diagram of the ball model 

 
Figure 4. UMLH class diagram of the Pool-Billard model 
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15       State Rolling; 
16       State startState(isInitial=true); 

      ... 
17       transition startState -> Rolling 

        end transition; 
      ... 

18       transition Rolling->Rolling 
        event reflection_left 

19         action v_x := -v_x; x := d/2.0; 
20       end transition; 
21       ... 
22     end BallSC; 
23 end Ball; 

On the system level two different states (Playing and 
GameOver) and two types of events - the collision of 
two balls and the disappearance of a ball in the hole 
(compare with Fig. 6 and the program code) exist. If 
the white ball enters the hole, the game will be con-
tinued with the white ball from the starting point 
(transition from Playing to Playing). If the black 
ball disappears in the hole, the statechart is triggered 
to the state GameOver. If the coloured ball disap-
peared, the game is reduced for one ball - remove(bc) 
- and the numerical calculation will be continued with 
a smaller equation system (This model reduction 
mechanism takes place by using the model structural 
dynamics from MOSILAB [1]): 

1 model System 
2   parameter SIunits.Length d_balls = 0.0572; 
3   parameter SIunits.Length d_holes = 0.15; 
4   dynamic Ball bw, bb, bc; 

              // structural dynamic submodels 
5   Table t(width = 1.27, length = 2.54); 
6   event Boolean disappear_bw(start = false); 
7   event Boolean disappear_bb(start = false); 
8   event Boolean disappear_bc(start = false); 
9   event Boolean collision_bw_bb(start =false); 

  ... 
10   event Boolean push(start = false); 
11 equation 

12   push = if fabs(bw.v_x)<0.005 
              and fabs(bw.v_y)<0.005; 

13   disappear_bw = if((p[1].x-0)^2 
        + (p[1].y-0)^2)^0.5 < d_holes; 

14   collision_bw_bb = if((p[2].x-p[1].x)^2 
        + (p[2].y-p[1].y)^2)^0.5 < d_balls; 
  ... 

15 statechart 
16 state SystemSC extends State; 
17   State Playing, startState(isInitial=true), 

          GameOver; 
  ... 

18   transition startState -> Playing action 
19     bw := new Ball(d = d_balls,...); add(bw); 
20     bb := new Ball(...); add(bb); 
21     bc := new Ball(...); add(bc); 
22   end transition; 
23   transition Playing->Playing 

        event disappear_bw action 
     ... 

24      remove(bw); 
25      bw := new Ball(x(start=1.27/2.9), 

                    y(start=0.6)); 
26   end transition; 
27   transition Playing->Playing 

        event disappear_bc action 
28      ... 
29      remove(bb); 
30   end transition; 
31   transition Playing->GameOver 

        event disappear_bb end transition; 
32   transition Playing->Playing  

        event collision_bw_bb action 
33      v_x := bw.v_x; v_y := bw.v_y; 
34      bw.v_x := bb.v_x; bw.v_y := bb.v_y; 
35      bb.v_x := v_x; bb.v_y := v_y; 
36   end transition; 
37 end SystemSC; 
38 end System; 

2.2 Simulation experiment 
The following simulation experiment illustrates the 
previous explained behaviour of the Pool-Billiard 
game. The parameter of the model are set in a man-
ner, that all different types of events (1: collision of 
two balls, 2: reflection on a border, 3: disappearing in 
the hole) are present during the simulation experi-
ment (see Fig. 7). 

Figure 8 show the positions and the Figures 9 and 10 
the reflection and collision events of the white and 
the black ball during a simulation period of 4 sec-
onds. 

After 0.2 seconds, the white ball collides with the 
black ball. After 1 second, the blackball is reflected 
twice in a short time period on the top side on the 
billiard-table and both balls collide again between its 
reflections. After 2.3 and 2.5 seconds the balls reflect 
on the left border. At 2.95 seconds the white ball Figure 6. UMLH statechart diagram for the model 
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drops into the hole. At the end, the white ball is set 
again on its starting position. 

3 Conclusions 
The example of the modelling and simulation of a 
Pool-Billiard game has shown the advantages of the 
graphical modelling with UMLH for Modelica mod-
els. With UMLH, the design of a complex system 
model in Modelica begins with the drawing of its 
model structure. The class diagrams und the collabo-
ration diagrams describe the object-oriented model 
construction and the statechart diagrams are used for 
the formulation of the event-driven model behaviour. 
If the Modelica tool supports code generation like 
MOSILAB, the Modelica code can be obtain auto-
matically from the UMLH model. This pure code has 
to be filled up by the user with model equations 
(physical behaviour) of the modelled system. 
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Figure 7. Event types in the Pool-Billard game 

Figure 8. x- and y-positions of white and black ball. 

Figure 9. Collision events of white and black ball. 

 
 

  
Figure 10. Reflection events of the white ball (left) and the 

black ball (right) 
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Towards Unified System Modeling with the ModelicaML UML Profile 

Adrian Pop, David Akhvlediani, Peter Fritzson 
Programming Environments Lab, Sweden, {adro, petfr}@ida.liu.se 

In order to support the development of complex products, modeling tools and processes need to support co-
design of software and hardware in an integrated way. Modelica is the major object-oriented mathematical 
modeling language for component-oriented modeling of complex physical systems and UML is the dominant 
graphical modeling notation for software. In this paper we propose ModelicaML UML profile as an integra-
tion of Modelica and UML. The profile combines the major UML diagrams with Modelica graphic connec-
tion diagrams and is based on the System Modeling Language (SysML) profile. 

Introduction 
The development in system modeling has come to the 
point where complete modeling of systems is possi-
ble, e.g. the complete propulsion system, fuel system, 
hydraulic actuation system, etc., including embedded 
software can be modeled and simulated concurrently. 
This does not mean that all components are dealt with 
down to the very smallest details of their behavior. It 
does, however, mean that all functionality is modeled, 
at least qualitatively. In this paper, a UML profile for 
Modelica, named ModelicaML, is proposed. The 
ModelicaML UML profile is based on the OMG 
SysML™ (Systems Modeling Language) profile and 
reuses its artifacts required for system specification. 
SysML diagrams are also extended to support all 
Modelica constructs. We argue that with ModelicaML 
system engineers are able to specify entire systems, 
starting from requirements, continuing with behavior 
and finally perform system simulations. 

1 SysML and Modelica 
The Unified Modeling Language (UML) has been 
created to assist software development processes by 
providing means to capture software system structure 
and behavior. This evolved into the main standard for 
Model Driven Development [5]. The System Model-
ing Language (SysML) [4] is a graphical modeling 
language for systems engineering applications. 
SysML was developed by systems engineering ex-

perts, and was adopted by OMG in 2006. SysML is 
built on top of UML and tailored to the needs of sys-
tem engineers by supporting specification, analysis, 
design, verification and validation of broad range of 
systems and system-of-systems. 
The main goal behind SysML is to unify and replace 
different document-centric approaches in the system 
engineering field with a single systems modeling 
language. A single model-centric approach improves 
communication, assists to manage complex system 
design and allows its early validation and verification. 

The taxonomy of SysML diagrams is presented in 
Fig. 1. For a full description of SysML see (SysML, 
2006) [4]. The major SysML extensions compared to 
UML are: 

• Requirements diagrams support requirements 
presentation in tabular or in graphical notation, 
allows composition of requirements and supports 
traceability, verification and “fulfillment of re-
quirements”. 

• Block diagrams extend the Composite Structure 
diagram of UML2.0. The purpose of this diagram 
is to capture system components, their parts and 
connections between parts. Connections are han-
dled by means of connecting ports which may 
contain data, material or energy flows. 

• Parametric diagrams help perform engineering 
analysis such as performance analysis. Paramet-
ric diagrams contain constraint elements, which 
define mathematical equations, linked to proper-
ties of model elements. 

• Activity diagrams show system behavior as data 
and control flows. Activity diagrams are similar 
to Ext. Functional Flow Block Diagrams, which 
are already widely used by system engineers. Ac-
tivity decomposition is supported by SysML. 

Figure 1. SysML diagram taxonomy. 
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• Allocations are used to define mappings between 
model elements: For example, certain Activities 
may be allocated to Blocks (to be performed by 
the block). 

SysML block definitions (Fig. 2) can include proper-
ties to specify block parts, values and references to 
other blocks. A separate compartment is dedicated for 
each of these features. To describe the behavior of a 
block the “Operations” compartment is reused from 
UML and it lists operations that describe certain be-
havior. SysML defines a special form of an optional 
compartment for constraint definitions owned by a 
block. A “Namespace” compartment may appear if 
nested block definitions exist for a block. A “Struc-
ture” compartment may appear to show internal parts 
and connections between parts within a block defini-
tion. 
SysML defines two types of ports: standard ports and 
flow ports. Standard ports, which are reused from 
UML, are service-oriented ports required or provided 
by a block. Flow ports specify interaction points 
through which items may flow between blocks, and 
between blocks and environment. A flow port defini-
tion may include single item specification or complex 
flow specification through the FlowSpecification 
interface; flow ports define what “can” flow between 
the block and its environment. Flow direction can be 
specified for a flow port in SysML. SysML also de-
fines a notion of Item flows that specify “what” does 
flow in a particular usage context. 

1.1 Modelica 
Modelica [2] [3] is a modern language for equation-
based object-oriented mathematical modeling primar-
ily of physical systems. Several tools, ranging from 
open-source as OpenModelica [1], to commercial like 
Dymola [11] or MathModelica [10] support the Mod-
elica specification. 

The language allows defining models in a declarative 
manner, modularly and hierarchically and combining 

various formalisms expressible in the more general 
Modelica formalism. The multidomain capability of 
Modelica allows combining electrical, mechanical, 
hydraulic, thermodynamic, etc., model components 
within the same application model. In short, Modelica 
has improvements in several important areas: 

• Object-oriented mathematical modeling. This 
technique makes it possible to create model 
components, which are employed to support hi-
erarchical structuring, reuse, and evolution of 
large and complex models covering multiple 
technology domains. 

• Physical modeling of multiple application do-
mains. Model components can correspond to 
physical objects in the real world, in contrast to 
established techniques that require conversion to 
“signal” blocks with fixed input/output causality. 
In Modelica the structure of the model naturally 
correspond to the structure of the physical sys-
tem in contrast to block-oriented modeling tools. 

• Acausal modeling. Modeling is based on equa-
tions instead of assignment statements as in tra-
ditional input/output block abstractions. Direct 
use of equations significantly increases re-
usability of model components, since compo-
nents adapt to the data flow context in which 
they are used. 

Hierarchical system architectures can easily be de-
scribed with Modelica thanks to its powerful compo-
nent model. The Components are connected via the 
connection mechanism realized by the Modelica sys-
tem, which can be visualized in connection diagrams. 
The component framework realizes components and 
connections, and ensures that communication works 
over the connections. For systems composed of 
acausal components with behavior specified by equa-
tions, the direction of data flow, i.e., the causality is 
initially unspecified for connections between those 
components and the causality is automatically de-
duced by the compiler when needed. Components 
have well-defined interfaces consisting of ports, also 
known as connectors, to the external world. A com-
ponent may internally consist of other connected 
components, i.e., hierarchical modeling as in Fig. 3. 

1.2 SysML vs. Modelica 
The System Modeling Language (SysML) has re-
cently been proposed and defined as an extension of 
UML targeting at systems engineers. As previously 
stated, the goal of SysML is to unify different ap-Figure 2. SysML block definitions 
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proaches and languages used by system engineers 
into a single standard. SysML models may span dif-
ferent domains, for example, electrical, mechanical 
and software. Even if SysML provides means to de-
scribe system behavior like Activity and State Chart 
Diagrams, the precise behavior can not be described 
and simulated. In that respect, SysML is rather in-
complete compared to Modelica. 

Modelica also, was created to unify and extend ob-
ject-oriented mathematical modeling languages. It has 
powerful means for describing precise component 
behavior and functionality in a declarative way. Mod-
elica models can be graphically composed using 
Modelica connection diagrams which depict the 
structure of designed system. However, complex 
system design is more that just a component assem-
bly. In order to build a complex system, system engi-
neers have to gather requirements, specify system 
components, define system structure, define design 
alternatives, describe overall system behavior and 
perform its validation and verification. 

2 ModelicaML: a UML profile for 
Modelica 

ModelicaML reuses several diagrams types from 
SysML without any extension, extends some of them, 
and also provides several new ones. The ModelicaML 
diagram overview is shown in Fig. 4. Diagrams are 
grouped into four categories: Structure, Behavior, 
Simulation and Requirement. In the following we 
present the most important ModelicaML profile dia-
grams. The full description of the ModelicaML pro-
file is presented in [8]. The most important properties 
of the ModelicaML profile are outlined in the follow-
ing: 

• The ModelicaML profile supports modeling with 
all Modelica constructs and properties i.e. re-
stricted classes, equations, generics, discrete 
variables, etc. 

• Using ModelicaML diagrams it is possible to de-
scribe multiple aspects of a system being de-
signed and thus support system development 
process phases such as requirements analysis, 
design, implementation, verification, validation 
and integration. 

• ModelicaML is partly based on SysML, but re-
uses and extends its elements. 

• The profile supports mathematical modeling with 
equations since equations specify behavior of a 
(Modelica) system. Algorithm sections are also 
supported. 

• Simulation diagrams are introduced to model and 
document simulation parameters and results in a 
consistent and usable way. 

• The ModelicaML meta-model is consistent with 
SysML in order to provide SysML-to-
ModelicaML conversion. 

Three SysML diagram types have been partly reused 
and changed for the ModelicaML profile. The rest of 
the diagram types we used in ModelicaML un-
changed: 

• The SysML Block Definition Diagram has been 
updated and renamed to Modelica Class Dia-
gram. 

• The SysML Internal Block Diagram has been 
updated and renamed to Modelica Internal Class 
Diagram (some of the SysML constructs are dis-
abled). 

• The Package Diagram has been changed in order 
to fully support the Modelica language (i.e. 
Modelica package constants, Generic Packages, 
etc). 

• Other SysML diagram types such as Use Case 
Diagram, Activity Diagrams and Allocations, and 
State Machine Diagrams are included in Modeli-
caML without modifications. ModelicaML re-

Figure 4. ModelicaML diagrams overview Figure 3. Hierarchical model of an industrial robot. 
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uses Sequence Diagrams from SysML and 
changes the semantics of message passing. Mod-
elica doesn’t support method declaration within a 
single class but supports declaration of functions 
as a restricted class type.  

Thus, the following diagram types are available in the 
ModelicaML profile: 

• The Modelica Class Diagram usually describes 
class definitions and their relationships such as 
inheritance and containment. 

• The Modelica Internal Class Diagram describes 
the internal class structure and interconnections 
between parts. 

• The Package Diagram groups logically con-
nected user defined elements into packages. In 
ModelicaML the primarily purpose of this dia-
gram is to support the specifics of the Modelica 
packages. 

• Activity, Sequence, State Machine, Use Case, 
Parametric and Requirements diagrams have 
been reused without modification from SysML. 

• Two new diagrams, Simulation Diagram and 
Equation Diagram, not present in SysML, have 
been included in the ModelicaML profile. 

2.1 Package diagram 
A UML Package is a general purpose model element 
for grouping other elements within a separate name-
space. With a help of packages, designers are able 
group elements to correspond to different struc-
tures/views of a system. ModelicaML extends UML 
packages in order to support Modelica packaging 
features, in particular: package inheritance, generic 
packages, constant declaration within a package, 
package “instantiation” and renaming import (see [2] 
for Modelica packages details). 

A diagram which contains package elements and their 
relationships is called a Package Diagram. Modelica 
packages have a hierarchical structure containing 
package elements as nodes. In Modelica, packages 
are used to structure model elements into libraries. A 
snapshot of the Modelica Standard Library hierarchy 
is shown in Fig. 5 using UML notation. Package 
nodes in the hierarchy are connected via the package 
containment link as in the example in Fig. 6. 

2.2 Modelica class diagram 
Modelica uses restricted classes such as class, 
model, block, connector, function and record to 

describe a system. Modelica classes have essentially 
the same semantics as SysML blocks specified in [4] 
and provide a general-purpose capability to model 
systems as hierarchies of modular components. Mod-
elicaML extends SysML blocks by defining features 
which are relevant or unique to Modelica. The pur-
pose of the Modelica Class Diagram is to show fea-
tures of Modelica classes and relationships between 
classes. Additional kind of dependencies and associa-
tions between model elements may also be shown in 
a Modelica Class Diagram. For example, behavior 
description constructs – equations, may be associated 
with particular Modelica Classes. The detailed de-
scription of structural features of ModelicaML is 
provided below. ModelicaML structural extensions 
are defined based on the SysML block definition 
outlined in section 2. 

Modelica Class Definiton 
The graphical notation of ModelicaML class defini-
tions is shown in Fig. 7. Each class definition is 
adorned with a stereotype name that indicates the 
class type it represents. The ModelicaML Class Defi-
nition has several compartments to group its features: 
parameters, parts, variables. We designed the parame-

 
Figure 5. Package hierarchy modeling 

 

 
Figure 6. Package hierarchy modeling. 

Figure 7. ModelicaML class definitions 
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ters compartment separately from variables because 
the parameters need to be assigned values in order to 
simulate a model (see the Simulation Diagram later 
on). Some compartments are visible by default; some 
are optional and may be shown on ModelicaML Class 
Diagram with the help of a tool. Property signatures 
follow the Modelica textual syntax and not the 
SysML original syntax, reused from UML. A Modeli-
caML/SysML tool may allow users to choose be-
tween UML or Modelica style textual signature pres-
entation. Using Modelica syntax on a diagram has the 
advantage of being more compatible with Modelica 
and being more straightforward for Modelica users. 
The Modelica syntax is quite simple to learn even for 
users not acquainted with Modelica. 

ModelicaML provides extensions to SysML in order 
to support the full set of Modelica constructs and 
features. For example, ModelicaML defines unique 
class definition types ModelicaClass, Modeli-
caModel, ModelicaBlock, ModelicaConnector, 
ModelicaFunction and ModelicaRecord that corre-
spond to class, model, block, connector, function and 
record restricted Modelica classes. We included the 
Modelica specific restricted classes because a model-
ing tool needs to impose their semantic restrictions 
(for example a record cannot have equations, etc). 

Modelica internal class diagram 
The Modelica Internal Class Diagram is based on the 
SysML Internal Block Diagram but the connections 
are based on ModelicaConnector. The Modelica Class 
Diagram defines Modelica classes and relationships 
between classes, like generalizations, association and 
dependencies, whereas a Modelica Internal Class 
Diagram shows the internal structure of a class in 
terms of parts and connections. The Modelica Internal 
Class Diagram is similar to Modelica connection 
diagram, which presents parts in a graphical (icon) 
form. An example Modelica model presented as a 

Modelica Internal Class diagram is shown in Fig. 8. 

Usually Modelica models are presented graphically 
via Modelica connection diagrams (Fig. 8, bottom). 
Such diagrams are created by the modeler using a 
graphic connection editor by connecting together 
components from available libraries. Since both dia-
gram types are used to compose models and serve the 
same purpose, we briefly compare the Modelica con-
nection diagram to the Modelica Internal Class Dia-
gram. The main advantage of the Modelica connec-
tion diagram over the Internal Class Diagram is that it 
has better visual comprehension as components are 
shown via domain-specific icons known to applica-
tion modelers. Another advantage is that Modelica 
library developers are able to predefine connector 
locations on an icon, which are related to the seman-
tics of the component. In the case of a ModelicaML 
Internal Class Diagram a SysML/ModelicaML tool 
should somehow point out at which side of a rectan-
gular presentation of a part to place a port (connec-
tor). 

One of the advantages of the Internal Class Diagram 
is that it directly supports nested structures. However, 
nested structures are also available behind the icons 
in a Modelica connection diagram, thus using the 
drawing area more effectively. 

The main advantage of the Internal Class Diagram is 
that it highlights top-level Modelica model parame-
ters and variables specification in separate compart-
ments. 

Other SysML elements, such as Activities and Re-
quirements which do not exist in Modelica but are 
very important for additional model specification can 
be combined with both Internal Class Diagram and 
Modelica connection diagrams. 

2.3 Parametric diagrams vs. equation diagrams 
SysML defines Constraint blocks which specify 
mathematical expressions, like equations, to constrain 
physical properties of a system. Constraint blocks are 
defined in the Block Definition diagram and can be 
packaged into domain-specific libraries for later re-
use. There is a special diagram type called Parametric 
Diagram which relates block parameters with certain 
constraints blocks. The Parametric Diagram is in-
cluded in ModelicaML without any modifications to 
keep the compatibility with SysML. 

The Modelica class behavior is usually described by 
equations, which also constrain Modelica class pa-

Figure 8. ModelicaML internal class vs. ModelicaML 
connection diagram 
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rameters, and have a domain-specific usage. SysML 
constraint blocks are less powerful means of domain 
model description than Modelica equations. Modelica 
equations include some type of equations, which 
cannot be modeled using Constraint blocks, i.e.: if, 
for, when equations. Also, modeling complexity is an 
issue, as for example in Fig. 9 there are only four 
equations, and the diagram is already quite complex. 
However, grouping constraint blocks into libraries 
can be useful for system engineers who use Modelica 
and SysML. SysML Parametric diagram may be used 
during the initial design phase, when equations re-
lated to a class are being identified using Parametric 
Diagrams and finally associated (via an Equation 
Diagram) with a Modelica class or set of classes.  

In Fig. 10, Fig. 11 we present examples of behavior 
specification via Equation Diagrams in ModelicaML. 
Equations do not prescribe a certain data flow direc-
tion which means that the order in which equations 
appear in a model do not influence their meaning and 
semantics. The only requirement for a system of 
equations is to be solvable. For further details about 
Modelica equations, see [2]. Besides simple equality 
equations, Modelica allows other kind of equations be 
presented within a model. For each of such kind of 
equations (i.e. when/if/initial equations) ModelicaML 

defines a graphical construct. It’s up to designer to 
decide whether to use simple equations block repre-
sentation or specific construct for equation modeling. 
Algorithm sections are modeled similar to equations, 
as text. 

With a help of Equation Diagram top-down modeling 
approach is applied to behavior modeling. First, the 
primarily equations may be captured, then conditional 
constructs applied, equations text description substi-
tuted with mathematical expressions or even equa-
tions refactored by moving to other classes. In the 
similar way as Modelica classes are grouped by 
physical domain libraries, common equations can be 
packaged into domain-specific libraries and be reused 
during a design process. Moreover, equation con-
structs shown on Equation Diagram can be linked to 
Activity elements or with Requirement elements to 
show that a specific requirement has been fulfilled. 

2.4 Simulation diagram 
ModelicaML introduces a new diagram type, called 
Simulation Diagram (Fig. 12), used for simulation 
modeling. Simulation is usually performed by a simu-
lation tool which allows parameter setting, variable 
selection for output and plotting. The Simulation 
Diagram may be used to store any simulation experi-
ment, thus helping to keep the history of simulations 
and its results. When integrated with a modeling and 
simulation environment, a simulation diagram may be 
automatically generated. 

The Simulation Diagram provides facilities for simu-
lation planning, structured presentation of parameter 
passing and simulation results. Simulations can be 
run directly from the Simulation Diagram. Associa-
tion of simulation results with requirements from a 

Figure 9. Parametric diagram example 

 

Figure 11. ModelicaML nested/extern Equation diagrams 

partial class TwoPin 
  Pin p, n; 
  Voltage v; 
  Current i; 
equation 
  v = p.v – n.v; 
  0 = p.i + n.i; 
  i = p.i; 
end TwoPin; 
 
class Resistor 
  extends TwoPin; 
  parameter Real R 
       (unit = "Ohm"); 
equation 
  R * I = v; 
end Resistor; 
 

Figure 10. Equation modeling example with a Modelica 
Class Diagram. 
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domain expert and additional documentation (e.g. by: 
Note, Problem Rationale text boxes of SysML) are 
also supported by the Simulation Diagram. The Simu-
lation Diagram introduces new diagram elements: 
“Parameter” element and two stereotyped dependency 
associations, “simParameter” and “simResults”. Pa-
rameter values are associated with a class via sim-
Parameter for a simulation. Simulation results are 
associated with a model via simResults which specify 
which variable is to be plotted and for what time 
interval. 

For simulation purposes, the Simulation Diagram can 
be integrated with any Modelica modeling and simu-
lation environment. We are currently in the process of 
designing a ModelicaML development environment 
which integrates with the OpenModelica modeling 
and simulation environment.  

3 Conclusion and future work 
In this paper we propose the ModelicaML profile that 
integrates Modelica and UML. UML Statecharts and 
Modelica have been previously integrated, see e.g. 
[9][15]. SysML is rather new but it was already 
adopted for system on chip design [13] evaluated for 
code generation [14] or extended with bond graphs 
support [12]. 

The support for Modelica in ModelicaML allows 
precisely defining, specifying and simulating physical 
systems. Modelica provides the means for defining 
behavior for SysML block diagrams while the addi-
tional modeling capabilities of SysML provides addi-
tional modeling and specification power to Modelica 
(e.g. requirements and inheritance diagrams, etc). 

As a future project we plan to implement an Eclipse-
based [6] graphical editor for ModelicaML as a part 
of our Modelica Development Tooling (MDT) [7]. 
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Hybrid Dynamics in Modelica: Should all Events be  
Considered Synchronous 

Ramine Nikoukhah, INRIA-Rocquencourt, France, ramine.nikoukhah@inria.fr 

The Modelica specification is ambiguous as to whether all the events are synchronous are not. Different in-
terpretations are possible leading to considerable differences in the ways models should be constructed and 
compilers developed. In this paper we examine this issue and show that there exists an interpretation that is 
more appropriate than others leading to more efficient compilers. It turns out that this interpretation is not the 
one currently adopted by Dymola but it is closely related to the Scicos formalism. 

Introduction 
Modelica (www.modelica.org) is a language for mod-
eling physical systems. It has been originally devel-
oped for modeling systems obtained from the inter-
connection of components from different disciplines 
such as electrical circuits, hydraulic and thermody-
namics systems, etc. These components are repre-
sented symbolically in the language providing the 
compiler the ability to perform symbolic manipula-
tions on the resulting system of differential equations. 
This allows the usage of acausal components (equa-
tion based) without loss of performance. 

But Modelica is not limited to continuous-time mod-
els [1]; it can be used to construct hybrid systems, 
i.e., systems in which continuous-time and discrete-
time components interact. Modelica specification [2] 
tries to define the way these interactions should be 
interpreted and does so by inspiring from the formal-
ism of synchronous languages. Synchronous lan-
guages however deal with events, i.e., discrete-time 
dynamics. So in the context of Modelica, the concept 
of synchronism had to be extended to encompass 
continuous-time dynamics as well. It is exactly this 
extension which is the subject of this paper. 

Scicos (www.scicos.org) is a modeling and simula-
tion environment for hybrid systems. It is free soft-
ware, included in the scientific software package 
Scilab (www.scilab.org). Scicos formalism is based 
on the extension of synchronous languages, in par-
ticular Signal [3], to the hybrid environment. The 
class of models that Scicos is designed for is almost 
the same as that of Modelica. So it is not a surprise 
that Modelica and Scicos have many similar features 
and confront similar problems. Modelica has many 
advantages for modeling continuous-time dynamics, 
especially thanks to its ability to represent models in 
symbolic form, whereas the Scicos formalism has 

been specifically designed to allow high performance 
code generation of discrete-time dynamics. 

In this paper, we examine the specification of hybrid 
dynamics in Modelica and propose an interpretation 
that is fully compatible with the Scicos formalism. 
This interpretation, which is not contradictory with 
the official specification, allows us to obtain an effi-
cient compiler/code generator for Modelica inspired 
by the Scicos compiler. 

Here we start with a flat model (obtained from the 
application of a front-end compiler), and consider 
only the problems concerning the design of the phase 
one of a back-end compiler. This phase breaks down 
the code into independent asynchronous parts each of 
which can be compiled separately in phase two. 
Phase two will be presented in a subsequent paper. 

1 Conditioning and sub-sampling in 
Modelica 

If a model contains no conditioning and all of its parts 
function at the same rate, then back-end compilation 
would be a simple task. But in most real life applica-
tions, models contain different dynamics resulting 
from the inter-connection of heterogeneous systems. 
A model of such a system would often include condi-
tioning and sub-sampling. We use the term condition-
ing for a change in the model conditioned on the 
value of a variable (for example if a>0 then) and 
the term sub-sampling for the construction of a new, 
not necessarily regular, clock from a faster clock. 

The when-elsewhen and if-then-else clauses are 
the basic language constructs in Modelica for per-
forming conditioning and sub-sampling. The descrip-
tion of the ways these constructs function is ambigu-
ous in the Modelica specification. Comparing with 
the Scicos formalism, we can consider that Mode-
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lica’s if-then-else clause does conditioning and 
when does sub-sampling. But the situation is some-
what more complex because when plays two different 
roles. And, we need to distinguish these two different 
types of when clauses. But before, we need to exam-
ine the notion of synchronism in Modelica. 

1.1 Synchonous versus simultaneous 
In our interpretation of the Modelica specification, 
two events are considered synchronous only if they 
can be traced back to a single event source. For ex-
ample, in the following model: 

when sample(0,1) then 
   d = pre(d)+1; 
end when; 
when d>3 then 
   a = pre(a)+1; 
end when; 

the event d>3 is synchronous with the event sam-
ple(0,1). The former is the source of the latter. But 
in 

der(x) = x; 
when sample(0,1) then 
   d = pre(d)+1; 
end when; 
when x>3 then 
   a = pre(a)+1; 
end when; 

the two events are not synchronous. There is no 
unique source of activation at the origin of these 
events. So these events are considered asynchronous 
even if the two events are activated simultaneously; 
even if we can prove mathematically that they always 
occur simultaneously. 

Our basic assumption is that events detected by the 
zero-crossing mechanism of the numerical solver (or 
an equivalent mechanism used to improve perform-
ance) are always asynchronous. So even if they are 
detected simultaneously by the solver, by default they 
are treated sequentially in an arbitrary order. In par-
ticular, in the model: 

when sample(0,1) then 
  b = a; 
end when; 
when sample(0,1) then 
  a = b+1; 
end when; 

the variables a and b can be evaluated in any order. 

Dymola on the other hand assumes that all events are 
synchronous. In particular it assumes that all the 
equations in both when clauses may have to be satis-

fied simultaneously. That is why Dymola finds an 
algebraic loop in this example. 

To see the way Dymola proceeds, consider the fol-
lowing example: 

equation 
   der(x) = 1; 
   der(y) = 1; 
   when (x>2) then 
      z = pre(z)+3; 
      v = u+1; 
   end when; 
   when (y>2) then 
      u=z+1; 
   end when; 

The simulation shows that the equations (assign-
ments) are ordered as follows: 

z=pre(z)+3; u=z+1; v=u+1; 

this means that the content of a when clause is split 
into separate conditional clauses. In stark contrast, in 
our interpretation of the Modelica specification, the 
code within an asynchronous when clause is treated 
synchronously and never broken up. Both interpreta-
tions are valid and consistent; however our interpreta-
tion has many advantages as we will try to show here. 

At first glance, the non determinism that may be 
encountered in our approach when two zero-crossing 
events occur simultaneously may seem unacceptable. 
However, treating two simultaneous zero-crossings as 
synchronous is not a solution because it is not robust. 
Indeed, when dealing with nonlinear and complex 
models, there is no guarantee that the numerical 
solver would detect two zero-crossings simultane-
ously even if theoretically they are simultaneous. In 
general one is detected slightly before or after the 
other. And in any case, in most cases treating such an 
accidental synchronism is not of any use for the con-
struction of the model. Even if the model depends for 
some reason on the simultaneous detection of two 
events by the solver, a mechanism should be provided 
by the language to specify explicitly what should be 
done in that case. One way would be to introduce a 
switchwhen clause [4], which can be used to explic-
itly specify what equations are activated in every 
possible case. The possible cases when we have, for 
example, two zero-crossings are: the first surface has 
crossed but not the second, the second has crossed but 
not the first and finally both surfaces have crossed 
zero together. 

Dymola’s interpretation imposes constraints, which in 
most cases are useless. Moreover, when all zero-



+++ Hybr id  Dynamics  in Modelica +++  
SN

E 
17

/2
, 

Se
pt

em
be

r 
20

07
 

t N 

18 

crossing events are considered synchronous, the 
complexity of static scheduling increases with the 
number of zero-crossings. The solution based on 
using the switchwhen clause allows the user to spec-
ify explicitly what possible synchronisms must be 
considered. It turns out that in most cases, no syn-
chronism is to be considered. 

1.2 Primary and secondary when clauses 
So far we have seen two types of when clauses, or 
more specifically when clauses based on two types of 
events: events depending on variables evolving con-
tinuously in time such as time>3 or x<2 where x is a 
continuous variable; and events depending on discrete 
variables. when clauses conditioned on events of the 
former type are called primary, the latter ones are 
called secondary. 

An event associated with a secondary when clause is 
necessarily synchronous with events associated to one 
or more primary when clauses. These primary clauses 
are those in which the discrete variables involved in 
the definition of the event are defined. 

But not all when clauses can easily be classified as 
primary or secondary. Let us consider a simple exam-
ple: 

when sample(0,1) then 
   d = pre(d)+j; 
   c = b; 
end when; 
when time > d then 
   b = a; 
end when; 

The question is whether or not the above two when 
clauses are primary or not. Clearly the first one is, but 
the second hides in reality two distinct when clauses 
that is because the event time>d can be activated in 
two different ways: 

• time increases and crosses d continuously (zero-
crossing event so asynchronous), 

• at a sample time d jumps, activating the time>d 
condition; this event is clearly synchronized with 
sample(0,1). 

We call such when clauses mixed. We handle this 
situation by implementing the simulation in such a 
way that time>d is activated only when time crosses 
continuously d and placing a duplicate of the content 
of this when where d is defined within a condition 
that guarantees that the content is activated only if 

time>d is activated due to a jump: 

when sample(0,1) then 
   d = pre(d)+j; 
   c = b; 
   if ((time>d) and not(time>pre(d))) then 
      b = a; 
   end if; 
end when; 
when time>d then 
   b = a; 
end when; 

The second solution amounts to considering that a 
clause such as when c>0 where c is a continuous 
variable is activated only if c crosses zero continu-
ously (the way that is detected by zero-crossing 
mechanisms built into numerical solvers such as 
LSODAR or DASKR). This seems to be an appropri-
ate way to handle mixed when clauses, however to 
stay compatible with the Modelica specification, at a 
pre-compilation phase, the content of these clauses 
must be duplicated as explained above. 

Note that the code we obtain after the pre-compilation 
phase is not correct according to the Modelictcifica-
tion (because b is defined twice). This however is not 
a problem because this code is only used within the 
compiler. But in any case, we consider this restriction 
too restrictive and we think it should be relaxed. This 
will be discussed later. 

There still remains a situation that needs clarification. 
Consider the following example: 

discrete Real a(start=0); 
Real x(start=0); 
equation 
   der(x)=0; 
   when x>3 then 
      a = pre(a)+1; 
   end when; 
   when time>2 then 
      reinit(x,x+4); 
   end when; 

Here x is a continuous variable, but it is also discrete 
because at time 2 it jumps from 0 to 4 (activation of 
reinit). This jump activates the content of the first 
when. The reinit primitive in this case must be consid-
ered as a definition of “discrete” x, so following the 
rule discussed previously, the content of the clause 
when x>3 must be copied inside the other when: 

discrete Real a(start=0); 
Real x(start=0); 
equation 
   der(x) = 0; 
   when x>3 then 
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      a = pre(a)+1; 
   end when; 
   when time>2 then 
      reinit(x,x+4); 
      if edge(x>3) then 
         a = pre(a)+1; 
      end if; 
   end when; 

This transformation is just a special case of the situa-
tion we have considered previously. To see this more 
clearly, note that 

when time>2 then 
   reinit(x,x+4); 
end when; 

should really be expressed as follows 

when time>2 then 
   x = pre(x)+4; 
end when; 

1.3 Restrictions on the use of when and if 
Modelica imposes hard constraints on the usage of 
when and if-then-else clauses. 

In the case of when, a variable is not allowed to be 
defined in two when clauses. For example, the follow-
ing code is not allowed in an equation section: 

when sample(0,1) then 
   b = pre(b)+1 ; 
end when; 
when time>3.5 then 
   b = 0; 
end when; 

According to the specification, this can lead to a con-
tradiction if the two when clauses are activated at the 
same time. This statement would make sense if the 
two when clauses were synchronous but not in this 
case. Lifting this restriction, in the case of primary 
when clauses, is without danger and facilitates the task 
of modeling in many situations. However, it creates 
an important difference as far some interpretation of 
the primitive pre is concerned. With the current re-
striction, we are sure that in the following code: 

when sample(0,1) then 
   b = pre(b)+1 ; 
end when; 

pre(b) is the previous value of b defined by 
b=pre(b)+1 the last time this when clause was acti-
vated, i.e. one unit of time before. So without even 
having to examine the rest of the code, we can be sure 
that b indicates the time. This will no longer be true if 
the constraint is lifted; consider: 

when sample(0,1) then 
   b = pre(b)+1; 
end when; 
when sample(.5,1) then 
   b = pre(b)+1; 
end when; 

In this case the value of b used to update it in each 
clause is computed by the instruction in the other 
clause. But this is not a problem as long as the rules 
are clear. 
We thus propose the following modifications: this 
restriction be lifted for primary when clauses and this 
restriction be lifted in all when clauses as long as the 
equations defining common variables are identical 
(such identical equations can arise in transformations 
applied by the compiler which includes duplicating 
parts of the code). For example for all conditions c1, 
c2 (synchronous or not), accept: 

equation 
   when c1 then 
      b = a; 
   end when; 
   when c2 then 
      b = a; 
   end when; 

The second modification may seem strange. Indeed 
why would a model contain identical statements in 
synchronous when clauses. The reason is that our 
Modelica compiler performs a series of transforma-
tions each one generating a new Modelica code from 
a Modelica code in which such a situation may come 
up (this happens in particular when processing the 
union of events construct, see Section 1.6). By lifting 
this restriction, we make sure that we obtain a valid 
Modelica code at every stage. But a specific test must 
be applied to the original model to issue at least a 
warning to the user for such cases. 
Another important restriction concerns the use of 
elsewhen. The Modelica specification states that all 
the branches of a when-elsewhen clause must define 
the same set of variables. We don’t believe this con-
straint is justified. This constraint is probably a con-
sequence of a similar condition on the use of if-
then-else clauses. Indeed Modelica imposes that the 
number of equations in different branches of such a 
clause be identical. This may be acceptable as far as 
continuous-time variables are concerned—removing 
the restriction in the continuous case makes it possi-
ble to model Simulink’s enabled Super Blocks in 
Modelica—, but it is not for discrete variables. So we 
propose to lift this restriction and accept models in-
cluding for example the following code: 
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equation 
   when sample(0,1) then 
      if u>0 then 
         v = 1; 
      end if; 
   end when; 

Normally in Modelica we should have an else 
branch defining v. Note that our proposal is not just 
an editing facility (i.e., a way to avoid writing code 
which can be added in automatically later); this code 
is not equivalent to 

equation 
   when sample(0,1) then 
      if u>0 then 
         v = 1; 
      else 
         v = pre(v); 
      end if; 
   end when; 

In the absence of the else branch, the variable v is 
sub-sampled. This would not be the case if v=pre(v) 
were used. Even if the simulation result would be the 
same, the construction by sub-sampling leads to the 
generation of more efficient code. Lifting this restric-
tion is again important for transformed models. A 
specific test can be used on the original model to 
impose the constraint if desired. 

1.4 Continuous time dynamics 
Our objective is to reduce the Modelica code into a 
number of asynchronous when clauses each of which 
can be treated separately. The continuous dynamics is 
no exception. What we call continuous dynamics 
includes everything within the equation section but 
outside when clauses. These equations are always 
active (Scicos terminology) even when a when clause 
is activated. So these equations are synchronous with 
all the when clauses. 

The way this situation is handled in Scicos is to intro-
duce a fictitious clock generating a continuous activa-
tion signal. To do the same in Modelica amounts to 
defining a special when clause: 

when continuous then 

the content of which would be active all the time 
except at event instances associated to other when 
clauses. Doing so allows us to consider the continu-
ous event as asynchronous with the rest and treat this 
when clause as primary. To preserve the dynamics of 
the original model, the continuous dynamic equations 
must also be copied inside all the when clauses. For 

example: 

equation 
   y = sin(time); 
   der(x) = y; 
   when x<.2 then 
      a=y; 
   end when; 

becomes 

equation 
   when continuous then 
      y = sin(time); 
      der(x) = y; 
   end when; 
   when x<.2 then 
      y = sin(time); 
      der(x) = y; 
      a=y; 
   end when; 

During the simulation, the content of the when con-
tinuous clause is used to respond to the queries of 
the numerical solver, and in particular to generate the 
value of der(x) in this case. In other when clauses, 
the equations defining derivative values can be 
dropped, especially in the explicit case. In the implicit 
case (DAE case), the computation of the derivatives 
can be used to help the re-initialization of the solver. 

The point to retain from this section is that the clause 
when continuous is primary and that its content can 
be treated like any other. 

1.5 Initial conditions 
In Modelica, variables can be initialized in different 
ways but in a flat model (after the application of the 
front end), they should all be grouped within a single 
when clause: 

when initial then 
   a = 0; 
   d = 3; 
   ... 
end when 

This would be a primary when clause and would con-
tain the initialization of all discrete and continuous 
variables. 

A when terminal clause can similarly be used to 
specify whatever needs to be done at the end of the 
simulation. 

1.6 Union of events 
The when and elsewhen clauses can be activated at 
the union of events. In Modelica the syntax is as 
follows: 
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when {c1, c2, c3} then 
   < eq1 > 
   < eq2 > 
end when; 

In this case, c1, c2, c3 may be synchronous or not. 
Note that the content of synchronous when clauses 
should not be executed more than once. For example 
in: 

when sample(0,1) then 
   d = pre(d)+1; 
end when; 
when {d>2, 2*d>4} then 
   a = pre(a)+1 ; 
end when; 

a must be incremented only once, passing from zero 
to one. But in: 

when sample(0,1) then 
   d = pre(d)+1; 
end when; 
when sample(0,1) then 
   e = pre(e)+1; 
end when; 
when {d>2, e>2} then 
   a = pre(a)+1; 
end when; 

a is incremented twice (its value must jump from zero 
to two). But Dymola considers the d>2 and e>2 syn-
chronous and increments a just once in this case. 
Similarly in: 

when sample(0,3) then 
   d = pre(d)+1; 
end when; 
when time>=3 then 
   e = pre(e)+1; 
end when; 
when {d>1, e>0} then 
   a = pre(a)+1; 
end when; 

in Dymola d>1, e>0 are synchronous (a is incre-
mented only once at time 3). As we have said previ-
ously, we think that this interpretation must be 
avoided. 

The counterpart of the union of events is the sum of 
activation signals in Scicos. The two formalisms 
coincide perfectly in this case. 

In one of the early phases of the compilation of Mod-
elica code, we propose the following transformation 
which removes all event unions. For example the first 
when clause presented in this section would be trans-
formed as follows: 

when c1 then 
   < eq1 > 
   < eq2 > 

end when; 
when c2 then 
   < eq1 > 
   < eq2 > 
end when; 
when c3 then 
   < eq1 > 
   < eq2 > 
end when; 

This code is correct if we take into account all the 
modifications suggested previously whether the ci, 
i=1,2,3, are synchronous or not. 

2 Back-end compiler 
The back-end compiler can be divided into two 
phases. The objective of the first phase is to transform 
the model into one in which all the when clauses are 
primary. This will allow us to generate, in phase two, 
static code for each one independently of the others. 

Consider the following example: 
when time>3 then 
   d = pre(d)+1; 
end when; 
when d>3 then 
   a = pre(a)+1; 
end when; 
when a>3 then 
   b = a; 
end when; 

We want to remove the secondary when clauses. 
Clearly in this case we have to remove the last two 
when clauses. We pick one (say when a>3) and copy 
its content everywhere the variables involved in the 
definition of the corresponding event are computed. 
In this case the only variable involved is a, which is 
defined in the second when clause: 

when time>3 then 
   d = pre(d)+1; 
end when; 
when d>3 then 
   a = pre(a)+1; 
   if edge(a>3) then 
      b > a; 
   end if; 
end when; 

and then 
when time>3 then 
   d = pre(d)+1; 
   if edge(d>3) then 
      a = pre(a)+1; 
      if edge(a>3) then 
         b > a; 
      end if; 
   end if; 
end when; 
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This example shows how secondary when clauses can 
be removed to obtain a single primary when clause at 
the end. If the model contains more than one primary 
when clause, the procedure would still be the same as 
illustrated in the following example: 

when time>2 then a = 1; end when; 
when time>3 then b = pre(b)+1; end when; 
when a>b then c = 1; end when; 

In this case the first two when clauses are primary. We 
now remove the secondary when: 

when time>2 then 
   a = 1; 
   if edge(a>b) then 
      c = 1; 
   end if; 
end when; 
when time>3 then 
   b = pre(b)+1; 
   if edge(a>b) then 
      c = 1; 
   end if; 
end when; 

In this example, a variable is defined twice in two 
different primary (so asynchronous) when clauses. 
Clearly, this is not a problem. But the application of 
the transformation, can also lead to a variable being 
defined more than once in the same when clause. Let 
us examine the following example: 

when time>2 then 
   a = pre(a)+1; 
end when; 
when a>d then 
   b = pre(b)+1; 
end when; 
when {a>2,b>2} then 
   n = pre(n)+1; 
end when; 

We start by removing the operator “union of events”. 
Then we remove the secondary clauses as previously 
described. We obtain (in two steps): 

when time>2 then 
   a = pre(a)+1; 
   if edge(a>d) then 
      n = pre(n)+1; 
   end if; 
   if edge(a>2) then 
      b = pre(b)+1; 
      if edge(b>2) then 
         n = pre(n)+1; 
      end if; 
   end if; 
end when; 

This code, once edge replaced with its definition, 
may seem to be ordered properly and usable as a 

sequential code. But this is not the case since 
n=pre(n)+1, in some cases, can be executed twice 
instead of once. As discussed in the previous section, 
it is allowed to have a variable defined twice syn-
chronously as long as the equations defining it are 
identical. This is of course the case here (this is the 
case in general when it happens because of the appli-
cation of our transformations).The second phase of 
the compilation will transform the code into a sequen-
tial code correctly. 

3 Conclusion 
We have examined the notion of synchronism in 
Modelica and have shown that by abandoning the 
fully synchronous assumption, it is possible to design 
more efficient compilers without loss of rigor in the 
language specification. We have done that by propos-
ing a methodology to implement the first phase of a 
back-end compiler. The second phase, which is 
closely related to the second phase of the Scicos 
compiler, will be presented in a future. 
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Enhancing Modelica towards Variable Structure Systems 

Dirk Zimmer, ETH Zürich, Switzerland, dzimmer@inf.ethz.ch  

This paper explains the motivation behind variable structure systems and analyses the current Modelica lan-
guage with respect to those concerns. The major flaws and shortcomings are discussed to raise the awareness 
for the most relevant problem sets. Furthermore we sketch our current research activity in broad terms and 
explain our approach that consists of a new modeling language. Finally, a small example is presented. 

1 Motivation 
Many contemporary models contain structural 
changes at simulation run time. These systems are 
typically denoted by the collective term: variable 
structure systems. The motivations that lead to the 
generation of such systems are manifold: 

• The structural change is caused by ideal switch-
ing processes. Classic examples are ideal switch-
ing processes in electric circuits, rigid mechani-
cal elements that can break apart, e.g. a breaking 
pendulum or reconfiguration of robot models [4]. 

• The model features a variable number of vari-
ables: This issue typically concerns social or traf-
fic simulations that feature a variable number of 
agents or entities, respectively. 

• The variability in structure is to be used for rea-
sons of efficiency: A bent beam should be mod-
eled in more detail at the point of the buckling 
and more sparsely in the remaining regions. 

• The variability in structure results from user in-
teraction: When the user is allowed to create or 
connect certain components at run time, this usu-
ally reflects a structural change. 

The term variable structure system turns out to be a 
rather general term that applies to a number of differ-
ent modeling paradigms, such as adaptive meshes in 
finite elements, discrete communication models of 
flexible computer networks, etc. We focus on the 
paradigm that is represented by Modelica: declarative 
models that are based on DAEs with hybrid exten-
sions. Within such a paradigm, a structural change is 
typically reflected by a change in the set of variables, 
and by a change in the set of relations (i.e., equations) 
between these time-dependent variables. These 
changes may lead to severe changes in the model 
structure. This concerns the causalization of the equa-
tion system, as well as the perturbation index of the 
DAE system. 

A general modeling language supporting variable 
structure systems offers a number of important bene-

fits. Such a potential language incorporates a general 
modeling methodology that enables the convenient 
capture of knowledge concerning variable structure 
systems, and provides means for organizing and shar-
ing that knowledge both by industry and science. A 
corresponding simulator is a valuable tool for engi-
neering and science education. 
In concrete terms, our research is intended to aid the 
further extension of the Modelica framework. This 
benefits primarily the prevalent application areas of 
mechanics and electronics. 

• Ideal switching processes in electronic circuits 
(resulting from ideal switches, diodes, and thyris-
tors) can be more generally modeled. Occurring 
structural singularities can be handled at run 
time. 

• The modeling of ideal transitions in mechanical 
models, like breaking processes or the transition 
from friction to stiction, become a more amena-
ble task. 

Additional applications may occur in domains that 
are currently foreign to Modelica. This might concern 
for instance: hybrid economic or social simulations 
that contain a variable number of entities or agents, 
respectively, and traffic simulations. 
Finally, more elaborate modeling techniques become 
feasible. For instance multilevel models can be de-
veloped, whereby the appropriate level of detail is 
chosen at simulation run time in response to computa-
tional demands and/or level of interest. 

2 Analysis of Modelica 
Unfortunately, the modeling of variable structure 
systems within the current Modelica framework is 
very limited. This is partly due to a number of techni-
cal restrictions that mostly originate from the static 
treatment of the DAEs. Specific techniques, like 
inline-integrations [2] can help in certain situations, 
but they do not provide a general solution. Although 
the technical restrictions represent a major limiting 
factor, other issues need to be concerned as well. An 
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important problem is the lack of expressiveness in the 
Modelica-language. 
To get a better understanding, we analyze the Mode-
lica language with respect to the modeling of struc-
tural changes and list the most problematic points in 
the following subsections. 

2.1 Lack of conditional declarations 
Modelica is a declarative language that is based upon 
the declaration of equations, basic variables and sub-
models. Modelica offers conditional blocks (i. e.: if, 
when) that enable the convenient formulation of 
changes in the system-equations. However, the decla-
ration of variables or sub-models is kept away from 
these conditional blocks and is restricted to the un-
conditional header-section. Hence there is no mecha-
nism for instance creation or removal at run-time (in 
fact, there exists a small mechanism for conditional 
declaration in Modelica that is supported by Dymola, 
but the conditions are based upon parameters and the 
way it is done restricts the access on such a condi-
tional object to connect-statements). 

2.2 No dynamic linking 
The linking of an identifier to its instance is always 
static in Modelica. To conveniently handle objects 
that are created at run time, a dynamic linking of 
identifiers to their instances becomes desirable. Con-
sequently, the linking must be assigned by the use of 
appropriate operators. Sub-models have now to be 
treatable as an entity. 

2.3 Nontransparent type system 
Such assignments that operate on complete model-
instances also increase the emphasis on the type 
analysis like type-compatibility. Modelica is based on 
a structural type system [1] that represents a powerful 
and yet simple approach. Sadly, the actual type is not 
made evident in the language for a human reader 
since type members and non-type members mix in the 
header-section. Also the header section itself might be 
partitioned in different parts. Hence it becomes hard 
to identify the type of sub-models just by reading its 
declaration. This becomes a crucial issue when ob-
jects need to be treated dynamically. 

2.4 Accessing the environment 
Each model in Modelica is defined as a closed entity 
that cannot access by itself any outside variables. 
Whereas such a restriction is meaningful in most of 
the cases, it is inappropriate for certain tasks. One of 
these tasks is for instance the automatic connection of 
mass-holding objects to a gravity field. Modelica 

offers the concept of outer-models for this purpose. 
Unfortunately this approach is quite limited and 
represents not a feasible approach for more complex 
data-structures. At most, outer models could be used 
to create pools for mutual gravitational attraction [8] 
or potential collisions [3]. But to enable such pools, 
the single-pool members had to be manually assigned 
to an appropriate integer-ID. This is not a convenient 
solution. 

The dynamic creation of sub-models increases the 
importance of a feasible solution for this task. When 
objects are created dynamically, they also need to be 
connected to other objects in their environment. Con-
nections to other sub-models need to be established 
automatically at simulation time. 

2.5 Insufficient handling of discrete events 
Processes for the creation, removal and handling of 
dynamic instances represent discrete processes. 
Hence a powerful support for discrete-event handling 
is necessary. Modelica offers hybrid extension for 
such modeling tasks that are inspired by the synchro-
nous data-flow principle [5]. However, for larger 
systems the current implementation may lead to an 
computational overkill and hence more elaborated 
concepts are needed. 

The creation and connection have to be managed by 
discrete events. During such a construction process, 
singular equation systems may temporarily occur. 
However, they are not meant to be evaluated. Thus, a 
synchronous evaluation of the complete system repre-
sents an infeasible approach for such tasks, since it 
can lead to the inappropriate evaluation of intermit-
tent singular systems. 

In addition, the discrete event handling is insuffi-
ciently specified in the Modelica language definition. 
There is a clear lack of specification for describing 
what is supposed to happen exactly if one event is 
subsequently causing (or canceling) other events 
during the same point of simulation time. This con-
cerns for example the MultiBondLib [8] and its im-
pulse-models. The correctness of these models cannot 
be proven on the basis of the language-specification. 
Indeed, the correct simulation of these models is 
bound to the specific implementation in Dymola. 

2.6 Tedious complexity 
In the attempt to enhance the Modelica-language with 
regard to certain applicationspecific tasks, the origi-
nal language has lost some of its original beauty and 
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clarity. An increasing amount of specific elements 
have been added to the language that come with 
rather small advantages. Several of these small add-
ons are potential sources for problems when struc-
tural variability is concerned. Thus, a clean-up of the 
language is an inevitable prerequisite for any further 
development in this field. Furthermore the language 
is subverted in daily practice by foreign elements, i.e., 
so-called annotations. 

2.7 Summary 
To express structural changes, a corresponding mod-
eling language has to meet certain requirements. The 
language must support discrete events and hence 
support hybrid modeling, since structural changes 
clearly represent a discrete event. Furthermore, it 
must be allowed to state relations between variables 
or sub-models in a conditional form, so that the struc-
ture can change depending on time and state. In addi-
tion, variables and sub-models should be dynamically 
declarable, so that the corresponding instances can be 
created, handled, and deleted at run time. Modelica 
meets these requirements only partly and provides 
only very limited means for the description of such 
models. 

2.8 MOSILAB 
MOSILAB[7] offers a first approach to handling 
variable structure systems in a more general sense. It 
combines an extensive subset of Modelica with a 
description language for state charts to handle the 
transition between different modeling modes. MOSI-
LAB features the dynamic creation of sub-model 
instances, although it does so in a limited way. For us, 
the use of state charts represents a practical but lim-
ited solution. However, state charts do not integrate 
too well into the object-oriented and declarative 
framework of Modelica. Hence the complexity of the 
language had to be increased significantly and the 
beauty and clarity of the original Modelica language 
suffered in the process of extending the language. 

3 Sol - A derivative language of Modelica 
In attempting an enhancement of Modelica's capabili-
ties with respect to variable structure systems, one 
arrives at the conclusion that a straight-forward ex-
tension of the language will not lead to a persistent 
solution. The introduction of additional dynamics 
inevitably violates some of the fundamental assump-
tions of the original language design and of its corre-
sponding translation and simulation mechanisms. 

Hence we have taken the decision to design a new 
language, optimized to suit the new set of demands. 
This language is called Sol. In the design process, we 
intend to maintain as much of the essence of Mode-
lica as possible. To this end, we review the major 
strengths of Modelica: 

• Modelica owns natural readable, intuitive syntax. 
Models can be understood even by outsiders, and 
beginners are enabled to quickly acquaint them-
selves with the language. 

• The declarative, equation-based modeling ap-
proach enables the modeler to concentrate on 
what should be modeled, rather than forcing him 
or her to consider, how precisely the model is to 
be simulated. 

• Modelica offers convenient object-oriented 
means for the organization of knowledge and 
type-generation. This makes large projects feasi-
ble and eases the knowledge transfer. 

• The structural type-system of Modelica separates 
type-generation and implementation. Thus, even 
separate implementations can be compatible and 
exchangeable. The generic connection mecha-
nism enables intuitive and convenient modeling. 

3.1 Sol – A new language for variable structure 
systems 

All those considerations of the previous sections have 
been taken into account for the design process of Sol. 
The decision to design a new language enables us to 
take a more radical, conceptually stronger approach. 
Hence, Sol attempts to be a language of low complex-
ity that still enables a high degree of expressiveness. 

Like Modelica, Sol provides means for declaring 
synchronous, non-causal relations between variables 
(i.e., equations). As an extension to Modelica, we 
furthermore offer a convenient way for declaring 
asynchronous, causal transmissions from one variable 
(or sub-model) to another. All of these declarations 
can be grouped in an almost arbitrary fashion. These 
groups of declarations may be activated or deacti-
vated in accordance with conditions, events or prede-
termined sequences. 

Unlike in Modelica, also the declaration of variables 
and sub-models can occur at the beginning of each 
group or subgroup. Since these groups can be stated 
in a conditional form, variables and sub-models may 
be dynamically created and deleted at run time. 
Hence instance creation and deletion does not need to 
be stated in the (typical) imperative form. It results 
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from the activation and deactivation of declarative 
groups. The dynamically created objects can be han-
dled in an unambiguous way by the declaration of 
asynchronous transmissions. Identifiers can also link 
dynamically to an instance. 

Hence systems that are expressed in Sol are described 
in a constructive way, where the path of construction 
and the corresponding interrelations might change in 
dependence on the current system’s state or on cur-
rent evaluations. Conditional declarations enable a 
high degree of variability in structure. The construc-
tive approach avoids memory leaks and the descrip-
tion of error-prone update-processes. 

The new language will be well-structured, easily 
readable, and intuitive to understand. The language 
will provide various object-oriented tools that enable 
the efficient handling of complex systems. The syntax 
and grammar of Sol is significantly stricter than the 
grammar of Modelica. Alternative writings have been 
discarded and the different sections of a model must 
obey a given order. This strictness unifies the writing 
and intends to guide towards a clear and understand-
able modeling style. 

3.2 Example 
Without going into the details concerning Sol’s 
grammar and semantics, we provide a small, intro-
ductory example to show its potential usage. Due to 
Sol’s similarity to Modelica and its intuitive syntax, 
the example should be understandable in its main 
functionality. In addition to classic equations Sol 
features copy-transmission (<<) and move-
transmissions (<-). We model a simple machine, con-
sisting of an engine that drives a fly-wheel. Two 
models are provided for the engine: The first model 
“Engine1” applies a constant torque on the flange. In 
the second model “Engine2”, the torque is dependent 
on the positional state similar to a piston-engine. The 
machine-model connects the engine and the fly-
wheel. It contains a structural change that is reflected 
by a substitution of the engine-models. Initially, the 
fly-wheel is at rest, and the more complex engine 
model is used. When the speed exceeds a certain 
threshold, it seems appropriate to average the torque. 
Thus, the simpler engine-model is used instead. 

The structural change is contained in the model Ma-
chine. It declares a Boolean state-variable fast that 
determines which model to use. Please note, that the 
conditional if-clauses also contain declarations of 

sub-models. This enables a convenient, easily read-
able formulation of the structural change based on the 
current system state. There is also no need for an 
explicit model of the transition or manual disconnec-
tions. 

The example code below presents an alternative solu-
tion for the machine-model. The identifier E is de-
clared to be dynamic. This means: It can be dynami-
cally linked to any model-instance that is type-
compatible with Engine. The corresponding instances 
are simply declared anonymously in the conditional 
when-clauses. The type of a model is solely defined 
by its interface-section. 

1 model Machine 
2  implementation: 

package Rotational 
connector Flange 
   interface: 
      static potential Real phi; 
      static flow Real t; 
end flange; 
partial model Engine 
   interface: 
      parameter Real meanTorque << 1; 
      static Flange f; 
end Engine; 
model Engine1 extends Engine; 
   implementation: 
      f.t = meapnTorque; 
end Engine1; 
model Engine2 extends Engine; 
   implementation: 
      static Real transmission; 
      transmission = 1+sin(f.phi); 
      f.t = meanTorque*transmission; 
end Engine2; 
model FlyWheel 
   interface: 
      parameter Real inertia << 1; 
      static Flange f; 
      static Real w; 
   implementation: 
      static Real z; 
      w = der(f.phi); 
      z = der(w); 
      f.t = inertia*z; 
      when initial  
             then w=0; f.phi=0; end; 
end FlyWheel; 
model Machine 
 implementation: 
   static FlyWheel Wheel1{inertia << 10}; 
   static Boolean fast; 
   if fast then 
     static Engine1 E{meanTorque << 100}; 
     connection(E.f,Wheel1.f); 
   else then 
     static Engine2 E{meanTorque << 100}; 
     connection(E.f,Wheel1.f); 
   end; 
 
   when initial then fast << false; end; 
   when Wheel1.w > 50  
            then fast << true; end; 
end Machine; 
end Rotational; 
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3    static FlyWheel Wheel1{inertia << 10}; 
4    dynamic Engine E; 
5    connection(E.f,Wheel1.f); 
6    when initial then 
7       E <- Engine2{meanTorque << 100}; 
8    end; 
9    when Wheel1.w > 50 then 

10       E <- Engine1{meanTorque << 100}; 
11    end; 
12 end Machine; 

This simple example contains only a very simple 
structural change that is basically reflected by the 
replacement of a single equation. Hence this could 
have also been modeled in Modelica, but not at this 
level of abstraction. The complete replacement of a 
model, as it is done here, can as well be used for more 
elaborate multi-level models. 

4 Implementation and on-going 
development 

A first version of the language definition of Sol has 
been written down in the form of an internal report. It 
forms the fundamentals for a corresponding imple-
mentation that is currently under development. This 
implementation will be represented by an interpreter 
that parses the model-file, instantiates a selected 
model and starts simulation. In addition to its main 
task, the interpreter will provide various tools for the 
analysis of the object-hierarchy, type-structure, etc. 

Whereas the pair of a compiler and a simulator is the 
preferred choice for high-end simulation tasks, an 
interpreter is an appropriate tool for research work on 
language design. The development process becomes 
much easier, faster and more flexible. Hence the 
development of the interpreter can proceed in parallel 
with a further refinement of the language. Also, new 
debugging techniques will be needed that can be 
better provided by an interpreter, since all necessary 
meta-information is available. Of course, any inter-
preter (even if it is well written) suffers from a certain 
computational overhead that may prevent its usage 
for highly demanding simulation applications. Hence 
an important aspect will be to sketch the development 
of a corresponding compiler. 

4.1 Future goals 
Sol is a language primarily conceived for research 
purposes. We want to explore the full power of a 
declarative modeling approach and how it can handle 
potential, future problem fields. Some of our goals 
and motivations are similar to [6], although we are 
coming from a different direction. The implementa-

tion of Sol will be a small and open project that 
should enable other researchers to test and validate 
their ideas with a moderate effort. The longer term 
goal of our research is to significantly extend Mode-
lica’s expressiveness and range of application. Fur-
thermore, the Sol-project gives us a development-
platform for technical solutions that concerns the 
handling of structurally changing equation systems. 
This includes solutions for dynamic recausalization or 
the dynamic handling of structural singularities. 

It is not our target to immediately change the Mode-
lica standard or to establish an alternative modeling 
language. Our scientific work is intended to merely 
offer suggestions and guidance for future develop-
ment. This will primarily benefit future development 
of Modelica, but our results may also prove useful to 
other modeling communities and researchers. 

5 Conclusion 
The development of a new modeling language should 
be a well considered step, since it incorporates a lot 
of effort. This does not only concern the developers 
of the language and the corresponding software, it 
includes as well the potential modelers and users that 
are expected to get themselves acquainted with the 
new methodology. However, the continuous progress 
of modeling technology generates a new set of de-
mands. This makes such a step finally inevitable. 

In this workshop-paper, we offered a first glance of 
Sol, our new modeling language. Sol has been de-
signed to enable the modeling of variable-structure 
systems using an equation-based framework. While 
its development is currently still at the beginning, we 
expect to make significant progress in the near future. 
In the longer term, we hope that our research will 
benefit Modelica’s future development (cf. [9]). 
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Declaration: This paper is closely on [19] that was published in the Proceedings of Practical 
Aspects of Declarative Languages (PADL) 2003. The paper has been updated and adapted for 
the Equation-Based Object-Oriented Languages and Tools (EOOLT) 2007 Workshop. 

The modeling and simulation of physical systems is of key importance in many areas of science and engi-
neering, and thus can benefit from high-quality software tools. In previous research we have demonstrated 
how functional programming can form the basis of an expressive language for causal hybrid modeling and 
simulation. There is a growing realization, however, that a move toward non-causal modeling is necessary 
for coping with the ever increasing size and complexity of modelling problems. Our goal is to combine the 
strengths of functional programming and non-causal modeling to create a powerful, strongly typed fully de-
clarative modeling language that provides modeling and simulation capabilities beyond the current state of 
the art: in particular, support for highly structurally dynamic systems. Additionally, we think our approach 
could serve as a semantical framework for studying modeling and simulation languages supporting structural 
dynamism, and maybe even as a core language in systems where the surface syntax is more conventional. 
Although our work is still in its very early stages, we believe that this paper clearly articulates the need for 
improved modeling languages and shows how functional programming techniques can play a pivotal role in 
meeting this need. 

Introduction 
Modeling and simulation is playing an increasingly 
important role in the design, analysis, and implemen-
tation of real-world systems. In particular, whereas 
modeling fragments of systems in isolation was 
deemed sufficient in the past, considering the interac-
tion of these fragments as a whole is now necessary. 
The resulting models are large and complex, and span 
multiple physical domains. 

Furthermore, these models are almost invariably 
hybrid: they exhibit both continuous-time and dis-
crete-time behaviors. In fact, the very structure of the 
modeled system changes over time. Such models are 
known as structurally dynamic. In general, the total 
number of structural configurations, or modes, can be 
enormous, or even unbounded. We refer to systems 
whose number of modes cannot be practically prede-
termined as highly structurally dynamic. While sup-
porting structural dynamism is hard, supporting 
highly structurally dynamic systems is even harder as 
this necessitates comprehensive and flexible solutions 
of a number of important subproblems: see Sect. 4. 

There are two broad language categories of modeling 
and simulation languages. Causal (or block-oriented) 
languages are most popular; languages such as Simu-

link and Ptolemy II [13] represent this style of model-
ing. In causal modeling, the equations that represent 
the physics of the system must be written so that the 
direction of signal flow, the causality, is explicit. The 
second, but less populated, class of language is non-
causal, where the model focuses on the interconnec-
tion of the components of the system being modeled, 
from which causality is then inferred. Such languages 
often support an object-oriented approach to model-
ing. Examples include Dymola [5] and Modelica 
[15]. 
The main drawback of causal languages is the need to 
explicitly specify the causality. This hampers modu-
larity and reuse [2]. Non-causal languages address 
this problem by allowing the user to describe a model 
in a way which does not commit to any specific cau-
sality. The appropriate causality constraints are then 
inferred using both symbolic and numerical methods 
depending on how the model is being used. Unfortu-
nately, current non-causal modeling languages tend to 
sacrifice generality when it comes to hybrid model-
ing: in particular, we are not aware of any declarative 
non-causal modeling language that supports highly 
structurally dynamic models, even if recent efforts 
like MOSILAB [20] and Sol [28] are important steps 
in that direction. 
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In previous research at Yale, we have developed a 
framework called Functional Reactive Programming 
(FRP) [26], which is suited for causal hybrid model-
ing. This framework is embodied in a language called 
Yampa (see haskell.org/yampa) as an extension of 
Haskell. Yampa permits highly structurally dynamic 
hybrid systems to be described clearly and concisely 
[18], at present, however, Yampa lacks integration 
with sophisticated numerical solvers, and its applica-
bility for serious simulation work is thus limited. In 
addition, because the full power of a functional lan-
guage is available, it exhibits a high degree of modu-
larity, allowing reuse of components and design pat-
terns. It also employs Haskell’s polymorphic type 
system to ensure that signals are connected consis-
tently, even as the system topology changes. The 
semantic foundations of Yampa are well defined and 
understood, making models expressed using Yampa 
suited for formal manipulation and reasoning. Yampa 
and its predecessors have been used in robotics simu-
lation and control as well as a number of related do-
mains [23, 24]. It has even been used for video games 
[4, 3]. We are currently investigating biological cell 
population modeling, where Yampa’s support for 
highly structurally dynamic systems provides an 
interesting declarative approach to handling cell divi-
sion in contrast to the imperative approach of agent-
based simulators [12]. 
Non-causal modeling and FRP complement each 
other almost perfectly. We therefore aim to integrate 
the core ideas of FRP with non-causal modeling to 
create Hydra, a powerful, fully declarative modeling 
language combining the strengths of each. If we treat 
causality and dynamism as two dimensions in the 
modeling language design space, we see that Hydra 
occupies a unique point: 

 Mostly static 
structure 

Highly dynamic 
structure 

Causal Simulink Yampa 
Non-causal Modelica Hydra 

MOSILAB and Sol are somewhere between Modelica 
and Hydra. 
We refer to the combined paradigm of functional 
programming and non-causal, hybrid modeling as 
Functional Hybrid Modeling, or FHM. Conceptually, 
FHM can be seen as a generalization of FRP, since 
FRP’s functions on signals are a special case of 
FHM’s relations on signals. In its full generality, 
FHM, like FRP, also allows the description of struc-
turally dynamic models.  

The main contribution of this paper is that it outlines 
how notions appropriate for non-causal, hybrid simu-
lation in the form of first-class relations on signals 
and switch constructs can be integrated into a func-
tional language, yielding a non-causal modeling lan-
guage supporting structural dynamism. It also identi-
fies key research issues, and suggests how recent 
developments in the field of programming languages 
could be employed to address those issues. 

1 Yampa 
To help readers who are not familiar with Functional 
Reactive Programming put the ideas of this paper into 
context, we provide a brief review of the key ideas of 
Yampa in the following. For further details, see ear-
lier papers on Yampa [9, 18] 

1.1 Fundamental concepts 
Yampa is based on two central concepts: signals and 
signal functions. A signal is a function from time to a 
value: 

 Signal Timeα α≈ →   

Time is continuous, and is represented as a non-
negative real number. The type parameter α  speci-
fies the type of values carried by the signal. For ex-
ample, the type of a varying electrical voltage might 
be Signal Voltage. 

A signal function is a function from Signal to Signal: 

 SF Signal Signalα β α β≈ →   

When a value of type SF α β  is applied to an input 
signal of type Signalα , it produces an output signal 
of type Signal β . Signal functions are first classenti-
ties in Yampa. Signals, however, are not: they only 
exist indirectly through the notion of signal function. 
In general, the output of a signal function at time t  is 
uniquely determined by the input signal on the inter-
val [0, ]t . If a signal unction is such that the output at 
time t  only depends on the input at the very same 
time instant t , it is called stateless. Otherwise it is 
stateful. 

1.2 Composing signal functions 
Programming in Yampa consists of defining signal 
functions compositionally using Yampa’s library of 
primitive signal functions and a set of combinators. 
Yampa’s signal functions are an instance of the arrow 
framework proposed by Hughes [10]. Three combina-
tors from that framework are arr, which lifts an ordi-
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nary function to a stateless signal function, and the 
two signal function composition combinators <<< and 
&&& : 

 
:: ( )

( ) ::
(&&&) :: ( , )

arr a b SF ab
SF bc SF ab SF ac
SF ab SF ac SF a b c

→ →
<<< → →

→ →
  

We can think of signals and signal functions using a 
simple flow chart analogy. Boxes represent signal 
functions, with one signal flowing in to the box’s 
input port and another signal flowing out of the box’s 
output port. Figure 1 illustrates some of the central 
arrow combinators using this analogy. The similarity 
to a block-oriented modeling language like Simulink 
is hopefully clear. The main difference is that the 
notion of composing blocks into larger blocks has 
been formalized through a handful of composition 
combinators, which is helpful from a semantical per-
spective, in contrast to the more unstructured ap-
proach of connecting outputs to inputs in an arbitrary 
fashion. 

1.3 Arrow syntax 
While the arrow framework provides a useful seman-
tical structure, it is not convenient for expressing 
large networks. It is much easier to simply connect 
whatever needs to be connected Simulink style, e.g. 
by naming nodes and then explicitly stating the con-
nection topology. Fortunately, it is easy to provide a 
layer of syntax that allows this, and then translate this 
into a network description in terms of the core arrow 
combinators. Paterson’s arrow notation [22] does 
exactly that. An expression denoting a signal function 
has the form: 

 
1 1 1

proc dopat
pat sfexp exp

→
← −�

 

 

2 2 2

n n n

pat sfexp exp

pat sfexp exp
return A exp

← −

← −
−

�
�

�
�

 

The keyword proc is analogous to the λ  in λ -
expressions, pat  and ipat  are patterns binding signal 
variables pointwise by matching on instantaneous 
signal values, exp  and iexp  are expressions defining 
instantaneous signal values, and iexp  are expressions 
denoting signal functions. The idea is that the signal 
being defined pointwise by each iexp  is fed into the 
corresponding signal function isfexp , whose output is 
bound pointwise in ipat . The overall input to the 
signal function denoted by the proc-expression is 
bound by pat , and its output signal is defined by the 
expression exp . The signal variables bound in the 
patterns may occur in the signal value expressions, 
but not in the signal function expressions isfexp ). An 
optional keyword rec, applied to a group of defini-
tions, permits signal variables to occur in expressions 
that textually precede the definition of the variable, 
allowing recursive definitions (feedback loops). 

For a concrete example, consider the following: 

 

 ( , )
( 1, 2) 1&&& 2

3 4 ( 1, )

5 ( 2, , )
( , )

sf a b
c c sf sf a

d sf sf c b

e sf c d e
return A d e

= →
← −

← <<< −

← −
−

proc do

rec

�
�

�
�

 

Note the use of the tuple pattern for splitting sf’s input 
into two “named signals”, a and b. Also note the use 
of tuple expressions and patterns for pairing and split-
ting signals in the body of the definition; for example, 
for splitting the output from 1&&& 2sf sf . Also note 
how the arrow notation may be freely mixed with the 
use of basic arrow combinators. 

1.4 Accessing the Environment 
While some aspects of a program are naturally mod-
eled as continuous signals, other aspects are more 
naturally modeled as discrete events. To this end, 
Yampa introduces the Event type, isomorphic to Has-
kell’s Maybe type: 

 data Event a = NoEvent | Event a 

The instantaneous value of signal of type Event T for 
some type T is either NoEvent or Event x for some 
value x of type T, thus mimicking a discrete-time 
signal that is only defined at discrete points in time. 

 
:: ( , ) ( )switch SF a b Event c c SF ab

SF ab
→ →

→
  

The switch combinator switches from one subordinate 

 

 
Figure 1. Basic signal function combinators 
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signal function into another when a switching event 
occurs. Its first argument is the signal function that 
initially is active. It outputs a pair of signals. The first 
defines the overall output while the initial signal 
function is active. The second signal carries the event 
that will cause the switch to take place. Once the 
switching event occurs, switch applies its second 
argument to the value of the event and switches into 
the resulting signal function. 

Thus, note that the second argument of switch is a 
function of type c SF ab→ , that, when given the 
value of type c carried by the event, dynamically 
computes a new signal function to switch into. Using 
a Simulink analogy, switch in principle rips out a 
block, and then dynamically instantiates a parameter-
ized block as a replacement. The design of switch 
thus exploits the fact that signal functions (“blocks”) 
are first class entities in Yampa. 

Yampa also includes parallel switching constructs 
that maintain dynamic collections of signal functions 
connected in parallel [18]. Signal functions can be 
added to or removed from such a collection at run-
time in response to events, while preserving any in-
ternal state of all other signal functions in the collec-
tion; see Fig. 2. The first class status of signal func-
tions in combination with switching over dynamic 
collections of signal functions makes Yampa an un-
usually flexible language for describing hybrid sys-
tems. For example, this makes it possible to handle 
systems where the number of modeled entities varies 
over time, like cell population models as mentioned 
earlier (see Introduction). 

2 Non-causal and hybrid modeling 
While the simulation of pure continuous systems is 
relatively well understood, hybrid systems pose a 
number of unique challenges [16, 1]. Problems in-
clude handling a large number of modes, event detec-
tion, and consistent initialization of state variables. 
The integration of hybrid modeling with non-causal 
modelling raises further problems. Indeed, current 

non-causal modeling languages are quite limited in 
their ability to express hybrid systems. Many of the 
limitations are related to the symbolic and numerical 
methods that must be used in the non-causal ap-
proach. But another important reason is that most 
such systems insist on performing all symbolic ma-
nipulations before simulation begins [16]. Avoiding 
these limitations is an important part of our approach, 
see Sec. 4. 
Since Modelica is representative of state-of-the-art, 
non-causal, hybrid modeling languages, we illustrate 
the limitations of present languages with an example 
from the Modelica documentation [14, pp. 31–33]. 
The system is a pendulum in the form of a mass m at 
the end of a rigid, massless rod, subject to gravity mg 
and an externally applied torque u at the point of 
suspension; see Fig. 3(a). Additionally, the rod could 
break at some point, causing the mass to fall freely. 

Figure 3(b) shows a Modelica model of this system 
that, on the surface, looks like it achieves the desired 
result. Note that it has two modes, described by con-
ditional equations. In the non-broken mode, the posi-
tion pos and velocity vel of the mass are calculated 
from the state variables phi and phid. In the broken 
mode, pos and vel become the new state variables. 
This implies that state information has to be trans-
ferred between the non-broken and broken mode. 
Furthermore, the causality of the system is different 
in the two modes. When non-broken, the equation 
relating vel and pos is used to compute vel from 
pos. When broken, the situation is reversed. 

These facts make simulation hard. Modelica attempts 
to simplify matters by avoiding too radical structural 

       
 (a) Pendulum (b) Modelica model 

Figure 3. A pendulum, subject to externally applied torque 
and gravity. 

Figure 2. System of interconnected signal functions with 
varying structure 

model BreakingPendulum 
  parameter Real m=1, g=9.81, L=0.5; 
  parameter Boolean Broken; 
  input Real u; 
  Real pos[2], vel[2]; 
  Real phi(start=PI/4), phid; 
equation 
  vel = der(pos); 
  if not Broken then 
     // Equations of the pendulum 
     pos = {L*sin(phi), -L*cos(phi)}; 
     phid = der(phi); 
     m*L*L*der(phid) + m*g*L*sin(phi)=u;
  else 
     // Equations of the free-flying mass 
     m*der(vel) = m*{0, -g}; 
  end if; 
end BreakingPendulum; 
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changes. To that end, Modelica either requires the 
condition for selecting between two sets of equation 
to be a parameter, and thus unchanging during simu-
lation, or else that the number of equations in each set 
is the same. In this case, as the number of equations is 
not the same, Broken has to be declared a parameter. 
Therefore the model above does not really solve the 
hybrid simulation problem at all! In order to actually 
model a pendulum that dynamically breaks at some 
point in time, the model must be expressed in some 
other way. The Modelica documentation suggests a 
causal, block-oriented formulation with explicit state 
transfer. Unsurprisingly, the result is considerably 
more verbose, nullifying the advantage of working in 
a non-causal language. 
Moreover, even if Broken were allowed to be a dy-
namic variable, a fundamental problem would re-
main: once the pendulum has broken, it cannot be-
come whole again. Modelica provides no way to 
declaratively express the irreversibility of this struc-
tural change. The best that can be done is to capture 
this fact indirectly through a state machine model that 
control the value of Broken. 

3 Integrating functional programming 
and non-causal modeling 

In the preceding sections we discussed the advantages 
of non-causalmodeling and the importance of hybrid 
modeling. We also pointed out serious shortcomings 
in current modeling languages with respect to these 
features. In this section, we describe a new way to 
combine non-causal and hybrid modeling techniques 
that addresses these issues. Inspired by FRP and 
Yampa, the two key ideas are to give first-class status 
to relations on signals and to provide constructs for 
discrete switching between relations. The result is 
Hydra, a functional hybrid modelling language capa-
ble of representing structurally dynamic systems. 

While we, based on our experience of Yampa, believe 
that a language like Hydra would be a very expres-
sive and powerful modeling and simulation language 
in its own right, we would like to emphasize that we 
also think our approach could serve as a valuable 
semantical framework for general study of modelling 
and simulation languages that supports structural 
dynamism, and maybe even as a core language in 
systems where the surface syntax is more conven-
tional. Thus, what is important in the following is not 
the syntax (which is tentative and likely lacking in 
many ways), but the underlying principles. 

3.1 First-class signal relations 
A natural mathematical description of a continuous 
signal function is that of an ODE in explicit form. A 
function is just a special case of the more general 
concept of a relation. While functions usually are 
given a causal interpretation, relations are inherently 
non-causal. Differential Algebraic Equations (DAEs), 
which are at the heart of non-causal modeling, ex-
press dependences among signals without imposing a 
causality on the signals in the relation. Thus it is 
natural to view the meaning of a DAE as a non-causal 
signal relation, just as the meaning of an ODE in 
explicit form can be seen as a causal signal function. 
Since signal functions and signal relations are closely 
connected, this view offers a clean way of integrating 
non-causal modeling into an Yampa-like setting. 

In the following, first-class signal relations are made 
concrete by proposing a (tentative) system for inte-
grating them into a polymorphically typed functional 
language. Signal functions are also useful, but since 
they are just relations with explicit causality, we need 
not consider them in detail in the following. 

Similarly to the signal function type SF of Yampa 
(Sect. 2.1), we introduce the type SR � for a relation 
on a signal of type Signal �. Specific relations use a 
more refined type; e.g., for the derivative relation der 
we have the typing: 

 der :: SR (Real, Real) 

Since a signal carrying pairs is isomorphic to a pair of 
signals, we can understand der as a binary relation on 
two real-valued signals. 

Next we need a notation for defining relations. In-
spired by the arrow notation (Sect. 1.3), we introduce 
the following to denote a signal relation: 

 pattern equationssigrel where   

The pattern introduces signal variables that at each 
point in time are bound to the instantaneous value of 
the corresponding signal. Given p :: t, we have: 

 sigrel  p where … :: SR t  

Consequently, the equations express relationships 
between instantaneous signal values. This resembles 
the standard notation for differential equations in 
mathematics. For example, consider ' ( )x f y= , 
which means that the instantaneous value of the de-
rivative of (the signal) x  at every time instant is 
equal to the value obtained by applying the function 
f  to the instantaneous value of y . 
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We introduce two styles of equations: 

 1 2

3

e e
sr e

=
�

  

where ie  are expressions (possibly introducing new 
signal variables), and sr  is an expression denoting a 
signal relation. We require equations to be well-typed. 
Given ::i ie t , this is the case iff 1 2t t= and 3::sr SRt . 

The first kind of equation requires the values of the 
two expressions to be equal at all points in time. For 
example: 

 ( ) ( )f x g y=  

where f  and g  are functions. 

The second kind allows an arbitrary relation to be 
used to enforce a relationship between signals. The 
symbol �  can be thought of as relation application; 
the result is a constraint which must hold at all times. 
The first kind of equation is just a special case of the 
second in that it can be seen as the application of the 
identity relation. 

For another example, consider a differential equation 
like ( , )x f x y′ = . Using our notation, this equation 
could be written: 
 ( , ( , ))der x f x y�  

where der is the relation relating a signal to its deriva-
tive. For convenience, a notation closer to the 
mathematical tradition should be supported as well: 

 ( ) ( , )x f x y=der  

The meaning is exactly as in the first version. 

We illustrate our language by modeling the electrical 
circuit in Figure 4 (adapted from [14]). The type Pin 
is a record type describing an electrical connection. It 
has fields v for voltage and i for current (the name 
Pin is perhaps a bit misleading since it just represents 

a pair of physical quantities, not a physical “pin com-
ponent”; i.e., Pin is the type of signal variables rather 
than signal relations). 

 

:: ( , , )
( , , )

. .
. . 0

twoPin SR Pin Pin Voltage
twoPin p n u

u p v n v
p i n i

=
= −

+ =

sigrel where
 

 

:: ( , )
( ) ( , )

( , , )
.

resistor Resistance SR Pin Pin
resistor r p n

twoPin p n u
r p i u

→
=

�
⋅ =

sigrel where
 

 

:: ( , )
( ) ( , )

( , , )
( . )

inductor Inductance SR Pin Pin
inductor l p n

twoPin p n u
l der p i u

→
=

�
⋅ =

sigrel where
 

 

:: ( , )
( ) ( , )

( , , )
( ) .

capactior Capacitance SR Pin Pin
capacitor l p n

twoPin p n u
c der u p i

→
=

�
⋅ =

sigrel where
 

As in Modelica, the resistor, inductor and capacitor 
models are defined as extensions of the twoPin 
model. However, we accomplish this directly with 
functional abstraction rather than the Modelica class 
concept. Note how parameterized models are defined 
through functions returning relations. Since the pa-
rameters are normal function arguments, not signal 
variables, their values remain unchanged throughout 
the lifetime of the returned relations (compare to 
Modelica’s parameter-variables mentioned in Sect. 
2). 

To assemble these components into the full model, 
we adopt a Modelica-like connect-notation as a con-
venient abbreviation for connection equations. This is 
syntactic sugar which is expanded to proper connec-
tion equations, i.e. equality constraints or sum-to-zero 
equations depending on what kind of physical quan-
tity is being connected. We assume that a voltage 
source model vSourceAC and a ground model ground 
are available in addition to the component models 
defined above. Moreover, we are only interested in 
the total current through the circuit, and, as there are 
no inputs, the model thus becomes a unary relation:  

 simpleCircuit :: SR Current 
 simpleCircuit = sigrel i where 
  resistor (1000) � (r1p, r1n) 

 
Figure 4. A simple electrical circuit 
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 resistor (2200) � (r2p, r2n) 
 capacitor (0.00047) � (cp, cn) 
 inductor (0.01) � (lp, ln) 
 vSourceAC(12) � (acp, acn) 
 ground � gp 
 connect acp, r1p, r2p 
 connect r1n, cp 
 connect r2n, lp 
 connect acn, cn, ln, gp 
 i = r1p.i + r2p.i 

3.2 Modeling systems with dynamic structure 
In order to describe structurally dynamic systems we 
need to represent an evolving structure. To this end, 
we introduce two Yampa-inspired switching conal-
lows repeated switching between equation groups. 
structs: the recurring switch and the progressing 
switch. The recurring switch allows repeated switch-
ing between equation groups. In contrast, the pro-
gressing switch expresses that one group of equations 
first is in force, and then, once the switching condi-
tion has been fulfilled, another group, thus irreversi-
bly progressing to a new structural configuration. For 
either sort of switching, difficult issues such as state 
transfer and proper initialization have to be consid-
ered. 

We revisit the breaking pendulum example from Sect. 
3 to illustrate these switching constructs. To deal with 
initialization and state transfer, we introduce special 
initialization equations that are only active at the time 
of switching, that is, during events, and we allow such 
equations to refer to the values of signal variables just 
prior to the event through a special pre-construct 
devised for that purpose. The initialization equations 
describe the initial conditions of the DAE after a 
switch. Mathematically, these equations must yield an 
initial value for every state variable in the new con-
tinuous equations. It is important that each branch of 
a switch can be associated with its own initialization 
equations, since each such branch may introduce its 
proper set of state variables. Initialization equations 
typically state continuity assumptions, like pos and 
vel below. 

First, consider a direct transliteration of the equation 
part of the Modelica model using a recurring switch. 
The necessary initialization equations have also been 
added: 

 vel = der(pos) 
 switch broken 
  when False then 
   init phi = pi/4 
   init phid = 0 
   pos = {l · sin (phi),�l · cos (phi)} 
   phid = der(phi) 
   m · l · l · der(phid) + m · g · l · sin (phi) = u 
  when True then 
   init vel = pre(vel) 
   init pos = pre(pos) 
   m · der(vel) = m · {0,�g} 

A recurring switch has one or more when-branches. 
The idea is that the equations in a when-branch are in 
force whenever the pattern after when (which may 
bind variables) matches the value of the expression 
after switch. Thus, whenever that value changes, we 
have an event and a switch occurs (this is similar to 
case in a functional language). 

To express the fact that the pendulum cannot become 
whole once it has broken, we refine the model by 
changing to a progressing switch: 

 vel = der(pos) 
 switch broken 
  first 
   … 
  once True then 
   … 

A progressing switch has one first-branch and one or 
more once-branches Initially, the equations in the 
first-branch are in force, but as soon as the value of 
the expression after switch matches one of the once-
patterns, a switch occurs to the equations in the corre-
sponding branch, after which no further switching 
occurs (for that particular instance of the switch).  

By combining recursively-defined relations and pro-
gressing switches, it is possible to express very gen-
eral sequences of structural changes over time, from 
simple mode transitions to making and breaking of 
connections between objects. A simple example of a 
recursively defined relation parameterized on a dis-
crete state variable n is shown below. Initially, the 
relation behaves according to the equations in the 
first-branch, which may depend on n. Whenever the 
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switching condition is fulfilled, the relation switches 
to a new instance of itself with the parameter n in-
creased by one. In functional parlance, this is a form 
of tail call. 

 sysWithCntr :: Int � SR (Real, Real) 
 sysWithCntr (n) = sigrel (x, y) where 
  switch … 
   first 
    … 
   once … then 
    sysWithCntr (n + 1) � (x, y) 

As explained in Sect. 2.5, Yampa supports even more 
radical structural changes, including dynamic addi-
tion and deletion of objects. Our goal is to carry over 
as much as possible of that functionality to Hydra. 

4 Implementation issues 
There are a number of challenges that must be ad-
dressed in an implementation of a language like Hy-
dra. The primary issues are ensuring model correct-
ness, simulation in the presence of dynamic mode 
changes, and mode initialization. 

It is critical that dynamic changes in the model should 
should not weaken the static checking of the model, 
i.e. we want to ensure compositional correctness. A 
Haskell-like polymorphic type system, as in Yampa, 
ensures that the system integrity is preserved. In addi-
tion we would like to find at least necessary con- 
ditions for statically ensuring that causality analysis 
can always be carried out, that the equations at least 
could have a solution, and so on, regardless of how 
relations are composed dynamically. An example of a 
necessary but not sufficient condition is that the num-
ber of equations and number of variables agree, and 
that each variable can be paired with one equation. 
Since it will be necessary to keep track of the balance 
between equations and variables across relation 
boundaries, it is natural to integrate this aspect into 
the type system. Similar considerations apply to the 
number of initialization equations and continuous 
state variables. Recent work on dependent types is 
relevant here [27]. We also aim at extending the type 
system to handle physical dimensions [11]. 

In a highly structurally dynamic language, it is im-
possible to identify all possible operating modes and 
then factor them out as separate systems. Modes thus 
have to be generated dynamically during simulation 
as follows. Whenever a switch occurs, a new, global, 

“flattened” DAE has to be generated. The DAE is 
obtained by first carrying out the necessary discrete 
processing, which amounts to standard functional 
evaluation, including evaluation of the relational 
expressions in the equations that are to be active after 
the switch. The evaluation of relational expression is 
what creates new instances of relations, and carrying 
out the instantiation dynamically when switching 
occurs is what enables modelling of highly structur-
ally dynamic systems. Once the new flattened DAE 
has been generated, it is subjected to causality analy-
sis and other symbolic manipulations in preparation 
for simulation using suitable numerical methods [21, 
6, 7]. The result is causal simulation code. 

The hybrid bond graph simulator HYBRSIM has dem-
onstrated the feasibility of this dynamic approach, 
and that it indeed allows some difficult cases to be 
handled [17]. However, HYBRSIM is an interpreted 
system. Simulation is thus slowed down both by 
occasional symbolic processing and by the interpre-
tive overhead. To avoid interpretive overhead, we 
intend to leverage recent work on run-time code gen-
eration, such as ‘C [8] or Cyclone [25]. We will need 
to adapt the sophisticated mathematical techniques 
used in existing non-causal modeling languages [21, 
6, 7] to this setting. In part, it may be possible to do 
this systematically by staging the existing algorithms 
in a language like Cyclone. 

The initial conditions of the (new) differential equa-
tions must be determined on transitions from one 
mode to another. However, arriving at consistent 
initial conditions is, in general, hard. Some state vari-
ables in the continuous part of the system may exhibit 
discontinuities at the time of switching while others 
will not: simply preserving the old value is not al-
ways the right solution. Structural changes could 
change the set of state variables, and the relationship 
between the new and old states may be difficult to 
determine. One approach is to require the modeler to 
provide a function that maps the old state to the new 
one for each possible mode transition [1]. However, 
the declarative formulation of non-causal models 
means that the simulator sometimes has a choice 
regarding which continuous variables should be 
treated as state variables. Requiring the user to pro-
vide a state mapping function is therefore not always 
reasonable. 

A key to the success of HYBRSIM is that bond graphs 
are based on physical notions such as energy and 
energy exchange, which are subject to continuity and 
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conservation principles. We intend to generalize this 
idea by exploring the use of declarations for stating 
such principles, along the lines illustrated in Sec. 4.2. 
It may also be possible to infer continuity and con-
servation constraints automatically based on physical 
dimension types. 

5 Related work 
There has been substantial interest in supporting 
structural dynamism within the non-causalmodeling 
community recently. The most advanced effort at 
present is probably MOSILAB [20]. Similarly to 
what is proposed here, MOSILAB supports dynamic 
addition and deletion of behavioral objects. The 
switching is controlled through a form statecharts. A 
modern, sophisticated DAE solver, with support for 
computing consistent initial conditions, is used. 

However, the statechart approach implies an explicit 
enumeration of the modes, and even if the number of 
modes could be large due to combinatorial effects, 
this rules out a Yampa-style, truly dynamic number of 
simulation objects, which is the ultimate goal of Hy-
dra. 

Another aspect of MOSILAB is the use of Python for 
various meta-modeling tasks, such as writing “ex-
periment scripts”. We think that Hydra in itself, 
thanks to being a general-purpose functional language 
with first-class signal relations and functions, should 
be expressive enough to mostly provide equivalent 
meta-modeling capabilities, all in a uniform, declara-
tive setting, without resorting to external imperative 
languages. 

Sol [28] is another effort to create a non-causal mod-
eling and simulation language supporting structural 
dynamism. It expressively avoids the statechart ap-
proach to retain more of the declarative clarity of 
languages like Modelica. It is also claimed that the 
Sol approach to dynamism scales better. A key aspect 
of the Sol approach is the capability to dynamically 
determine model instances. This idea seems to be 
somewhat similar to the notion of first-class signal 
functions and relations in Hydra. Like MOSILAB, 
Sol seems to stop short of the Hydra goal of support-
ing systems with a dynamic number of objects. 

6 Conclusions 
Hybrid modeling is a domain in which the techniques 
of declarative programming languages have the po-
tential to greatly advance the state of the art. The 

modeling community has traditionally been con-
cerned more with the mathematics of modeling than 
language issues. As a result, present modeling lan-
guages do not scale in a number of ways, particularly 
in hybrid systems that undergo significant structural 
changes. Hydra uses functional programming tech-
niques to describe dynamically changing systems in a 
way that preserves the non-causal structure of the 
system specification and allows arbitrary switching 
among modes, yielding expressive power beyond 
current non-causal modeling languages. 

Although we have not completed an implementation 
of Hydra, this paper demonstrates our basic design 
approach and maps out the design landscape. We 
expect that further research into the links between 
declarative languages and hybrid modeling will pro-
duce significant advances in this field. 
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Structure of Simulators for Hybrid Systems � 
Development and New Concept of External and Internal State Events 

Felix Breitenecker1,. Günther Zauner2, Nikolas Popper2, Florian Judex1, Inge Troch1 
1Vienna Univ. of Technology, Austria, 2dieDrahtwarenhandlung Simulation Services, Austria 

At first this paper discusses discrete elements in the CSSL Standard, and- more detailed- the classification of 
‘classical’ state events, where, structural-dynamic systems are generated by state events, changing the di-
mension of the state space. The paper continues with recent developments coming from Modelica and 
VHDL-AMS, which introduce non-causal modelling on a high level, including implicit models and state 
events associated with boundary conditions. While both new standards extend the CSSL standard, with focus 
on continuous systems; especially Modelica also allows defining pure discrete model constructs based on 
events, state charts, and Petri nets. 

The main chapters concentrate on further extensions of the CSSL frames, mainly in order to handle hybrid 
and structural-dynamic systems properly. There, features of two competiting ‘ideas’ are sketched, maximal 
state space versus hybrid decomposition. In order to allow a highly flexible modelling level, state events are 
characterised as ‘internal state events’ (I-SE) or ‘external state event’ (E-SE). Both types of event can be de-
scribed by state charts; implementation is the simulator’s task. Finally, simulators being able to implement 
both state event types are reviewed: Modelica/Dymola, Mosilab, AnyLogic, and MATLAB/Simulink 
/Stateflow. 

Introduction 
Since early times of simulation, attempts were made 
to standardize digital simulation programs by means 
of a self standing structure for simulation systems. 

But only in 1968 the CSSL Standard (The CSSL 
Report commissioned by the Simulation Council Inc - 
SCI) became a milestone in the development: it uni-
fied the concepts and language structures of the avail-
able simulation programs, it defined a structure for 
the model, and it described minimal features for a 
runtime environment. In principle, this basic CSSL 
structure standard has been a standard for almost four 
decades, although a lot of extensions and other con-
cepts have been developed and discussed. Also mod-
ern simulation systems, like Dimple, follow an ex-
tended CSSL standard. Mainly these extensions deal 
with discrete model parts and with DAE modelling. 

An alternative standardised structure on basis of sys-
tem theory is Zeigler’s hybrid extension of the DES 
formalism (Discrete Event Systems). Unfortunately 
this approach is not commonly used in the area of 
continuous system modelling, and prototype imple-
mentations rather focus on the discrete world. Since 
three years a new idea is discussed in combined con-
tinuous / discrete modelling and simulation, namely, 
the challenge of structural dynamic systems. 

Those can be modelled and simulated in CSSL struc-
tures, but there happen difficulties with the fixed state 
space, as well in the CSSL structure as in hybrid 
DES. 

In any case, state events are bridging the gap between 
the continuous world and the discrete world. On the 
one side, continuous modelling considers state events 
to be an interruption of the continuous course of the 
system, which has to be handled properly, in order to 
continue continuously. On the other side, discrete 
system theory puts state events in the foreground, 
which update states and which control switching 
between different update algorithms (static algo-
rithmic update, stochastic update based on event 
mechanisms, or also ODEs and DAEs). 

Coming from the continuous side of simulation, state 
events may be viewed in an ambivalent way. They 
may cause discontinuous changes within a running 
algorithm updating the states (ODE solver), or they 
may cause a termination of the current update algo-
rithm (ODE solver), starting a new update algorithm 
(ODE solver) with the same or with another model. 
Latest would allow easy modelling and simulation of 
structural dynamic systems. 

Thus, it is worth to develop the mentioned idea based 
on a structure with internal and external state events, 
which will be discussed in chapter 5. 
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Interestingly, this idea of a distinction of state events 
is related to the development of Modelica, where 
external state events are discussed as basis for model 
switching based on state charts. Furthermore, since 
about five years it is tried to implement features for 
dynamic structures, by switching state events, in 
simulation systems. First, this was tried by means of 
simulator coupling, while now generic extensions and 
new systems are available (discussed in chapter 6). 

1 CSSL standard 
The CSSL standard suggests structures and features 
for a model frame and for an experimental frame. 
This distinction is based on Zeigler’s concept of a 
strict separation of these two frames. Model frame 
and experimental frame are the user interfaces for the 
heart of the simulation system, for the simulator ker-
nel or simulation engine. The simulation engine 
drives the calculations in the time domain. This basic 
structure of a simulator - due to CSSL standard – is 
illustrated in Figure 1. 

There are not included any features for discontinuous 
changes, thus, very soon at least time event features 
were incorporated. 

2 Discrete elements and events in 
continous simulation 

The CSSL standard defines segments for discrete 
actions, which were at first mainly used for modelling 
discrete control. So-called DISCRETE regions or 
sections manage the communication to and from the 
continuous world and compute the discrete model 
parts. 

These discrete section models discrete events, sched-
uled by time-dependent inputs (time events), or 
scheduled by state-dependent threshold functions 
(state events). 

2.1 Time Events 
In the graphical model description discrete controllers 
and the time delay could be modelled by a z-transfer 
block. If a discrete action is more complex, graphical 
descriptions have problems. For this purpose SIMU-
LINK offers triggered submodels, which can be exe-
cuted only at one time instant, controlled by a logical 
trigger signal. New versions of MATLAB also inte-
grate a state machine (State Flow) for event control. 
Recently (2006) event control is supported in MAT-
LAB/ Simulink by the SimEvent Blockset, offering 
also the entity concept. 
In any case, the simulation engine has to handle an 
event list, representing the time instants of discrete 
action and the calculations associated with the action, 
where in-between consecutive actions the ODE solver 
have to be called. 

2.2 State Events 
Much more complicated, but defined in CSSL, are the 
so-called state events. Here, a discrete action takes 
place at a time instant, which is not known in ad-
vance, it is only known as a function of the states, 
described by a threshold function. This discrete action 
(‘timeless’ action) may simply change an input – or 
the structure of a system. 
As example we consider the pendulum with con-
straints. If the pendulum is swinging, it may hit a pin 
positioned at angle pϕ  with distance pl  from the point 
of suspension. After hit case the pendulum swings on 
with the position of the pin as the point of rotation 
and the shortened length s pl l l= −  and the angular 
velocity /d dtϕ  is multiplied at position pϕ  by / sl l , 
etc.These discontinuous changes are state events. For 
state events the classical state space description is 
extended by the state event function ( )h x , the zero of 
which determines the event: 
 0( ) ( ( ), ( ), , ), ( ( ), ( ), , )x t f x t u t t p h x t u t t p x= =

�� � � � � � � ��  

 1 2 2 1 2 1 2 1, sin , ( , ) 0p
g d h
l m

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= = − − = − =� �  

The example involves two different events: change of 
parameter (length), and change of state (angular ve-
locity). Generally, state events can be classified in 
four types: 

1. parameter change: SE-P 
2. one or more inputs change discontinuously: SE-I 
3. one or more states change discontinuously: SE-S 
4. the dimension of the state vector changes discon-

tinuously: SE-D 

 
Figure 1. Basic Structure of a Simulation Language due to 

CSSL Standard 
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State Events Type 1 (SE-P) could also be formulated 
by means of IF-THEN-ELSE constructs and by swit-
ches in graphical model descriptions, without syn-
chronisation with the ODE solver. Big changes in 
parameters may cause problems for ODE solvers with 
step-size control. 

State Events Type 2 (SE-I) are no real state events, 
they are time events – and listed here due to historic 
reasons. 

State Events Type 3 (SE-S) are essential state events. 
They have to be located, transformed into a time 
event, and modelled in discrete model parts. In prin-
ciple, these types of state events cannot exist, because 
a state variable cannot jump; jumps in states are 
caused by simplified modelling approaches. 

In case of the pendulum, in reality the hit at the pin is 
not an event changing the velocity; it is a short physi-
cal process different to the oscillation process. The 
whole process may be seen as sequence of different 
processes: oscillation of long pendulum (differential 
equations) – hit at pin (event or differential equation) 
– oscillation of short pendulum (differential equa-
tions), etc. 

State Events of Type 4 (SE-D) are essential ones and 
indicate a structural change in the model. In mechani-
cal systems, they indicate a change of degrees of 
freedom. 

Very often the threshold function switches between 
different algebraic constraints, so that these state 
events are coupled with differential-algebraic equa-
tions. In principle, these events may occur frequently, 
so that the system is called structural dynamic, be-
cause the dimension of the systems changes quasi-
dynamically. 

Two philosophies are found in handling these struc-
tural dynamic problems: a hybrid decomposition of 
the process, or making use of frozen states (combined 
with index reduction algorithms). 

2.3 Handling of State Events 
The handling of a state event requires four steps: 

1. Detection: usually by checking the change of the 
signum-function of ( )h x . 

2. Localisation: algorithms make use of either itera-
tive techniques, or of interpolation techniques for 
determining the time instant of the event with 
sufficient accuracy. 

3. Handling: calculating / setting new parameters, 
inputs and states; switching to new equations. 

4. Restart of the ODE solver (in a ‘maximal’ state 
vector), or starting another model (hybrid de-
composition). 

State events face simulators with severe problems. Up 
to now the simulation engine had to call independent 
algorithms, now a root finder for the state event func-
tion ( )h x  needs results from the ODE solver, and the 
ODE solver calls the root finder by checking the sign 
of h. 

Figure 2, an extension of Figure 1, shows the new 
more complex structure of calls between model 
frame, experimental frame, simulation engine and 
libraries. Basically, the kernel of the simulation en-
gine has become an event handler. Furthermore it has 
to be noted, that not only classical time domain 
analysis by ODE solvers is offered, but also linear 
analysis by means of eigenvalue algorithms. Figure 2 
also shows an interesting relation to discrete simula-
tion: an event list manager has to be implemented, 
which can handle also pure discrete systems without 
any ODE. 

In case of a structural change of the system equations 
(SE-D), simulators usually can manage only fixed 
structures of the state space. 

In textual model description the DISCRETE construct 
allows to define events of any type, in graphical 
model descriptions calculations at discrete time in-
stants are difficult to formulate within the continuous 
input/output form. 

2.4 Classical implementations of the Con-
strained Pendulum model 

In this example state events of type 1 (SE-P: discon-
tinuous change of pendulum length) and type 3 (SE-
S: change of angular velocity) are involved. Listing 1 
presents parts of a classical ACSL model description, 
working with two discrete sections hit and leave, 
representing the two different modes. These sections 
model the events, which are scheduled by the SCHED-
ULE statement in the dynamic model description. 

In pure graphical model descriptions we are faced-
with the problem that calculations at discrete time 
instants are difficult to formulate. For the detection of 
the event SIMULINK provides the Hit Crossing 
block (Figure 2). This block starts state event detec-
tion (interpolation method) depending on the input, 
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the state event function, and outputs a trigger signal.  

For restarting the integration with new values for the 
angular velocity, a formulation going back to the 
times of analog computation is used: the integrator 
block is extended by a logical reset signal input; as 
this signal triggers, the integration is restarted with 
initial values fed into the initial value input. In this 
implementation, the new angular velocity is calcu-
lated continuously, while needed only at the hit event. 

A more event-oriented implementation would make 
use of a triggered subsystem, which is executed only 
when the trigger from the hit crossing activates the 
event. 

1 PROGRAM constrained pendulum 
2    CONSTANT m = 1.02, g = 9.81, d =0.2 
3    CONSTANT lf=1, lp=0.7 
4    DERIVATIVE dynamics 
5       ddphi = -g*sin(phi)/l – d*dphi/m 
6       dphi = integ ( ddphi, dphi0) 
7       phi = integ ( dphi, phi0) 
8       SCHEDULE hit .XN. (phi-phip) 
9       SCHEDULE leave .XP. (phi-phip) 

10    END ! of dynamics 
11    DISCRETE hit 
12       l = ls; dphi = dphi*lf/ls 
13    END ! of hit 
14    DISCRETE leave 
15       l = lf; dphi = dphi*ls/lf 
16    END  ! of leave 
17 END ! of constrained pendulum 

Listing 1. ACSL textual model description 

3 From CSSL to physical object-
oriented modelling and state charts 

In the 1990s, a lot of attempts have been made to 
improve and to extend the CSSL structure. The basic 
problem was the state space description, which lim-
ited the construction of modular and flexible model-

ling libraries. Two developments helped to overcome 
this problem. On modelling level, the idea of physical 
modelling gave new input, and on implementation 
level the object oriented view helped to leave the 
constraints of input/output relations. Furthermore, 
UML offers new input for hybrid modelling. 

3.1 Physical modelling in Modelica and VHDL-
AMS 

A typical procedure for physical modelling is to cut a 
system into subsystems and to account for the behav-
iour at the interfaces. Each subsystem is modelled by 
balances of mass, energy and momentum and mate-
rial equations. The complete model is obtained by 
combining the descriptions of the subsystems and the 
interfaces. This approach requires a modelling para-
digm different to classical input/output modelling. A 
model is considered as a constraint between system 
variables, which leads naturally to DAE descriptions. 
The approach is very convenient for building reusable 
model libraries. 

An international effort was initiated in September 
1996 for the purpose of bringing together expertise in 
object-oriented physical modelling (portbased model-
ling) and defining a modern uniform modelling lan-
guage, called Modelica. Modelica is intended for 
modelling within many application domains and their 
combinations. It supports several modelling formal-
isms: ODEs, DAEs, bond graphs, finite state auto-
mata, Petri Nets, etc. Modelica is intended to serve as 
a standard format so that models arising in different 
domains can be exchanged between tools and users. 

Modelica is no simulator, Modelica is a modelling 
language, supporting and generating mathematical 
models in physical domains. 

At the time the development of Modelica started, also 
a competitive development, the extension of VHDL 
towards VHDL-AMS was initiated. Both modelling 
languages aimed for general purpose use, but VHDL-
AMS mainly addresses circuit design, and Modelica 
covers the broader area of physical modelling; model-
ling constructs such as Petri nets and finite automata 
could broaden the application area. 

Modelica offers a graphical model frame, where the 
connections are bidirectional physical couplings. An 
example demonstrates how drive trains are handled. 
The drive train consists of four inertias and three 
clutches, where the clutches are controlled by input 
signals (Figure 3). 

 
Figure 2. SIMULINK model of Constrained Pendulum 
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The graphical model layout corresponds with a tex-
tual model representation. This code can be changed 
and extended by the user, so that graphical and textual 
modelling can be combined. For example Figure 4 
shows a graphical model of a double pendulum, con-
sisting of two revolute joints (one with damper), and 
two masses modelling the rods. For joints and masses 
equations are predefined and sorted together during 
compilation. 

Modelica can handle very different modelling ap-
proaches, not only ODEs and DAEs, but also finite 
state automata, and Petri nets. By means of state 
automata or state charts, conditions can be described 
more clear and transparent. 

The translator from Modelica into the target simulator 
is not only able to sort equations; it also has to be able 
to process the implicit equations symbolically and to 
perform DAE index reduction. 

Up to now, similar to VHDL-AMS, two simulation 
systems understand Modelica, Dymola from Dyna-
sim, and MathModelica from MathCore Engineering. 
At present (2006/2007) the University of Lyngby 
develops and provides a Modelica simulation envi-
ronment, the Open Modelica System, and Fraunhofer 
Gesellschaft develops a generic simulator, Mosilab, 
which understands Modelica models and supports 
variable dynamic structures. 

The model for the constrained pendulum can be for-
mulated in Modelica textually as a physical law for 
angular acceleration. The event with parameter 
change is put into an algorithm section, defining and 
scheduling the parameter event SE-P (Listing 2). 
Instead of angular velocity, the tangential velocity is 
used as state variable; the second state event SE-S 

‘vanishes’. In principle, one could use also graphical 
modelling for joint and mass using elements as in 
Figure 4, but the change of length has to be formu-
lated textually in an algorithm section. 

1 equation /*pendulum*/ 
2   v = length*der(phi); vdot = der(v); 
3   m*vdot/length + m*g*sin(phi)+damp*v=0; 
4 algorithm 
5   if (phi<=phipin) then length:=ls; end if; 
6   if (phi>phipin)  then length:=l1; end if; 

Listing 2. Modelica model of Constrained Pendulum 

3.2 Modelling events by state charts in Any-
Logic 

In the end of the 1990s, computer science put the 
simulator development forward. The Unified Model-
ling Language (UML) is one of the most important 
standards for specification and design of object ori-
ented systems. This standard was tuned for real time 
applications in the form of a new proposal, UML for 
Real-Time (UML-RT). By means of UML-RT objects 
can hold the dynamic behaviour of an ODE. There 
exist a lot of simulation libraries for discrete simula-
tion, based on the UML (class diagrams, state charts, 
etc). They allow for convenient modelling and simu-
lation of Discrete Event Systems (DEVS). 

In 1999, a simulation research group at the Technical 
University of St. Petersburg used this approach in 
combination with a hybrid state machine for the de-
velopment of a hybrid simulator, from 2000 on avail-
able commercially as simulator AnyLogic. The main 
building block is the active object. Active objects 
have internal structure and behaviour, and allow en-
capsulating of other objects to any desired depth. 
Relationships between active objects set up the hy-
brid model. 

Active objects interact with their surroundings solely 
through boundary objects: ports for discrete commu-
nication, and variables for continuous communica-

Figure 3: Graphical Modelica model for coupled clutches

 
Figure 5. Acitive objects with connectors exchanging 
discrete messages (rectangle) and continuous signals 

(triangle) 

Figure 4: Graphical Modelica model for double pendulum
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tion. The activities within an object are usually de-
fined by statecharts. While discrete model parts are 
described by means of statecharts, events, timers and 
messages, the continuous model parts are described 
by ODEs and DAEs in CSSL-txpe notation and state 
charts. 

The following AnyLogic implementation of the 
Bouncing Ball example shows a simple use of state-
chart modelling (Figure 6). The equations are defined 
in the active object ball, together with the state chart 
ball.main. This state chart describes the interruption 
of the state flight by the event bounce (SE-P and SE-S 
event). 

4 Hybrid and structural-dynamic sys-
tems 

Continuous simulation and discrete simulation have 
different roots, but they are using the same method, 
the analysis in the time domain. 

In continuous and hybrid simulation the explicit or 
implicit state space description is used as common 
denominator. This state space may be described tex-
tually, by signal-oriented graphic blocks, or by 
power-based block descriptions. In discrete simula-
tion we meet very different techniques for the model 
frame. 

Application-oriented flow diagrams, network dia-
grams, state diagrams, etc. allow describing complex 
behaviour of event-driven dynamics. These descrip-
tions are mapped to an event-based description. 

On the other side, the simulator kernel is similar for 
discrete and continuous simulators. The model de-
scription is mapped to an event list with adequate 
update functions of the states within state update 
events. In discrete simulation the states are usually 
the status variables of servers and queues in the 

model, and state update is simple increase or decrease 
by increments. 
In continuous simulation the state space is based on 
various laws used in the application area, and usually 
defined by DAEs. DAE solvers generate a grid for the 
approximation of the solutions. This grid drives an 
event list with state update events using complex 
formula depending on the chosen solver and on the 
defined DAE. Additional time events and state events 
are inserted into the global event list. 

Hybrid systems often come together with a change of 
the dimension of the state space, then called struc-
tural-dynamic systems. The dynamic change of the 
state space is caused by a state event of type SE-D. In 
contrary to state events SE-P and SE-S, states and 
derivatives may change continuously and differenti-
able in case of structure change. 

In principle, structural-dynamic systems can be seen 
from two extreme viewpoints. The one says, in a 
maximal state space state events switch on and off 
algebraic conditions which freeze certain states for a 
certain period. The other one says that a global dis-
crete state space controls local models with fixed 
state spaces, whereby the local models may be also 
discrete or static. These viewpoints derive two differ-
ent approaches for structural-dynamic systems, the 
maximal state space, and the hybrid decomposition. 

4.1 Maximal State Space for structural-
dynamic systems – internal events 

Most implementations of physically-based models 
support a big monolithic model description, derived 
from laws, ODEs, DAEs, state event functions and 
internal events. The state space is maximal and static, 
index reduction in combination with constraints keep 
a consistent state space. Dymola, OpenModelica, and 
VHDL-AMS follow this approach. 

This approach can be classified with respect to event 
implementation.It handles all events of any kind (SE-
P, SE-S, and SE-D) within the ODE solver frame, 
also events which change the state space dimension 
(change of degree of freedoms) – consequently called 
internal events. 

Using the classical state chart notation, internal state 
events I-SE caused by the model schedule the model 
itself, with usually different re-initialisations (depend-
ing on event type I-SE-P, I-SES, I-SE-D; Figure 7). 

Modelica, VHDL-AMS, and Dymola follow this 
approach, handling also DAE models with index 

 
Figure 6. AnyLogic model for the Bouncing Ball example; 

graphical modeling combined with the equation layer 
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higher than 1; discrete model parts are only supported 
at event level. MATLAB/Simulink also generates a 
maximal state space. 

4.2 Hybrid Decomposition for structural-
dynamic systems – external events 

The hybrid decomposition approach makes use of 
external events (E-SE), which controls the sequence 
and the serial coupling of one or more models. A 
convenient tool for switching between models is a 
state chart, driven by external events – which itself 
are generated by the models.  In the following exam-
ple the UML-RT notation, control for continuous 
models and for discrete actions can be modelled by 
state charts. Figure 8 shows the hybrid coupling of 
two models, which may be extended to an arbitrary 
number of models, with possible events E-SE-P, E-
SE-S, and E-SE-D. As special case, this technique 
may also be used for serial conditional ‘execution’ of 
one model –Figure 9 (only for SE-P and SE-S). 

This approach additionally allows not only dynami-
cally changing state spaces, but also different model 
types, like ODEs, linear ODEs (to be analyzed by 
linear theory), PDEs, etc. to be processed in serial or 
also in parallel, so that also co-simulation can be 
formulated based on external events. This approach 
allows handling all events also outside the ODE 
solver frame. After an event, a totally new model can 
be started. This makes sense especially in case of 
events of type SE-D and SE-S. 

Figure 10 shows a structure of a simulator supporting 
this hybrid approach. Some work has to be investi-

gated into extension of e.g. Modelica for using this 
external control of models. The figure summarizes 
the outlined ideas by extending the CSSL structure by 
control model, external events and multiple models. 

Clearly, not only ODE solver can make use of the 
model descriptions (derivatives), but also eigenvalue 
analysis, steady state calculation and other analysis 
algorithms may be used. 

4.3 Mixed approach with internal/external 
events 

A simulator structure as proposed in Figure 10 is a 
very general one, because it allows as well external 
and internal events, so that hybrid coupling with 
variable state models of any kind with internal and 
external events are possible (Figure 11). 

Both approaches have advantages and disadvantages. 
The classical Dymola approach generates a fast simu-

 
Figure 7: State chart control for 

 internal events of one model 

 
Figure 10: Structure for a simulation system with external 

state events E-SE and classical internal state events I-SE for 
controlling different models. 

 
Figure 9: State Chart Control for  

External Events for one Model 

 
Figure 8: State Chart Control for  
External Events for two Models 
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lation, because of the monolithic program. But the 
state space is static. 

A hybrid approach handles separate model parts and 
has to control the external events. Consequently, two 
levels of programs have to be generated: dynamic 
models, and a control program – today’s implementa-
tions are interpretative and not compiling, so that 
simulation time increases - but the overall state space 
is really dynamic. 

• A challenge for the future lies in the combination 
of both approaches. The main ideas are: 

• Moderate hybrid decomposition, 
• External and internal events, and 
• Efficient implementation of models and control. 

For instance, for SE-P an implementation with an 
internal event may be sufficient (I-SE-P), for an event 
of SE-S type implementation with an external event 
may be advantageous because of easier state re-
initialisation (E-SE-S), and for SE-D an implementa-
tion with an external event may be preferred (E-SE-
D), because of much easier handling of the dynamic 
state change – and less necessity for index reduction. 

An efficient control of the sequence of models can be 
made by state charts, but also by a definitions and 
distinction of if- and when- constructs, like discussed 
in extensions of SCILAB/SCICOS for Modelica. 

5 Simulators for hybrid and structural 
dynamic systems 

Up to now no simulator fulfils the structure given in 
Figure 12 completely. The main questions are: 

• whether acausal physical modelling is supported, 
• whether a-causal physical modelling is obeying 

the Modelica standard, 

• whether external events are supported (equal to 
whether hybrid decomposition into independent 
submodels is possible), and 

• whether state chart modelling is supported. 
In principle each combination of the above features is 
possible. 

5.1 MATLAB/Simulink 
The mainly interpretative system MATLAB/Simulink 
offers different approaches. First, it allows hybrid de-
composition at MATLAB level. There, from MAT-
LAB different Simulink models are called condition-
ally, and in Simulink a state event is determined by 
the hit-crossing block (terminating the simulation). 
For control, in MATLAB only if-then-else constructs 
and while structures are available (Listing 3, Fig. 12). 

1 if ((phi_p-phi0)*phi_p<0 | 
2          (phi0==phi_p & phi_p*v>0)) 
3    dphi0=v/ls; 
4    sim('pendulum_short',[t(length(t)), 
5    10]); 
6    v=dphi(length(dphi))*ls; 
7 else 
8  dphi0=v/l; 
9  ... 

10 end 

Listing 3. MATLAB control in Constrained Pendulum 
example for external events switching between long 
and short pendulum 

At Simulink level, different submodels may be con-
trolled by Stateflow, Simulink’s state chart modelling 
tool. But the system generates in any case a maximal 
state space. In both cases, a-causal modelling is not 
supported. Currently a number of new toolboxes for 
physical modelling are under development or quite 
new on the market. 

5.2 Dymola/Modelica 
Modelica and Dymola have already been discussed in 
Section 4, together with examples also for the Con-
strained Pendulum example. Modelica clearly offers 
a-causal modeling, and so Dymola does. 

  
Figure 11. State chart control for different models with 

internal and external events 

 
Figure 12: Simulink model for Constrained Pendulum with 

external event detected by hit-crossing block 
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But the Modelica definition says nothing about struc-
tural - dynamic systems, and Dymola builds up a 
maximal state space. Up to now there exit a Modelica 
standard library for state charts, but this construct is 
working only with internal events within the maximal 
state space. Figure 13 shows a Constrained Pendulum 
implementation with Dymola’s state chart library. 

5.3 Mosilab / Mosilab 
At present Fraunhofer Gesellschaft Dresden develops 
in a cooperation of six institutes (FIRST, IIS/EAS, 
ISE, IBP, IWU and IPK) a generic simulator Mosilab, 
which defines an extension of Modelica: multiple 
models controlled by state automata. This simulator 
meets most of the challenges for the hybrid decompo-
sition approach: at state chart level, state events of 
type SE-D control the switching between different 
models and service the events (E-SE-D). State events 
affecting a state variable (SE-S type) can be modelled 
at this external level (E-SE-S type), or also as classic 
internal event (I-SE-S). Also parameter events may be 
handled in both manners. 

As first example, a model is presented, which de-
scribes the simplified dynamics of a landing device, 
which is falling and slowing down alternatively. The 
state chart in Figure 14 is translated into extended 
textual Modelica model description given in Table 4. 

1 model System 
2 statechart 
3 state SystemSC extends State; 
4   state Moving extends State; 
5     state SlowDown extends State;... 
6     end SlowDown; 
7     State falling,State start(isInitial=true); 
8    ... 
9     transition t2: falling->slowDown event sw 

10        guard sw==1 action body.add(boost) 

11     end transition;... 
12   end Moving; 
13   State stop, start(isInitial=true); 
14   Moving moving; 
15   entry action  // executed, if state 
16     SystemSC activ 
17     gr := new Gravity(); 
18     boost := new Boost(empty=false); 
19   end entry;... 
20 end SystemSC; 
21 end System; 

Listing 4: Textual state chart notation for dynamics of 
landing device, Modelica extension in Mosilab 

The dynamic models for the different phases may be 
modelled textually in Modelica standard or using 
elements from a graphical Modelica library. Mosilab 
translates each model separately, and generates a 
main simulation program from the state chart, con-
trolling the call of the precompiled models and pass-
ing data between the models. 
Mosilab is in development phase, so it supports only 
a subset of Modelica, and it does not perform index 
reduction, so that a-causal modelling is supported 
only at a lower level. 
In a standard Modelica approach, the Constrained 
Pendulum is defined in the MOSILAB equation layer 
as implicit law (it is not necessary to transform to an 
explicit state space); the state event, which appears 
every time when the rope of the pendulum ‘hits’ or 
‘leaves’ the pin, is modelled in an algorithm section 
with if (or when) – conditions. 

Mosilabs state chart approach models discrete ele-
ments by state charts, which may be used instead of 
if- or when- clauses, with much higher flexibility and 
readability in case of complex conditions. There, 
Boolean variables define the status of the system and 
are managed by the state chart.  

 
Figure 13: Graphical Dymola model for Constrained 

Pendulum with internal events managed by elements of 
Dymola’s state chart library 

Figure 14: State chart for dynamics of landing device, 
Modelica Extension in Mosilab 
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The state charts initialize the system and manage 
switching between long and short pendulum, by 
changing the length appropriately (Listing 5). 

1 event Boolean lengthen(start=false), 
              shorten(start=false); 

2 equation 
3   lengthen=(phi>phip); shorten=(phi<=phip); 
4   v = l1*der(phi); vdot = der(v);  
5   mass*vdot/l1+mass*g*sin(phi)+damping*v = 0;  
6 statechart  
7 state LengthSwitch extends State;  
8   State Short,Long,Initial(isInitial=true);... 
9   transition Long -> Short event shorten 

10     action length := ls;  
11   end transition;... 
12 end LengthSwitch; 

Listing 5. Mosilab model for Constrained Pendulum – 
state chart model with internal events (I-SE-P) 

From the modelling point of view, this description is 
equivalent to the description with if-clauses. The 
Mosilab translator clearly generates an implementa-
tion with different internal equations. Mosilabs simu-
lator performs simulation by handling the state event 
within the integration over the simulation horizon. 

Mosilabs state chart construct is not only a good 
alternative to if- or when- clauses within one model, 
it offers also the possibility to switch between struc-
tural different models. This very powerful feature 
allows any kind of hybrid composition of models 
with different state spaces and also of different type 
(example see listing 6). 

1 model Long 
2 equation  
3   mass*vdot/l1+mass*g*sin(phi)+damping*v = 0; 
4 end Long;// the same for model Short with other paramaters 
5 event discrete Boolean lengthen(start=true), 

                       shorten; 
6 equation  
7   lengthen=(phi>phipin);shorten=(phi<=phipin);  
8 statechart 
9 state ChangePendulum extends State;  

10   State Short, Long, 
        startState(isInitial=true);  

11   transition startState -> Long action  
12     L:=new Long(); K:=new Short(); add(L);  
13   end transition;  
14   transition Long->Short event shorten action 
15     disconnect …; remove(L); add(K); connect …  
16   end transition;  
17 end ChangePendulum; 

Listing 6. Mosilab model for Constrained Pendulum – 
state chart switching between different pendulum 
models by external events (E-SE-P) 

 

In case of the constrained pendulum, the system is de-
composed into two different models, Short pendulum 
model, and Long pendulum model, controlled by a 
state chart. The state chart creates first instances of 
both pendulum models during the initial state (new). 
The transitions organise the switching between the 
pendulums (remove, add). 

5.4 AnyLogic 
AnyLogic, already discussed in Section 4, is based on 
hybrid automata. Therefore hybrid decomposition and 
control by external events is possible. AnyLogic can 
deal partly with implicit systems, but does not sup-
port a-causal modelling. Furthermore, new versions 
of AnyLogic concentrate more on discrete modelling 
and modelling with System Dynamics, whereby state 
event detection has been sorted out. For the Con-
strained Pendulum example, a hybrid decomposed 
model may make use of a model structure ‘similar’ to 
that one in Figure 6, but now two sets of the state 
equations are found in the sub states Short and Long. 
The events defined at the arcs stop the actual model, 
set new initial conditions and start the alternative 
model. 

References 
[1] Strauss, J. C. ‘The SCi continuous system simulation 

language (CSSL)’, Simulation 9, 281-303. San Diego: 
SCS Publishing, 1967.  

[2] P. Fritzson: Principles of Object-Oriented Modeling 
and Simulation with Modelica, Wiley IEEE Press, 
ISBN 0-471-471631, 2005.  

[3] C. Nytsch-Geusen, P. Schwarz, ‘MOSILAB: Devel-
opment of a Modelica based generic simulation tool 
supporting model structural dynamics’, In Proc. 4th 
Modelica Conference TU Hamburg-Harburg, pp 527 
– 535, 2005; 

Corresponding author: Felix Breitenecker 
Vienna University of Technology 
Department of Analysis and Scientific Computing, 
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria 
Felix.Breitenecker@tuwien.ac.at 

Accepted EUROSIM 2007, June 2007 
Received revised contribution: August 24, 2007 
Revised: September 2, 2007 
Accepted: September 5, 2007 



+++ Modeling Structural-Dynamics  Systems +++  t

49

N
SN

E 17/2, Septem
ber 2007

Modeling Structural - Dynamics Systems in MODELICA/Dymola, 
MODELICA/Mosilab and AnyLogic 

Günther Zauner, Felix Breitenecker, Vienna University of Technology, Austria 
Daniel Leitner, Austrian Research Centres, Austria 

With the progress in modeling dynamic systems new extensions in model coupling are needed.  The models 
in classical engineering are described by differential equations. Depending on the general condition of the 
system the description of the model and thereby the state space is altered. This change of system behavior 
can be implemented in different ways. In this work we focus on three state-of-the-art DAE simulation envi-
ronments, Dymola, Mosilab and AnyLogic, and compare the possibilities of coupling of different state 
spaces. This can be done either using a parallel model setup, a serial model setup, or a combined model 
setup. The analogies and discrepancies are figured out on the basis of the classical constrained pendulum as 
defined in ARGESIM comparison C7. 

Introduction 
In the last decade the increase of computer power and 
the apace growth of model complexity leads to a new 
generation of simulation environments. Concurrently 
ambitions pointed towards establishing standardiza-
tion. Especially Modelica organization develops a 
range of syntax description and standard libraries. 

This paper will compare the solutions of the con-
strained pendulum as an easy to model example, 
implemented in the most common Modelica simula-
tor Dymola, Mosilab, a product from six Fraunhofer 
Institutes which uses Modelica syntax with exten-
sions for state charts, and the simulator AnyLogic 
from Xjtek in St. Petersburg. This simulator also has 
object oriented structure and is implemented in Java. 

We will focus on how the model can be implemented 
and we will have a look in which time slot the state 
events are and if there is a significant difference refer-
ring to the implementation method. 

1 Model 
The constrained pendulum is a classical nonlinear 
model in simulation techniques. This model has been 
presented in the definition of ARGESIM comparison 
C7 [1]. There is no exact analytical solution to this 
problem. Therefore, the results have to be obtained by 
numerical methods. In this section a description of 
the model will be given. 

The motion of the pendulum is given by 
 sin( ) ,ml mg dl� � �� � ��� �  (1) 

where �  denotes the angle measured in counter 
clockwise direction from the vertical position. The 

parameter m  is the mass and l  is the length of the 
pendulum. Damping is realized with the constant d . 

In the case of a constrained pendulum a pin is fixed at 
a certain position given by the angle p�  and the 
length pl . If the pendulum is swinging it may hit the 
pin. In this case the pendulum swings on with the 
position of the pin as the point of rotation and the 
shortened length s pl l l� � . 

Two experiments have been defined. The first one is 
starting in the long pendulum modus and is swinging 
towards the pin. The second experiment is a model 
where the starting conditions are set in a way that the 
pendulum is shortened in the beginning of the simula-
tion run. 

2 Simulation environments 
In this section the focus is on three simulation envi-
ronments. Two simulators, namely Dymola and Mosi-
lab, are based on the model description standard 
Modelica [2]. Modelica is a freely available, object-
oriented language for modeling of large, complex, 
and heterogeneous physical systems. 

One of its most important features is non-causal mod-
eling. In this modeling paradigm, users do not specify 
the relationship between input and output signals 
directly, but they rather define variables and the equa-
tions that must be satisfied. 

It is suited for multi-domain modeling and control 
subsystems and process oriented applications. Mode-
lica is designed that it can be utilized in a similar way 
as an engineer builds a real system: first trying to find 
standard components like motors, pumps and valves 
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from manufacturers catalogues with appropriate 
specifications and interfaces and only if there does 
not exist a particular subsystem, a component model 
would be newly constructed based on standardized 
interfaces. 

The actual version of the Modelica Standard Library 
is 2.2.1, which has been released in April 2006. 

2.1 Dymola 
Dymola, DYnamic MOdeling LAboratory, is an envi-
ronment for modeling and simulation of integrated 
and complex systems. It has unique multi-engineering 
capabilities which mean that models can consist of 
components from many engineering domains. 

The basic structure of the simulator is divided into 
two separate parts: the Modeling layer and the Simu-
lation layer. Thereby the modeling layer is separated 
in three parts. One part, the so called ICON layer, is 
used to define the shape of the new defined blocks. 
The DIAGRAM layer is the interface for graphical 
modeling. The third plane is the MODELICA TEXT 
part where the Modelica source code can be imple-
mented directly.  

Dymola has a strong focus on using symbolic meth-
ods for mass-matrix inversion and equation sorting. 

Integration algorithms for non-real-time simulation 
typically handle discontinuities by detecting when 
certain variables cross a boundary. They then calcu-
late the time of the event by iteration and then change 
the step size to advance the time exactly to the time 
of the event (crossing) [3].  

The default integration method is the Dassl code as 
defined by Petzold. The method can also be freely 
chosen out of 15 standard solvers, including algo-
rithms for stiff systems. There is until now no possi-
bility implemented to make graphical model switch-
ing for subsystems with different state space dimen-
sion. 

2.2 Mosilab 
The simulator Mosilab (MOdeling and SImulation 
LABoratory) is an environment developed from the 
Fraunhofer-Institutes FIRST, IIS/EAS, ISE, IBP, IWU 
and IPK in the research project GENSIM. 

It has been developed for time-continuous and time-
discrete analysis of heterogeneous technical systems. 
The main innovation from point of simulation tech-
niques view in this simulator is the illustration of 
condition-based changes in the model structure 

(model structure dynamics). With this mechanism it is 
possible develop and simulate models with different 
modeling depth. 

The model description in general is done in the Mod-
elica standard. Additional features to assure high 
flexibility during modeling and the concept of struc-
tural dynamics is implemented. This is done by ex-
tending the Modelica standard with state charts, con-
trolling dynamic models. The extended object-
oriented model description language resulting is 
called MOSILA [1,4] Moreover simulator coupling 
with standard tools (e.g. MATLAB/Simulink, FEM-
LAB) is realized. 

Code generation is done in a quite similar way as in 
Dymola/Modelica. This makes sense, because this 
relatively new simulator will also be able to simulate 
problems defined in the standard Modelica notation 
with other tools, which use the same syntax. The 
main difference is the extension for graphical repre-
sentation of state charts. This is solved with an inter-
face where the user can define UML statecharts. 

The analysis part of the model is split into two layers: 
the simulation and the post processing layer. The 
defined code is translated into C++. The default inte-
gration method is the so called IDADASSL. 

2.3 AnyLogic 
AnyLogic is a multiparadigm simulator supporting 
Agent Based modeling as well as Discrete Event 
modeling, which is flowchart-based, and System 
Dynamics, which is a stock-and-flow kind of descrip-
tion. Due to its very high flexibility AnyLogic is 
capable of capturing arbitrary complex logic, intelli-
gent behavior, spatial awareness and dynamically 
changing structures. It is possible to combine differ-
ent modeling approaches making AnyLogic a hybrid 
simulator. AnyLogic is highly object oriented and 
based on the Java programming language 

The development of AnyLogic in the last years has 
been towards business simulation. In version 6 of 
AnyLogic it is possible to calculate problems from 
engineering, but there are certain restrictions. For 
example the integration method cannot be chosen 
freely and there is no state event finder. 

When a model starts, the equations are assembled 
into the main differential equation system. During the 
simulation, this DES is solved by one of the numeri-
cal methods built in AnyLogic. AnyLogic provides a 
set of numerical methods for solving ordinal differen-
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tial equations (ODE), algebraic-differential equations 
(DAE), or algebraic equations (NAE).  

AnyLogic chooses the numerical solver automatically 
at runtime in accordance to the behavior of the sys-
tem. When solving ordinal differential equations, it 
starts integration with forth-order Runge-Kutta 
method with fixed step. Otherwise, AnyLogic plugs 
in another solver—Newton method. This method 
changes the integration step to achieve the given 
accuracy. 

3 Solution methods 
New advantages in computer numerics and the fast 
increase of computer capacity lead to necessity of 
new modeling and simulation techniques.  In many 
cases of modern simulation problems state events 
have to be handled. 

There exit more or less different categories of struc-
tural dynamic systems which should be focused on 
and solved.  

The first class of hybrid systems are the one, where 
the state space dimension does not change during the 
whole simulation time and also the system equations 
stay the same. Only so called parameter events occur 
at discrete time points. These are the more or less 
simplest form of state events. Modern simulators 
offer different solution methods. A Part of them have 
a discrete section or as implemented in Dymola and 
Mosilab a so called algorithm section. In this part the 
user can define the parameter value change using the 
commands when, if, etc. In this section the use of a 
causal modeling has to be switched off. This means 
that we have to make assignments for the parameter 
values at time point the event occurs. 

Furthermore many software environments support the 
usage of UML state charts. This is a very intuitive 
and convenient way to describe a system which con-
tains multiple discrete states. In the combination with 
dynamical equations this approach enables a simple 

implementation of structural dynamics. The dynamic 
equations or parameters are dependent of the discrete 
state of the model. On the other hand the states can be 
altered in dependence of the dynamic variables. 

In case of the constrained pendulum the states are 
normally swinging (state ‘long’) or swinging with 
shortened length around the pin (state ‘short’). The 
discrete state of the model depends on the angle �  
and the pins angle p� . The state alters the model 
parameters or the models set of equations, see fig-
ure 1. 

3.1 Switching states 
When the state of a system changes, often the state 
space of the model stays unchanged, thus the same set 
of differential equation can be used for different 
states. In this situation only certain parameters must 
be changed when a state is entered.  

In case of the constrained pendulum the differential 
equation for movement stays the same for both states 
‘long’ and ‘short’. If the state changes the parameter 
length and angular velocity are updated before the 
calculation can continue, see figure 2. 

When the state of a system changes, often the state 
space of the model stays unchanged, thus the same set 
of differential equation can be used for different 
states. In this situation only certain parameters must 
be changed when a state is entered. 

In case of the constrained pendulum the differential 
equation for movement stays the same for both states 
‘long’ and ‘short’.  If the state changes the parameter 
length and angular velocity are updated before the 
calculation can continue, see figure 2. 

3.2 Switching models 
Often the previous approach is not possible. Some-
times situation occur where the state space of the 
model changes, thus a simple change of parameters is 
not possible. Normally the whole set of differential 
equations, thus the complete model, must be changed. 

 
Figure 1. UML state diagram controlling the pendulum. 

      
Figure 2. The parameters of the model are changed by an 

UML state diagram. 
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In many simulation environments this approach can 
lead to complication. 

In case of the constrained pendulum two differential 
equations are set up describing the movement of the 
pendulum. One describes the normal pendulum the 
other one the shortened pendulum. Which equation is 
set to be active is determined by the state diagram. 
When the states are switched the initial values must 
be passed on the equation must be activated and the 
other one must be frozen, see figure 3. 

4 Dymola 
The implementation of the constrained pendulum has 
been done in two more or less different ways. As 
Dymola does not support the UML notation for state 
charts and there is in the moment no method imple-
mented to switch between two or more independent 
models during one simulation run, the solution meth-
ods described in section 3.1 and 3.2 can not be used. 

In our example the state event, which appears every 
time when the rope of the pendulum hits the pin or 
looses the connection to it, is modeled in an algo-
rithm section. This can be done with the following 
code digest: 

1 algorithm 
2    if (phi<=phipin) then 
3       length := ls; 
4    end if; 
5    if (phi>phipin) then 
6       length := l1; 
7    end if; 

Another method for implementing the constrained 
pendulum in Dymola is the use of standard blocks in 

combination with a predefined model which includes 
the equations or using only the Modelica.Blocks 
components.  

In this example the solution is made by using stan-
dard blocks with little extension. Figure 4 shows a 
screenshot of the Diagram layer of this model. 

The simulations are done for both tasks and the solu-
tions are compared. This is done by plotting all the 
results in one picture. The time of the last event in 
task a (figure 5) is in both cases the same, namely 
6.72198 seconds. There is no easy possibility to plot 
the difference of special variables from different 
simulation runs. The same model has to be checked 
with other starting values. This is done in next step. 
The figure 6 shows the plot for starting angle 6

�� � �  
instead of 6

� . 

5 Mosilab 
Similar to the way the solutions in Dymola were 
calculated, the system can be solved with Mosilab. 
But as mentioned before, this structure can not handle 
changes in the state space dimension. The imple-
mented Modelica extension enables the handling of 
discrete elements as well as structure changes in the 
general description. 

We focus on two different solution methods for the 
constrained pendulum. 
First approach: State charts may be used instead of 
if- or when- clauses (similar to 3.1 Switching states), 
with much higher flexibility and readability in case of 
complex conditions. Boolean variables define the 
status of the system and are managed by the state 

   

   
Figure 3. The differential equations of the system are 

switched in dependence of the UML state diagram. 

Figure 4. The screenshot of the Diagram layer in 
Dymola/Modelica. 
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chart. The most important part of the source code is 
as follows: 

1 equation 
2    lengthen = (phi > phipin); 

   shorten = (phi <= phipin); 
3    /* pendulum equations here */ 
4 statechart 
5 state LengthSwitch extends State; 
6    State Short, Long, Initial(isInitial=true); 
7    transition Initial -> Long end transition; 
8    transition Long -> Short event shorten 

      action length := ls; 
   end transition; 

9    transition Short -> Long event lengthen 
      action length := l1; 
   end transition; 

10 end LengthSwitch; 
From the modeling and mathematical point of view, 
this description is equivalent to the description with 
if-clauses. The question is, how the Mosilab transla-
tor generates the  implementation of the equations in 
both cases. The Mosilab/Modelica simulator performs 
simulation by handling the state event within the 
integration over the simulation horizon.  

Second approach: These models are the conversion of 
concepts from section 4.2, which is switching models 
into Mosilab notation. For the constrained pendulum, 
we decompose the system into two different models, 
a short and a long pendulum model, controlled by a 
state chart. This can again be done with graphical aid 
in the form of UML diagrams. 
In the development status at the end of 2006, there 
still occurred several problems with the graphical 

interface of the state chart layer. The functionality of 
the system is not restricted. The results are similar to 
the solutions done with Dymola/Modelica. 

6 AnyLogic 
The implementation of the constrained pendulum has 
been done in two different ways. In the first approach 
only the parameter states have been switched corre-
sponding to section 4.1, in the second approach the 
whole differential equation is switched corresponding 
to section 4.2.  Both examples from chapter 2 have 
been calculated with both approaches. The results in 
AnyLogic are identical in both methods because the 
times of the state transitions are the same.  

In the first approach the model consists of two ordi-
nary differential equations describing the movement 
of the pendulum. In these equations four parameters 
are used length l , mass m , damping d , and gravity 
g . Further a state diagram with states long and 
‘short’ and two transitions are used to update the 
equations. When the state changes length l  and angu-
lar velocity �  are updated. The results calculated by 
AnyLogic 6 are plotted in figures 7 and 8. 

The second approach uses two separate models. The 
implemented model consists of two times two ordi-
nary differential equations. Both equations have four 
parameters separately: length l , mass m , damping 
d , and gravity g . A state diagram is implemented 
analog to the first approach. If the state changes the 
right differential equations are activated and their 

 

 
Figures 7, 8. Results for example 1 and 2, respectively: 

angle (red, inner graph), angular velocity (blue). 

 

 
Figures 5, 6. Angle (red, inner graph) and angular velocity 

(blue) as described in section 1. 
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initial values are set, while the other differential equa-
tion is frozen. 

7 Discussion 
For this nonlinear model, there exists no exact solu-
tion. For this reason we can only calculate the nu-
merical solutions and compare, for example, the time 
points where the last state event appears. This is the 
moment when the rope of the pendulum looses the 
connection to the pin the last time. In the first model 
under investigation, this happens after the fourth time 
shortening the pendulum, which means after eight 
state events all together. In the second simulation run, 
this occurs earlier, namely already after two times 
lengthening the rope, which means after three state 
events, because of the special initial condition (pen-
dulum is in short modus at starting time). 

The solutions are calculated with the default simula-
tion method, if possible. With this approach we try to 
test the simulation environments from the user’s point 
of view. Many programmers and modelers do not care 
that much about the implemented integration meth-
ods. For this reason the standard method has to pro-
duce reliable results in an appropriate calculation 
time.  

The solution in the Mosilab simulator with standard 
Modelica components cannot be calculated with the 
standard method (Dassl code), because during simu-
lation of this task a numerical error occurs and there-
fore the calculation is interrupted. The integration 
method pins at the time point of the first state event. 
Because of this reason the Implicit Trapez method 
was chosen. The other results are all done with the 
standard integration method and the given step 
sizes/number of intervals. 

Table 1 shows that the solutions with Dymola and 
Mosilab are equivalent, if the solution is rounded 
towards two digits after the comma. By contrast, the 
solution in AnyLogic differs. We can try to explain 
this difference by taking a look on state event finding. 
This is not implemented in AnyLogic and is missing 
as an important standard feature of modern simula-
tion environments. The lack of influence on the nu-
merical methods can be explained by the main field 
of application of AnyLogic. Its main focus is on pro-
duction and logistics, not on simulation of DAE systems. 

In table 1 we see that there is only one row for Dy-
mola/Modelica. This is because of equivalent results 
in all three implementations. Also AnyLogic delivers 
the same result for both methods. As we see, in this 
case Dymola outperforms Mosilab, because the result 
does not depend on the way of implementation. On 
the other hand we cannot implement real structural 
dynamics without blowing up the state space and 
problems in starting variable definition. 

The graphical user interface for UML diagrams is a 
big advantage of Mosilab and AnyLogic compared to 
the possibilities of Dymola. But we have to keep in 
mind, that this feature is not Modelica standard, 
which complicates model exchange between different 
simulators based on Modelica. 
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Simulator Simulation  Method 
Dymola/Modelica 6.72198 Dassl 

500 intervals 
Mosilab/Modelica 

Switch models 
6.7204 IDA Dassl 

Min. step 1e-6 
Max. step 0.08  

Mosilab/Modelica 
Pure Modelica 

6.7199 Impl. Trapez 
Min. step 1e-6 
Max. step 1e-4 

Mosilab/Modelica 
Parameter switch-

ing 

6.7224 IDA Dassl 
Min. step 1e-6 
Max. step 0.08 

AnyLogic 6.725 No influence 
Step size 0.001 

Table 1. End time of the last shortening of the pendulum 
for example 1. 
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