
S I M U L AT I O N
NEWS EUROPE

Journal on Developments and
Trends in Modelling and Simulation

Special Issue

Volume 17 Number 2 September 2007, ISSN 0929-2268

ARGESIM

SNE
Special Issue:

Object-oriented and Structural-dynamic

Modeling and Simulation I

+++ Editorial � Contents +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

2

Editorial SNE Special Issue
Object-oriented and Structural-dynamic Modelling and Simulation I

The SNE special issues on Object-oriented and Structural-
dynamic Modelling and Simulation emphasize on recent
developments in languages and tools for object-oriented
modelling of complex systems and on approaches, languages
and tools for structural-dynamic systems.
Computer aided modelling and simulation of complex sys-
tems, using components from multiple application domains,
have in recent years witnessed a significant growth of interest.
In the last decade, novel equation-based object-oriented
(EOO) modelling languages, (e.g. Modelica, gPROMS, and
VHDL-AMS) based on acausal modelling using equations
have appeared. These languages allow modelling of complex
systems covering multiple application domains at a high level
of abstraction with reusable model components.
This need and interest in EOO languages additionally raised
the question for modelling approaches and language concepts
for structural dynamic systems. Appropriate control structures
like state charts in EOO languages also allow composition of
model components ‘in serial’ – an interesting new strategy for
modelling structural- dynamic systems.
There exist several different communities dealing with both
subjects, growing out of different application areas. Efforts
for bringing together these disparate communities resulted in
a new workshop series, EOOLT workshop series, and estab-
lished special sessions on structural-dynamic modelling and
simulation (SDMS) within simulation conferences. In August
2007, the 1st International Workshop on Equation-Based
Object-Oriented Languages and Tools – EOOLT 2007 – took
place in Berlin, with thirteen papers, and a special session at
EUROSIM 2007 Congress (September 2007, Ljubljana) with
seven papers concentrated on structural dynamic modelling
(EUROSIM 2007- SDMS Special Session).
This SNE special issue on Object-oriented and Structural-
dynamic Modelling and Simulation – I presents selected con-
tributions from both events, presenting overview, state-of-the-
art and development in the investigated subjects (five contri-
butions from EOOLT, and two contributions from EUROSIM
– SDMS).
Clearly, Modelica, the new standard for object-oriented and
component-based physical modelling, plays an important role
in many contributions. The first two contributions deal with
structural concepts in MODELICA using UML - ‘The Use of
the UML within the Modeling Process of Modelica Models’
by Ch. Nytsch-Geusen, and ‘Towards Unified System Model-
ing with the Modelica ML UML Profile’ by A. Pop et al. The
third paper ‘Hybrid Dynamics in Modelica: Should all Events
be Considered Synchronous’ by R. Nikoukhah raises prob-
lems with hybrid and structural-dynamic systems in Modelica
and discusses general approaches to state event handling.
The fourth and the fifth paper, ‘Enhancing Modelica towards
variable structure systems’ by D. Zimmer, and ‘Functional
Hybrid Modeling from an Object-Oriented Perspective’ by
H. Nilsson et al, link ideas of component-based object-orien-
ted physical modelling and structural-dynamic modelling.
The sixth contribution ‘Structure of Simulators for Hybrid and

Structural-dynamic Systems’ by N. Popper et al., reviews
features of simulators for structural-dynamic systems and
introduces different classes of state events. The last paper
‘Modeling Structural Dynamics Systems in Modelica / Dy-
mola, Modelica /Mosilab, and AnyLogic’ by G. Zauner et al,
presents features for hybrid and structural-dynamic modelling
in equations-based object-oriented simulation languages.
Four contributions from EUROSIM SDS will be published
together with EOOLT 2008 contributions in an SNE Special
Issue ‘Object-oriented and Structural-dynamic Modelling and
Simulation – II in 2008.
The editors would like to thank all authors for their co-
operation and for their efforts, e.g. for sending revised ver-
sions, and hope that the selected papers present a good over-
view and state-of-the-art in object-oriented and structural-
dynamic modelling and simulation.

Peter Fritzson, Linköping University, Sweden
François Cellier, ETH Zurich, Switzerland
Christoph Nytsch-Geusen, University of Fine Arts,
 Berlin, Germany
Peter Schwarz, Fraunhofer EAS – Dresden, Germany
Felix Breitenecker, Vienna Univ. of Technology,
 Austria
Borut Zupancic, Univ. Ljubljana, Slovenia

Proceedings EUROSIM 2007 - 6th EUROSIM Congress on Modeling
and Simulation, B. Zupancic, R. Karba, S. Blazic (Eds.); ARGESIM /
ASIM, Vienna (2007), ISBN: 978-3-901608-32-2;

Proceedings of the 1st International Workshop on Equation-Based
Object-Oriented Languages and Tools – EOOLT 2007, P. Fritzson, F.
Cellier, Ch. Nytsch-Geusen (eds), Linköping University Electronic
Press 2007, ISSN (online): 1650-3740; www.ep.liu.se/ecp/024/

Contents

The Use of UML within the Modeling Process of Modelica
models
Christoph Nytsch-Geusen .. 4

Towards Unified System Modeling with the ModelicaML
UML Profile
Adrian Pop, David Akhvlediani, Peter Fritzson 9

Hybrid Dynamics in Modelica: Should all Events be
Considered Synchronous
Ramine Nikoukhah .. 16

Enhancing Modelica towards Variable Structure Systems
Dirk Zimmer ... 23

Impressum, Editorial .. 28
Functional Hybrid Modeling from an Object-Oriented

Perspective
Henrik Nilsson, John Peterson, Paul Hudak 29

A Potential Approach of Simulators for Hybrid Systems,
Including a Concept for External/Internal State Events
Felix Breitenecker, Inge Troch, Günther Zauner 39

Modeling Structural - Dynamics Systems in
Modelica/Dymola, Modelica/Mosilab and AnyLogic
Günther Zauner, Daniel Leitner, Felix Breitenecker 49

+++ The Use of UML within the Model ing Process of Model ica Models +++

4

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

4

The Use of UML within the Modeling Process of Modelica Models

Christoph Nytsch-Geusen, Fraunhofer Institute, Germany, christoph.nytsch@first.fraunhofer.de

This paper presents the use of the Unified Modeling Language (UML) in the context of object-oriented mod-
elling and simulation of hybrid systems with Modelica. The definition of a specialized version of UML for
the graphical description and model based development of hybrid systems in Modelica—the UMLH—was
taken place in the GENSIM project [1, 2]. For a better support of the modelling process, an UMLH editor
with different views (class diagrams, statechart diagrams, collaboration diagrams) was implemented as a part
of the Modelica simulation tool MOSILAB [3]. In the EOOLT-workshop the use of UMLH and its semantics
will be demonstrated by the development of a simplified model of a Pool-Billiard game in Modelica.

Introduction
On the one hand, the Unified Modeling language
(UML) is the established standard for the develop-
ment and graphical description of object-oriented
software systems [4]. UML offers a couple of dia-
grams, which describe different views (e.g. class
diagrams, statechart diagrams, collaboration dia-
grams) on object-oriented classes. On the other hand
Modelica [5] is a pure textual simulation language,
which means the program code of long and highly
structured models might be often heavy to under-
stand. Thus, the combination of UML and Modelica
was taken place within the GENSIM project. An
UML editor for the Modelica based simulation tool
MOSILAB was developed, which can be used for
describing and generating Modelica models in a
graphical way [3].
In this paper a special forming of UML for the model-
ling process of hybrid systems, the UMLH, will be
presented. In a first step, the elements of the UMLH

and their semantics for the Modelica-language will be
introduced. After that, the use of UMLH will be illus-
trated by the example of a simplified version of a
Pool-Billiard game.

1 UMLH and Modelica
The development of the UMLH was motivated by the
following main reasons:

• to support the user within the modelling process
of complex Modelica models in a easy manner,

• to have a method for the graphical documenta-
tion of the object-oriented construction of Mode-
lica-models,

• to have a graphical analogy for the statechart ex-
tension of Modelica, which was introduced in the
GENSIM project as a linguistic means of expres-
sion for model structural dynamics.

The UMLH includes only a subset of the UML stan-
dard, which is necessary for the graphical description
of Modelica models: the class diagram view, the
statechart diagram view and the collaboration dia-
gram view.

1.1 Class diagrams
A class diagram in UMLH is a rectangle, which con-
tains in the upper part the class name and the Mode-
lica class type. The optional lower part comprises the
attributes (parameters, variables etc.) of the Modelica
class. Inheritance and composition is expressed in the
same way as in UML (compare with Fig. 1.)

Starting from this graphical notation, the correspon-
dent Modelica code can be generated automatically,
e.g. with MOSILAB (here, the UMLH diagrams are
directly integrated within the Modelica code by the
use of specialized annotations). The following code
shows the classes A, A1 and C, which are inner classes
of the package UML_H:

1 package UML_H
2 annotation(UMLH(

 ClassDiagram="<umlhclass><name>…"));
3 class A
4 annotation(UMLH(classPos=[31,53]));
5 end A;

Figure 1. UMLH class diagram

+++ The Use of UML within the Model ing Process of Model ica Models +++

 5

t

5

N
SN

E 17/2, Septem
ber 2007

6 model A1
7 annotation(

 Icon(Text(extent=…,string="A1", …));
8 annotation(UMLH(classPos=[31,146]));
9 extends A;

10 event Boolean on;
11 event Boolean off;
12 Real x;
13 input Real z;
14 parameter Real y;
15 C c;
16 ...
17 end A1;
18 connector C

 annotation(UMLH(classPos=[192,54]));
19 Real u;
20 flow Real i;
21 end C;
22 ...
23 end UML_H;

1.2 Collaboration diagrams
Collaboration diagrams in UMLH are also rectangles,
which contain the object name and the type or the
icon of the Modelica class, divided by a horizontal
line. Four different connections types exist between
the objects (see with Fig. 2.):

• Type 1: connections of connector variables (thin
black line with filled squares at the ends)

• Type 2: connections of scalar variables (thin blue
line with unfilled squares at the ends)

• Type 3: connections of scalar input/output vari-
ables (thin blue line with an arrow and a unfilled
square)

• Type 4: multi-connections as a mixture of differ-
ent connection types, e.g. type 1 and type 2 (fat
blue line)

The following Modelica code expresses the collabo-
ration-diagram of Fig. 2:

1 model System
2 annotation(CompConnectors(

 CompConn(label="label2",
 points=[-81,52; -81,43;
 -24,43; 24,51])));

3 UML_H.A1 c1
 annotation(extent=[-87,72; -74,52]);

4 UML_H.A1 c2 annotation(extent=[…]);
5 UML_H.A1 c3 annotation(extent=[…]);
6 UML_H.B b annotation(extent=[…]);
7 equation

 // connection type 1
8 connect(c1.c,c2.c)

 annotation(points=[-74,62;-57,62]);

9 // connection type 2
10 c2.y=c3.y annotation(points=[…]);

11 // connection type 4 (mixture of type 1 and 2):
12 connect(c1.c,c3.c)

 annotation(label="label2");
13 c1.x=c3.x

 annotation(label="label2");

14 // connection type 3:
15 b.y=c1.z annotation(points=[…]);
16 end System;

1.3 State chart diagrams
A statechart diagram in UMLH is represented as a
rectangle with round corners. In general, a statechart
diagram contains several states and the transition
definition between the states. Figure 3 shows four
different types of States:

• Initial states, symbolized with a filled circle,
• Final states, symbolized with a point in a unfilled

circle,
• Atomic states, with a flat internal structure,
• Normal states, which can contain additional en-

try or exit actions and can be substructured in
further statechart diagrams.

The transitions between the states are specified with
an optional label, an event, an optional guard and the
action part. The following code shows the corre-
sponding code of the statechart section of the model
A1 (The new introduced statechart section is part of
the Modelica language extension for model structural
dynamics [6]):

Figure 3. UMLH statechart diagram

Figure 2. UMLH collaboration diagram

+++ The Use of UML within the Model ing Process of Model ica Models +++

 6

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

6

1 model A1
2 ...
3 statechart
4 state A1SC extends State
5 annotation(extent=[-88,86; 32,27]);
6 state State1
7 extends State;
8 exit action x:=0; end exit;
9 end State1;

10 State1 state1
 annotation(extent=[-66,62;-41,48]);

11 State A3 annotation(extent=...);
12 State I5(isInitial=true)...;
13 State F7(isFinal=true)...;
14 transition I5->state1 end transition
15 annotation(points=[-76,73;-64,71;…]);
16 transition l1:state1->A3

 event on action x:= 2.0;
17 end transition annotation(points=...);
18 transition l2:A3->state1

 event off guard y < 5 action x:=3.0;
19 end transition ...;
20 transition state1->F7 end transition

 annotation...;
21 end A1SC;
22 end A1;

2 Example for UMLH modeling
The modelling and simulation of a simplified Pool-
Billiard game shall demonstrate the advantages of the
graphical modelling with UMLH.

2.1 Model of a Pool-Billard game
The system model of the Pool-Billiard game includes
sub models for the balls and the table. The configura-
tion of the system model is illustrated in Fig. 4. Fol-
lowing simplifications are assumed in the model:

• The Pool-Billiard game knows only a black, a
white and a coloured ball.

• The table has only one hole instead of 6 holes.
• The collision-model is strong simplified.

• The balls are moving between the collisions and
reflections only on straight directions in the di-
mension x and y.

• The reflections on the borders take place ideal
without any friction losses.

• The rolling balls are slowed down with a linear
friction coefficient rf :

 ,x
x r x

dv dxm v f v
dt dt

⋅ = − ⋅ = (1)

 ,x
x r y

dv dym v f v
dt dt

⋅ = − ⋅ = (2)

Fig. 5 shows the statechart diagram for the ball
model. After the model enter the state Rolling, the
ball knows four reflection events, for the four differ-
ent borders of the billiard table. Depending from the
border event, the new initial conditions (velocity and
position) after the reflections are set and the ball
enters again the state Rolling:

1 model Ball
2 extends MassPoint(m=0.2);
3 parameter SIunits.Length width;
4 parameter SIunits.Length length;
5 parameter SIunits.Length d = 0.0572

 "diameter";
6 parameter Real f_r = 0.1

 "friction coefficient";
7 SIunits.Velocity v_x, v_y;
8 event Boolean reflection_left

 (start = false);
 ...

9 equation
10 reflection_left = if x < d/2.0;
11 m * der(v_x) = - v_x * f_r;
12 der(x) = v_x;

 ...
13 statechart
14 state BallSC extends State;

Figure 5. UMLH statechart diagram of the ball model

Figure 4. UMLH class diagram of the Pool-Billard model

+++ The Use of UML within the Model ing Process of Model ica Models +++

 7

t

7

N
SN

E 17/2, Septem
ber 2007

15 State Rolling;
16 State startState(isInitial=true);

 ...
17 transition startState -> Rolling

 end transition;
 ...

18 transition Rolling->Rolling
 event reflection_left

19 action v_x := -v_x; x := d/2.0;
20 end transition;
21 ...
22 end BallSC;
23 end Ball;

On the system level two different states (Playing and
GameOver) and two types of events - the collision of
two balls and the disappearance of a ball in the hole
(compare with Fig. 6 and the program code) exist. If
the white ball enters the hole, the game will be con-
tinued with the white ball from the starting point
(transition from Playing to Playing). If the black
ball disappears in the hole, the statechart is triggered
to the state GameOver. If the coloured ball disap-
peared, the game is reduced for one ball - remove(bc)
- and the numerical calculation will be continued with
a smaller equation system (This model reduction
mechanism takes place by using the model structural
dynamics from MOSILAB [1]):

1 model System
2 parameter SIunits.Length d_balls = 0.0572;
3 parameter SIunits.Length d_holes = 0.15;
4 dynamic Ball bw, bb, bc;

 // structural dynamic submodels
5 Table t(width = 1.27, length = 2.54);
6 event Boolean disappear_bw(start = false);
7 event Boolean disappear_bb(start = false);
8 event Boolean disappear_bc(start = false);
9 event Boolean collision_bw_bb(start =false);

 ...
10 event Boolean push(start = false);
11 equation

12 push = if fabs(bw.v_x)<0.005
 and fabs(bw.v_y)<0.005;

13 disappear_bw = if((p[1].x-0)^2
 + (p[1].y-0)^2)^0.5 < d_holes;

14 collision_bw_bb = if((p[2].x-p[1].x)^2
 + (p[2].y-p[1].y)^2)^0.5 < d_balls;
 ...

15 statechart
16 state SystemSC extends State;
17 State Playing, startState(isInitial=true),

 GameOver;
 ...

18 transition startState -> Playing action
19 bw := new Ball(d = d_balls,...); add(bw);
20 bb := new Ball(...); add(bb);
21 bc := new Ball(...); add(bc);
22 end transition;
23 transition Playing->Playing

 event disappear_bw action
 ...

24 remove(bw);
25 bw := new Ball(x(start=1.27/2.9),

 y(start=0.6));
26 end transition;
27 transition Playing->Playing

 event disappear_bc action
28 ...
29 remove(bb);
30 end transition;
31 transition Playing->GameOver

 event disappear_bb end transition;
32 transition Playing->Playing

 event collision_bw_bb action
33 v_x := bw.v_x; v_y := bw.v_y;
34 bw.v_x := bb.v_x; bw.v_y := bb.v_y;
35 bb.v_x := v_x; bb.v_y := v_y;
36 end transition;
37 end SystemSC;
38 end System;

2.2 Simulation experiment
The following simulation experiment illustrates the
previous explained behaviour of the Pool-Billiard
game. The parameter of the model are set in a man-
ner, that all different types of events (1: collision of
two balls, 2: reflection on a border, 3: disappearing in
the hole) are present during the simulation experi-
ment (see Fig. 7).

Figure 8 show the positions and the Figures 9 and 10
the reflection and collision events of the white and
the black ball during a simulation period of 4 sec-
onds.

After 0.2 seconds, the white ball collides with the
black ball. After 1 second, the blackball is reflected
twice in a short time period on the top side on the
billiard-table and both balls collide again between its
reflections. After 2.3 and 2.5 seconds the balls reflect
on the left border. At 2.95 seconds the white ball Figure 6. UMLH statechart diagram for the model

+++ The Use of UML within the Model ing Process of Model ica Models +++

 8

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

8

drops into the hole. At the end, the white ball is set
again on its starting position.

3 Conclusions
The example of the modelling and simulation of a
Pool-Billiard game has shown the advantages of the
graphical modelling with UMLH for Modelica mod-
els. With UMLH, the design of a complex system
model in Modelica begins with the drawing of its
model structure. The class diagrams und the collabo-
ration diagrams describe the object-oriented model
construction and the statechart diagrams are used for
the formulation of the event-driven model behaviour.
If the Modelica tool supports code generation like
MOSILAB, the Modelica code can be obtain auto-
matically from the UMLH model. This pure code has
to be filled up by the user with model equations
(physical behaviour) of the modelled system.

References
[1] Nytsch-Geusen, C. et al.: MOSILAB: Develop-

ment of a Modelica based generic simulation
tool supporting model structural dynamics. Pro-
ceedings of the 4th International Modelica Con-
ference, TU Hamburg-Harburg, Hamburg, 2005.

[2] Nytsch-Geusen, C. et al.: Advanced modeling
and simulation techniques in MOSILAB: A sys-
tem development case study. Proceedings of the
5th International Modelica Conference, Arsenal
Research, Wien, 2006.

[3] MOSILAB-Webportal: www.mosilab.de.
[4] UML-Homepage: www.uml.org.

[5] Modelica-Homepage: www.modelica.org.
[6] Nordwig, A. et al.: MOSILA-Modellbeschrei-

bungssprache, Version 2.0, Fraunhofer Gesell-
schaft, 2006.

Corresponding author: Christoph Nytsch-Geusen
Fraunhofer Institute for Computer Architecture and
Software Technology
Kekuléstr. 7, 12489 Berlin, Germany
christoph.nytsch@first.fraunhofer.de

Accepted EOOLT 2007, June 2007
Received: August 10, 2007
Accepted: August 20, 2007

Figure 7. Event types in the Pool-Billard game

Figure 8. x- and y-positions of white and black ball.

Figure 9. Collision events of white and black ball.

Figure 10. Reflection events of the white ball (left) and the

black ball (right)

+++ Towards Unif ied System Modeling with the ModelicaML UML Profi le +++ t

9

N
SN

E 17/2, Septem
ber 2007

Towards Unified System Modeling with the ModelicaML UML Profile

Adrian Pop, David Akhvlediani, Peter Fritzson
Programming Environments Lab, Sweden, {adro, petfr}@ida.liu.se

In order to support the development of complex products, modeling tools and processes need to support co-
design of software and hardware in an integrated way. Modelica is the major object-oriented mathematical
modeling language for component-oriented modeling of complex physical systems and UML is the dominant
graphical modeling notation for software. In this paper we propose ModelicaML UML profile as an integra-
tion of Modelica and UML. The profile combines the major UML diagrams with Modelica graphic connec-
tion diagrams and is based on the System Modeling Language (SysML) profile.

Introduction
The development in system modeling has come to the
point where complete modeling of systems is possi-
ble, e.g. the complete propulsion system, fuel system,
hydraulic actuation system, etc., including embedded
software can be modeled and simulated concurrently.
This does not mean that all components are dealt with
down to the very smallest details of their behavior. It
does, however, mean that all functionality is modeled,
at least qualitatively. In this paper, a UML profile for
Modelica, named ModelicaML, is proposed. The
ModelicaML UML profile is based on the OMG
SysML™ (Systems Modeling Language) profile and
reuses its artifacts required for system specification.
SysML diagrams are also extended to support all
Modelica constructs. We argue that with ModelicaML
system engineers are able to specify entire systems,
starting from requirements, continuing with behavior
and finally perform system simulations.

1 SysML and Modelica
The Unified Modeling Language (UML) has been
created to assist software development processes by
providing means to capture software system structure
and behavior. This evolved into the main standard for
Model Driven Development [5]. The System Model-
ing Language (SysML) [4] is a graphical modeling
language for systems engineering applications.
SysML was developed by systems engineering ex-

perts, and was adopted by OMG in 2006. SysML is
built on top of UML and tailored to the needs of sys-
tem engineers by supporting specification, analysis,
design, verification and validation of broad range of
systems and system-of-systems.
The main goal behind SysML is to unify and replace
different document-centric approaches in the system
engineering field with a single systems modeling
language. A single model-centric approach improves
communication, assists to manage complex system
design and allows its early validation and verification.

The taxonomy of SysML diagrams is presented in
Fig. 1. For a full description of SysML see (SysML,
2006) [4]. The major SysML extensions compared to
UML are:

• Requirements diagrams support requirements
presentation in tabular or in graphical notation,
allows composition of requirements and supports
traceability, verification and “fulfillment of re-
quirements”.

• Block diagrams extend the Composite Structure
diagram of UML2.0. The purpose of this diagram
is to capture system components, their parts and
connections between parts. Connections are han-
dled by means of connecting ports which may
contain data, material or energy flows.

• Parametric diagrams help perform engineering
analysis such as performance analysis. Paramet-
ric diagrams contain constraint elements, which
define mathematical equations, linked to proper-
ties of model elements.

• Activity diagrams show system behavior as data
and control flows. Activity diagrams are similar
to Ext. Functional Flow Block Diagrams, which
are already widely used by system engineers. Ac-
tivity decomposition is supported by SysML.

Figure 1. SysML diagram taxonomy.

+++ Towards Unif ied System Modeling with the ModelicaML UML Profi le +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

10

• Allocations are used to define mappings between
model elements: For example, certain Activities
may be allocated to Blocks (to be performed by
the block).

SysML block definitions (Fig. 2) can include proper-
ties to specify block parts, values and references to
other blocks. A separate compartment is dedicated for
each of these features. To describe the behavior of a
block the “Operations” compartment is reused from
UML and it lists operations that describe certain be-
havior. SysML defines a special form of an optional
compartment for constraint definitions owned by a
block. A “Namespace” compartment may appear if
nested block definitions exist for a block. A “Struc-
ture” compartment may appear to show internal parts
and connections between parts within a block defini-
tion.
SysML defines two types of ports: standard ports and
flow ports. Standard ports, which are reused from
UML, are service-oriented ports required or provided
by a block. Flow ports specify interaction points
through which items may flow between blocks, and
between blocks and environment. A flow port defini-
tion may include single item specification or complex
flow specification through the FlowSpecification
interface; flow ports define what “can” flow between
the block and its environment. Flow direction can be
specified for a flow port in SysML. SysML also de-
fines a notion of Item flows that specify “what” does
flow in a particular usage context.

1.1 Modelica
Modelica [2] [3] is a modern language for equation-
based object-oriented mathematical modeling primar-
ily of physical systems. Several tools, ranging from
open-source as OpenModelica [1], to commercial like
Dymola [11] or MathModelica [10] support the Mod-
elica specification.

The language allows defining models in a declarative
manner, modularly and hierarchically and combining

various formalisms expressible in the more general
Modelica formalism. The multidomain capability of
Modelica allows combining electrical, mechanical,
hydraulic, thermodynamic, etc., model components
within the same application model. In short, Modelica
has improvements in several important areas:

• Object-oriented mathematical modeling. This
technique makes it possible to create model
components, which are employed to support hi-
erarchical structuring, reuse, and evolution of
large and complex models covering multiple
technology domains.

• Physical modeling of multiple application do-
mains. Model components can correspond to
physical objects in the real world, in contrast to
established techniques that require conversion to
“signal” blocks with fixed input/output causality.
In Modelica the structure of the model naturally
correspond to the structure of the physical sys-
tem in contrast to block-oriented modeling tools.

• Acausal modeling. Modeling is based on equa-
tions instead of assignment statements as in tra-
ditional input/output block abstractions. Direct
use of equations significantly increases re-
usability of model components, since compo-
nents adapt to the data flow context in which
they are used.

Hierarchical system architectures can easily be de-
scribed with Modelica thanks to its powerful compo-
nent model. The Components are connected via the
connection mechanism realized by the Modelica sys-
tem, which can be visualized in connection diagrams.
The component framework realizes components and
connections, and ensures that communication works
over the connections. For systems composed of
acausal components with behavior specified by equa-
tions, the direction of data flow, i.e., the causality is
initially unspecified for connections between those
components and the causality is automatically de-
duced by the compiler when needed. Components
have well-defined interfaces consisting of ports, also
known as connectors, to the external world. A com-
ponent may internally consist of other connected
components, i.e., hierarchical modeling as in Fig. 3.

1.2 SysML vs. Modelica
The System Modeling Language (SysML) has re-
cently been proposed and defined as an extension of
UML targeting at systems engineers. As previously
stated, the goal of SysML is to unify different ap-Figure 2. SysML block definitions

+++ Towards Unif ied System Modeling with the ModelicaML UML Profi le +++ t

11

N
SN

E 17/2, Septem
ber 2007

proaches and languages used by system engineers
into a single standard. SysML models may span dif-
ferent domains, for example, electrical, mechanical
and software. Even if SysML provides means to de-
scribe system behavior like Activity and State Chart
Diagrams, the precise behavior can not be described
and simulated. In that respect, SysML is rather in-
complete compared to Modelica.

Modelica also, was created to unify and extend ob-
ject-oriented mathematical modeling languages. It has
powerful means for describing precise component
behavior and functionality in a declarative way. Mod-
elica models can be graphically composed using
Modelica connection diagrams which depict the
structure of designed system. However, complex
system design is more that just a component assem-
bly. In order to build a complex system, system engi-
neers have to gather requirements, specify system
components, define system structure, define design
alternatives, describe overall system behavior and
perform its validation and verification.

2 ModelicaML: a UML profile for
Modelica

ModelicaML reuses several diagrams types from
SysML without any extension, extends some of them,
and also provides several new ones. The ModelicaML
diagram overview is shown in Fig. 4. Diagrams are
grouped into four categories: Structure, Behavior,
Simulation and Requirement. In the following we
present the most important ModelicaML profile dia-
grams. The full description of the ModelicaML pro-
file is presented in [8]. The most important properties
of the ModelicaML profile are outlined in the follow-
ing:

• The ModelicaML profile supports modeling with
all Modelica constructs and properties i.e. re-
stricted classes, equations, generics, discrete
variables, etc.

• Using ModelicaML diagrams it is possible to de-
scribe multiple aspects of a system being de-
signed and thus support system development
process phases such as requirements analysis,
design, implementation, verification, validation
and integration.

• ModelicaML is partly based on SysML, but re-
uses and extends its elements.

• The profile supports mathematical modeling with
equations since equations specify behavior of a
(Modelica) system. Algorithm sections are also
supported.

• Simulation diagrams are introduced to model and
document simulation parameters and results in a
consistent and usable way.

• The ModelicaML meta-model is consistent with
SysML in order to provide SysML-to-
ModelicaML conversion.

Three SysML diagram types have been partly reused
and changed for the ModelicaML profile. The rest of
the diagram types we used in ModelicaML un-
changed:

• The SysML Block Definition Diagram has been
updated and renamed to Modelica Class Dia-
gram.

• The SysML Internal Block Diagram has been
updated and renamed to Modelica Internal Class
Diagram (some of the SysML constructs are dis-
abled).

• The Package Diagram has been changed in order
to fully support the Modelica language (i.e.
Modelica package constants, Generic Packages,
etc).

• Other SysML diagram types such as Use Case
Diagram, Activity Diagrams and Allocations, and
State Machine Diagrams are included in Modeli-
caML without modifications. ModelicaML re-

Figure 4. ModelicaML diagrams overview Figure 3. Hierarchical model of an industrial robot.

+++ Towards Unif ied System Modeling with the ModelicaML UML Profi le +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

12

uses Sequence Diagrams from SysML and
changes the semantics of message passing. Mod-
elica doesn’t support method declaration within a
single class but supports declaration of functions
as a restricted class type.

Thus, the following diagram types are available in the
ModelicaML profile:

• The Modelica Class Diagram usually describes
class definitions and their relationships such as
inheritance and containment.

• The Modelica Internal Class Diagram describes
the internal class structure and interconnections
between parts.

• The Package Diagram groups logically con-
nected user defined elements into packages. In
ModelicaML the primarily purpose of this dia-
gram is to support the specifics of the Modelica
packages.

• Activity, Sequence, State Machine, Use Case,
Parametric and Requirements diagrams have
been reused without modification from SysML.

• Two new diagrams, Simulation Diagram and
Equation Diagram, not present in SysML, have
been included in the ModelicaML profile.

2.1 Package diagram
A UML Package is a general purpose model element
for grouping other elements within a separate name-
space. With a help of packages, designers are able
group elements to correspond to different struc-
tures/views of a system. ModelicaML extends UML
packages in order to support Modelica packaging
features, in particular: package inheritance, generic
packages, constant declaration within a package,
package “instantiation” and renaming import (see [2]
for Modelica packages details).

A diagram which contains package elements and their
relationships is called a Package Diagram. Modelica
packages have a hierarchical structure containing
package elements as nodes. In Modelica, packages
are used to structure model elements into libraries. A
snapshot of the Modelica Standard Library hierarchy
is shown in Fig. 5 using UML notation. Package
nodes in the hierarchy are connected via the package
containment link as in the example in Fig. 6.

2.2 Modelica class diagram
Modelica uses restricted classes such as class,
model, block, connector, function and record to

describe a system. Modelica classes have essentially
the same semantics as SysML blocks specified in [4]
and provide a general-purpose capability to model
systems as hierarchies of modular components. Mod-
elicaML extends SysML blocks by defining features
which are relevant or unique to Modelica. The pur-
pose of the Modelica Class Diagram is to show fea-
tures of Modelica classes and relationships between
classes. Additional kind of dependencies and associa-
tions between model elements may also be shown in
a Modelica Class Diagram. For example, behavior
description constructs – equations, may be associated
with particular Modelica Classes. The detailed de-
scription of structural features of ModelicaML is
provided below. ModelicaML structural extensions
are defined based on the SysML block definition
outlined in section 2.

Modelica Class Definiton
The graphical notation of ModelicaML class defini-
tions is shown in Fig. 7. Each class definition is
adorned with a stereotype name that indicates the
class type it represents. The ModelicaML Class Defi-
nition has several compartments to group its features:
parameters, parts, variables. We designed the parame-

Figure 5. Package hierarchy modeling

Figure 6. Package hierarchy modeling.

Figure 7. ModelicaML class definitions

+++ Towards Unif ied System Modeling with the ModelicaML UML Profi le +++ t

13

N
SN

E 17/2, Septem
ber 2007

ters compartment separately from variables because
the parameters need to be assigned values in order to
simulate a model (see the Simulation Diagram later
on). Some compartments are visible by default; some
are optional and may be shown on ModelicaML Class
Diagram with the help of a tool. Property signatures
follow the Modelica textual syntax and not the
SysML original syntax, reused from UML. A Modeli-
caML/SysML tool may allow users to choose be-
tween UML or Modelica style textual signature pres-
entation. Using Modelica syntax on a diagram has the
advantage of being more compatible with Modelica
and being more straightforward for Modelica users.
The Modelica syntax is quite simple to learn even for
users not acquainted with Modelica.

ModelicaML provides extensions to SysML in order
to support the full set of Modelica constructs and
features. For example, ModelicaML defines unique
class definition types ModelicaClass, Modeli-
caModel, ModelicaBlock, ModelicaConnector,
ModelicaFunction and ModelicaRecord that corre-
spond to class, model, block, connector, function and
record restricted Modelica classes. We included the
Modelica specific restricted classes because a model-
ing tool needs to impose their semantic restrictions
(for example a record cannot have equations, etc).

Modelica internal class diagram
The Modelica Internal Class Diagram is based on the
SysML Internal Block Diagram but the connections
are based on ModelicaConnector. The Modelica Class
Diagram defines Modelica classes and relationships
between classes, like generalizations, association and
dependencies, whereas a Modelica Internal Class
Diagram shows the internal structure of a class in
terms of parts and connections. The Modelica Internal
Class Diagram is similar to Modelica connection
diagram, which presents parts in a graphical (icon)
form. An example Modelica model presented as a

Modelica Internal Class diagram is shown in Fig. 8.

Usually Modelica models are presented graphically
via Modelica connection diagrams (Fig. 8, bottom).
Such diagrams are created by the modeler using a
graphic connection editor by connecting together
components from available libraries. Since both dia-
gram types are used to compose models and serve the
same purpose, we briefly compare the Modelica con-
nection diagram to the Modelica Internal Class Dia-
gram. The main advantage of the Modelica connec-
tion diagram over the Internal Class Diagram is that it
has better visual comprehension as components are
shown via domain-specific icons known to applica-
tion modelers. Another advantage is that Modelica
library developers are able to predefine connector
locations on an icon, which are related to the seman-
tics of the component. In the case of a ModelicaML
Internal Class Diagram a SysML/ModelicaML tool
should somehow point out at which side of a rectan-
gular presentation of a part to place a port (connec-
tor).

One of the advantages of the Internal Class Diagram
is that it directly supports nested structures. However,
nested structures are also available behind the icons
in a Modelica connection diagram, thus using the
drawing area more effectively.

The main advantage of the Internal Class Diagram is
that it highlights top-level Modelica model parame-
ters and variables specification in separate compart-
ments.

Other SysML elements, such as Activities and Re-
quirements which do not exist in Modelica but are
very important for additional model specification can
be combined with both Internal Class Diagram and
Modelica connection diagrams.

2.3 Parametric diagrams vs. equation diagrams
SysML defines Constraint blocks which specify
mathematical expressions, like equations, to constrain
physical properties of a system. Constraint blocks are
defined in the Block Definition diagram and can be
packaged into domain-specific libraries for later re-
use. There is a special diagram type called Parametric
Diagram which relates block parameters with certain
constraints blocks. The Parametric Diagram is in-
cluded in ModelicaML without any modifications to
keep the compatibility with SysML.

The Modelica class behavior is usually described by
equations, which also constrain Modelica class pa-

Figure 8. ModelicaML internal class vs. ModelicaML
connection diagram

+++ Towards Unif ied System Modeling with the ModelicaML UML Profi le +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

14

rameters, and have a domain-specific usage. SysML
constraint blocks are less powerful means of domain
model description than Modelica equations. Modelica
equations include some type of equations, which
cannot be modeled using Constraint blocks, i.e.: if,
for, when equations. Also, modeling complexity is an
issue, as for example in Fig. 9 there are only four
equations, and the diagram is already quite complex.
However, grouping constraint blocks into libraries
can be useful for system engineers who use Modelica
and SysML. SysML Parametric diagram may be used
during the initial design phase, when equations re-
lated to a class are being identified using Parametric
Diagrams and finally associated (via an Equation
Diagram) with a Modelica class or set of classes.

In Fig. 10, Fig. 11 we present examples of behavior
specification via Equation Diagrams in ModelicaML.
Equations do not prescribe a certain data flow direc-
tion which means that the order in which equations
appear in a model do not influence their meaning and
semantics. The only requirement for a system of
equations is to be solvable. For further details about
Modelica equations, see [2]. Besides simple equality
equations, Modelica allows other kind of equations be
presented within a model. For each of such kind of
equations (i.e. when/if/initial equations) ModelicaML

defines a graphical construct. It’s up to designer to
decide whether to use simple equations block repre-
sentation or specific construct for equation modeling.
Algorithm sections are modeled similar to equations,
as text.

With a help of Equation Diagram top-down modeling
approach is applied to behavior modeling. First, the
primarily equations may be captured, then conditional
constructs applied, equations text description substi-
tuted with mathematical expressions or even equa-
tions refactored by moving to other classes. In the
similar way as Modelica classes are grouped by
physical domain libraries, common equations can be
packaged into domain-specific libraries and be reused
during a design process. Moreover, equation con-
structs shown on Equation Diagram can be linked to
Activity elements or with Requirement elements to
show that a specific requirement has been fulfilled.

2.4 Simulation diagram
ModelicaML introduces a new diagram type, called
Simulation Diagram (Fig. 12), used for simulation
modeling. Simulation is usually performed by a simu-
lation tool which allows parameter setting, variable
selection for output and plotting. The Simulation
Diagram may be used to store any simulation experi-
ment, thus helping to keep the history of simulations
and its results. When integrated with a modeling and
simulation environment, a simulation diagram may be
automatically generated.

The Simulation Diagram provides facilities for simu-
lation planning, structured presentation of parameter
passing and simulation results. Simulations can be
run directly from the Simulation Diagram. Associa-
tion of simulation results with requirements from a

Figure 9. Parametric diagram example

Figure 11. ModelicaML nested/extern Equation diagrams

partial class TwoPin
 Pin p, n;
 Voltage v;
 Current i;
equation
 v = p.v – n.v;
 0 = p.i + n.i;
 i = p.i;
end TwoPin;

class Resistor
 extends TwoPin;
 parameter Real R
 (unit = "Ohm");
equation
 R * I = v;
end Resistor;

Figure 10. Equation modeling example with a Modelica
Class Diagram.

+++ Towards Unif ied System Modeling with the ModelicaML UML Profi le +++ t

15

N
SN

E 17/2, Septem
ber 2007

domain expert and additional documentation (e.g. by:
Note, Problem Rationale text boxes of SysML) are
also supported by the Simulation Diagram. The Simu-
lation Diagram introduces new diagram elements:
“Parameter” element and two stereotyped dependency
associations, “simParameter” and “simResults”. Pa-
rameter values are associated with a class via sim-
Parameter for a simulation. Simulation results are
associated with a model via simResults which specify
which variable is to be plotted and for what time
interval.

For simulation purposes, the Simulation Diagram can
be integrated with any Modelica modeling and simu-
lation environment. We are currently in the process of
designing a ModelicaML development environment
which integrates with the OpenModelica modeling
and simulation environment.

3 Conclusion and future work
In this paper we propose the ModelicaML profile that
integrates Modelica and UML. UML Statecharts and
Modelica have been previously integrated, see e.g.
[9][15]. SysML is rather new but it was already
adopted for system on chip design [13] evaluated for
code generation [14] or extended with bond graphs
support [12].

The support for Modelica in ModelicaML allows
precisely defining, specifying and simulating physical
systems. Modelica provides the means for defining
behavior for SysML block diagrams while the addi-
tional modeling capabilities of SysML provides addi-
tional modeling and specification power to Modelica
(e.g. requirements and inheritance diagrams, etc).

As a future project we plan to implement an Eclipse-
based [6] graphical editor for ModelicaML as a part
of our Modelica Development Tooling (MDT) [7].

References
[1] P Fritzson, P Aronsson, H Lundval, K Nyström,

A Pop, L Saldamli, and D Broman. The Open-
Modelica Modeling, Simulation, and Software
Development Environment. In Simulation News
Europe, 44/45, Dec 2005. http://ww.ida.liu.
se/projects/OpenModelica.

[2] P. Fritzson. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1, 940 pp.,
Wiley-IEEE Press, 2004. See also:
http://www.mathcore.com/drmodelica/

[3] The Modelica Association. The Modelica Lan-
guage Specification Version 2.2.

[4] OMG, System Modeling Language, (SysML),
www: http://www.omgsysml.org

[5] OMG : Guide to Model Driven Architecture:
The MDA Guide v1.0.1

Corresponding author: Adrian Pop,
Programming Environments Lab,
Department of Computer and Information Science,
Linköping Univ. SE-581 83 Linköping, Sweden
adrpo@ida.liu.se

Accepted EOOLT 2007, June 2007
Received: August 10, 2007
Accepted: August 20, 2007

Figure 12. Simulation diagram example

+++ Hybr id Dynamics in Modelica +++
SN

E
17

/2
,

Se
pt

em
be

r
20

07

t N

16

Hybrid Dynamics in Modelica: Should all Events be
Considered Synchronous

Ramine Nikoukhah, INRIA-Rocquencourt, France, ramine.nikoukhah@inria.fr

The Modelica specification is ambiguous as to whether all the events are synchronous are not. Different in-
terpretations are possible leading to considerable differences in the ways models should be constructed and
compilers developed. In this paper we examine this issue and show that there exists an interpretation that is
more appropriate than others leading to more efficient compilers. It turns out that this interpretation is not the
one currently adopted by Dymola but it is closely related to the Scicos formalism.

Introduction
Modelica (www.modelica.org) is a language for mod-
eling physical systems. It has been originally devel-
oped for modeling systems obtained from the inter-
connection of components from different disciplines
such as electrical circuits, hydraulic and thermody-
namics systems, etc. These components are repre-
sented symbolically in the language providing the
compiler the ability to perform symbolic manipula-
tions on the resulting system of differential equations.
This allows the usage of acausal components (equa-
tion based) without loss of performance.

But Modelica is not limited to continuous-time mod-
els [1]; it can be used to construct hybrid systems,
i.e., systems in which continuous-time and discrete-
time components interact. Modelica specification [2]
tries to define the way these interactions should be
interpreted and does so by inspiring from the formal-
ism of synchronous languages. Synchronous lan-
guages however deal with events, i.e., discrete-time
dynamics. So in the context of Modelica, the concept
of synchronism had to be extended to encompass
continuous-time dynamics as well. It is exactly this
extension which is the subject of this paper.

Scicos (www.scicos.org) is a modeling and simula-
tion environment for hybrid systems. It is free soft-
ware, included in the scientific software package
Scilab (www.scilab.org). Scicos formalism is based
on the extension of synchronous languages, in par-
ticular Signal [3], to the hybrid environment. The
class of models that Scicos is designed for is almost
the same as that of Modelica. So it is not a surprise
that Modelica and Scicos have many similar features
and confront similar problems. Modelica has many
advantages for modeling continuous-time dynamics,
especially thanks to its ability to represent models in
symbolic form, whereas the Scicos formalism has

been specifically designed to allow high performance
code generation of discrete-time dynamics.

In this paper, we examine the specification of hybrid
dynamics in Modelica and propose an interpretation
that is fully compatible with the Scicos formalism.
This interpretation, which is not contradictory with
the official specification, allows us to obtain an effi-
cient compiler/code generator for Modelica inspired
by the Scicos compiler.

Here we start with a flat model (obtained from the
application of a front-end compiler), and consider
only the problems concerning the design of the phase
one of a back-end compiler. This phase breaks down
the code into independent asynchronous parts each of
which can be compiled separately in phase two.
Phase two will be presented in a subsequent paper.

1 Conditioning and sub-sampling in
Modelica

If a model contains no conditioning and all of its parts
function at the same rate, then back-end compilation
would be a simple task. But in most real life applica-
tions, models contain different dynamics resulting
from the inter-connection of heterogeneous systems.
A model of such a system would often include condi-
tioning and sub-sampling. We use the term condition-
ing for a change in the model conditioned on the
value of a variable (for example if a>0 then) and
the term sub-sampling for the construction of a new,
not necessarily regular, clock from a faster clock.

The when-elsewhen and if-then-else clauses are
the basic language constructs in Modelica for per-
forming conditioning and sub-sampling. The descrip-
tion of the ways these constructs function is ambigu-
ous in the Modelica specification. Comparing with
the Scicos formalism, we can consider that Mode-

+++ Hybr id Dynamics in Modelica +++

t

17

N
SN

E 17/2, Septem
ber

2007

lica’s if-then-else clause does conditioning and
when does sub-sampling. But the situation is some-
what more complex because when plays two different
roles. And, we need to distinguish these two different
types of when clauses. But before, we need to exam-
ine the notion of synchronism in Modelica.

1.1 Synchonous versus simultaneous
In our interpretation of the Modelica specification,
two events are considered synchronous only if they
can be traced back to a single event source. For ex-
ample, in the following model:

when sample(0,1) then
 d = pre(d)+1;
end when;
when d>3 then
 a = pre(a)+1;
end when;

the event d>3 is synchronous with the event sam-
ple(0,1). The former is the source of the latter. But
in

der(x) = x;
when sample(0,1) then
 d = pre(d)+1;
end when;
when x>3 then
 a = pre(a)+1;
end when;

the two events are not synchronous. There is no
unique source of activation at the origin of these
events. So these events are considered asynchronous
even if the two events are activated simultaneously;
even if we can prove mathematically that they always
occur simultaneously.

Our basic assumption is that events detected by the
zero-crossing mechanism of the numerical solver (or
an equivalent mechanism used to improve perform-
ance) are always asynchronous. So even if they are
detected simultaneously by the solver, by default they
are treated sequentially in an arbitrary order. In par-
ticular, in the model:

when sample(0,1) then
 b = a;
end when;
when sample(0,1) then
 a = b+1;
end when;

the variables a and b can be evaluated in any order.

Dymola on the other hand assumes that all events are
synchronous. In particular it assumes that all the
equations in both when clauses may have to be satis-

fied simultaneously. That is why Dymola finds an
algebraic loop in this example.

To see the way Dymola proceeds, consider the fol-
lowing example:

equation
 der(x) = 1;
 der(y) = 1;
 when (x>2) then
 z = pre(z)+3;
 v = u+1;
 end when;
 when (y>2) then
 u=z+1;
 end when;

The simulation shows that the equations (assign-
ments) are ordered as follows:

z=pre(z)+3; u=z+1; v=u+1;

this means that the content of a when clause is split
into separate conditional clauses. In stark contrast, in
our interpretation of the Modelica specification, the
code within an asynchronous when clause is treated
synchronously and never broken up. Both interpreta-
tions are valid and consistent; however our interpreta-
tion has many advantages as we will try to show here.

At first glance, the non determinism that may be
encountered in our approach when two zero-crossing
events occur simultaneously may seem unacceptable.
However, treating two simultaneous zero-crossings as
synchronous is not a solution because it is not robust.
Indeed, when dealing with nonlinear and complex
models, there is no guarantee that the numerical
solver would detect two zero-crossings simultane-
ously even if theoretically they are simultaneous. In
general one is detected slightly before or after the
other. And in any case, in most cases treating such an
accidental synchronism is not of any use for the con-
struction of the model. Even if the model depends for
some reason on the simultaneous detection of two
events by the solver, a mechanism should be provided
by the language to specify explicitly what should be
done in that case. One way would be to introduce a
switchwhen clause [4], which can be used to explic-
itly specify what equations are activated in every
possible case. The possible cases when we have, for
example, two zero-crossings are: the first surface has
crossed but not the second, the second has crossed but
not the first and finally both surfaces have crossed
zero together.

Dymola’s interpretation imposes constraints, which in
most cases are useless. Moreover, when all zero-

+++ Hybr id Dynamics in Modelica +++
SN

E
17

/2
,

Se
pt

em
be

r
20

07

t N

18

crossing events are considered synchronous, the
complexity of static scheduling increases with the
number of zero-crossings. The solution based on
using the switchwhen clause allows the user to spec-
ify explicitly what possible synchronisms must be
considered. It turns out that in most cases, no syn-
chronism is to be considered.

1.2 Primary and secondary when clauses
So far we have seen two types of when clauses, or
more specifically when clauses based on two types of
events: events depending on variables evolving con-
tinuously in time such as time>3 or x<2 where x is a
continuous variable; and events depending on discrete
variables. when clauses conditioned on events of the
former type are called primary, the latter ones are
called secondary.

An event associated with a secondary when clause is
necessarily synchronous with events associated to one
or more primary when clauses. These primary clauses
are those in which the discrete variables involved in
the definition of the event are defined.

But not all when clauses can easily be classified as
primary or secondary. Let us consider a simple exam-
ple:

when sample(0,1) then
 d = pre(d)+j;
 c = b;
end when;
when time > d then
 b = a;
end when;

The question is whether or not the above two when
clauses are primary or not. Clearly the first one is, but
the second hides in reality two distinct when clauses
that is because the event time>d can be activated in
two different ways:

• time increases and crosses d continuously (zero-
crossing event so asynchronous),

• at a sample time d jumps, activating the time>d
condition; this event is clearly synchronized with
sample(0,1).

We call such when clauses mixed. We handle this
situation by implementing the simulation in such a
way that time>d is activated only when time crosses
continuously d and placing a duplicate of the content
of this when where d is defined within a condition
that guarantees that the content is activated only if

time>d is activated due to a jump:

when sample(0,1) then
 d = pre(d)+j;
 c = b;
 if ((time>d) and not(time>pre(d))) then
 b = a;
 end if;
end when;
when time>d then
 b = a;
end when;

The second solution amounts to considering that a
clause such as when c>0 where c is a continuous
variable is activated only if c crosses zero continu-
ously (the way that is detected by zero-crossing
mechanisms built into numerical solvers such as
LSODAR or DASKR). This seems to be an appropri-
ate way to handle mixed when clauses, however to
stay compatible with the Modelica specification, at a
pre-compilation phase, the content of these clauses
must be duplicated as explained above.

Note that the code we obtain after the pre-compilation
phase is not correct according to the Modelictcifica-
tion (because b is defined twice). This however is not
a problem because this code is only used within the
compiler. But in any case, we consider this restriction
too restrictive and we think it should be relaxed. This
will be discussed later.

There still remains a situation that needs clarification.
Consider the following example:

discrete Real a(start=0);
Real x(start=0);
equation
 der(x)=0;
 when x>3 then
 a = pre(a)+1;
 end when;
 when time>2 then
 reinit(x,x+4);
 end when;

Here x is a continuous variable, but it is also discrete
because at time 2 it jumps from 0 to 4 (activation of
reinit). This jump activates the content of the first
when. The reinit primitive in this case must be consid-
ered as a definition of “discrete” x, so following the
rule discussed previously, the content of the clause
when x>3 must be copied inside the other when:

discrete Real a(start=0);
Real x(start=0);
equation
 der(x) = 0;
 when x>3 then

+++ Hybr id Dynamics in Modelica +++

t

19

N
SN

E 17/2, Septem
ber

2007

 a = pre(a)+1;
 end when;
 when time>2 then
 reinit(x,x+4);
 if edge(x>3) then
 a = pre(a)+1;
 end if;
 end when;

This transformation is just a special case of the situa-
tion we have considered previously. To see this more
clearly, note that

when time>2 then
 reinit(x,x+4);
end when;

should really be expressed as follows

when time>2 then
 x = pre(x)+4;
end when;

1.3 Restrictions on the use of when and if
Modelica imposes hard constraints on the usage of
when and if-then-else clauses.

In the case of when, a variable is not allowed to be
defined in two when clauses. For example, the follow-
ing code is not allowed in an equation section:

when sample(0,1) then
 b = pre(b)+1 ;
end when;
when time>3.5 then
 b = 0;
end when;

According to the specification, this can lead to a con-
tradiction if the two when clauses are activated at the
same time. This statement would make sense if the
two when clauses were synchronous but not in this
case. Lifting this restriction, in the case of primary
when clauses, is without danger and facilitates the task
of modeling in many situations. However, it creates
an important difference as far some interpretation of
the primitive pre is concerned. With the current re-
striction, we are sure that in the following code:

when sample(0,1) then
 b = pre(b)+1 ;
end when;

pre(b) is the previous value of b defined by
b=pre(b)+1 the last time this when clause was acti-
vated, i.e. one unit of time before. So without even
having to examine the rest of the code, we can be sure
that b indicates the time. This will no longer be true if
the constraint is lifted; consider:

when sample(0,1) then
 b = pre(b)+1;
end when;
when sample(.5,1) then
 b = pre(b)+1;
end when;

In this case the value of b used to update it in each
clause is computed by the instruction in the other
clause. But this is not a problem as long as the rules
are clear.
We thus propose the following modifications: this
restriction be lifted for primary when clauses and this
restriction be lifted in all when clauses as long as the
equations defining common variables are identical
(such identical equations can arise in transformations
applied by the compiler which includes duplicating
parts of the code). For example for all conditions c1,
c2 (synchronous or not), accept:

equation
 when c1 then
 b = a;
 end when;
 when c2 then
 b = a;
 end when;

The second modification may seem strange. Indeed
why would a model contain identical statements in
synchronous when clauses. The reason is that our
Modelica compiler performs a series of transforma-
tions each one generating a new Modelica code from
a Modelica code in which such a situation may come
up (this happens in particular when processing the
union of events construct, see Section 1.6). By lifting
this restriction, we make sure that we obtain a valid
Modelica code at every stage. But a specific test must
be applied to the original model to issue at least a
warning to the user for such cases.
Another important restriction concerns the use of
elsewhen. The Modelica specification states that all
the branches of a when-elsewhen clause must define
the same set of variables. We don’t believe this con-
straint is justified. This constraint is probably a con-
sequence of a similar condition on the use of if-
then-else clauses. Indeed Modelica imposes that the
number of equations in different branches of such a
clause be identical. This may be acceptable as far as
continuous-time variables are concerned—removing
the restriction in the continuous case makes it possi-
ble to model Simulink’s enabled Super Blocks in
Modelica—, but it is not for discrete variables. So we
propose to lift this restriction and accept models in-
cluding for example the following code:

+++ Hybr id Dynamics in Modelica +++
SN

E
17

/2
,

Se
pt

em
be

r
20

07

t N

20

equation
 when sample(0,1) then
 if u>0 then
 v = 1;
 end if;
 end when;

Normally in Modelica we should have an else
branch defining v. Note that our proposal is not just
an editing facility (i.e., a way to avoid writing code
which can be added in automatically later); this code
is not equivalent to

equation
 when sample(0,1) then
 if u>0 then
 v = 1;
 else
 v = pre(v);
 end if;
 end when;

In the absence of the else branch, the variable v is
sub-sampled. This would not be the case if v=pre(v)
were used. Even if the simulation result would be the
same, the construction by sub-sampling leads to the
generation of more efficient code. Lifting this restric-
tion is again important for transformed models. A
specific test can be used on the original model to
impose the constraint if desired.

1.4 Continuous time dynamics
Our objective is to reduce the Modelica code into a
number of asynchronous when clauses each of which
can be treated separately. The continuous dynamics is
no exception. What we call continuous dynamics
includes everything within the equation section but
outside when clauses. These equations are always
active (Scicos terminology) even when a when clause
is activated. So these equations are synchronous with
all the when clauses.

The way this situation is handled in Scicos is to intro-
duce a fictitious clock generating a continuous activa-
tion signal. To do the same in Modelica amounts to
defining a special when clause:

when continuous then

the content of which would be active all the time
except at event instances associated to other when
clauses. Doing so allows us to consider the continu-
ous event as asynchronous with the rest and treat this
when clause as primary. To preserve the dynamics of
the original model, the continuous dynamic equations
must also be copied inside all the when clauses. For

example:

equation
 y = sin(time);
 der(x) = y;
 when x<.2 then
 a=y;
 end when;

becomes

equation
 when continuous then
 y = sin(time);
 der(x) = y;
 end when;
 when x<.2 then
 y = sin(time);
 der(x) = y;
 a=y;
 end when;

During the simulation, the content of the when con-
tinuous clause is used to respond to the queries of
the numerical solver, and in particular to generate the
value of der(x) in this case. In other when clauses,
the equations defining derivative values can be
dropped, especially in the explicit case. In the implicit
case (DAE case), the computation of the derivatives
can be used to help the re-initialization of the solver.

The point to retain from this section is that the clause
when continuous is primary and that its content can
be treated like any other.

1.5 Initial conditions
In Modelica, variables can be initialized in different
ways but in a flat model (after the application of the
front end), they should all be grouped within a single
when clause:

when initial then
 a = 0;
 d = 3;
 ...
end when

This would be a primary when clause and would con-
tain the initialization of all discrete and continuous
variables.

A when terminal clause can similarly be used to
specify whatever needs to be done at the end of the
simulation.

1.6 Union of events
The when and elsewhen clauses can be activated at
the union of events. In Modelica the syntax is as
follows:

+++ Hybr id Dynamics in Modelica +++

t

21

N
SN

E 17/2, Septem
ber

2007

when {c1, c2, c3} then
 < eq1 >
 < eq2 >
end when;

In this case, c1, c2, c3 may be synchronous or not.
Note that the content of synchronous when clauses
should not be executed more than once. For example
in:

when sample(0,1) then
 d = pre(d)+1;
end when;
when {d>2, 2*d>4} then
 a = pre(a)+1 ;
end when;

a must be incremented only once, passing from zero
to one. But in:

when sample(0,1) then
 d = pre(d)+1;
end when;
when sample(0,1) then
 e = pre(e)+1;
end when;
when {d>2, e>2} then
 a = pre(a)+1;
end when;

a is incremented twice (its value must jump from zero
to two). But Dymola considers the d>2 and e>2 syn-
chronous and increments a just once in this case.
Similarly in:

when sample(0,3) then
 d = pre(d)+1;
end when;
when time>=3 then
 e = pre(e)+1;
end when;
when {d>1, e>0} then
 a = pre(a)+1;
end when;

in Dymola d>1, e>0 are synchronous (a is incre-
mented only once at time 3). As we have said previ-
ously, we think that this interpretation must be
avoided.

The counterpart of the union of events is the sum of
activation signals in Scicos. The two formalisms
coincide perfectly in this case.

In one of the early phases of the compilation of Mod-
elica code, we propose the following transformation
which removes all event unions. For example the first
when clause presented in this section would be trans-
formed as follows:

when c1 then
 < eq1 >
 < eq2 >

end when;
when c2 then
 < eq1 >
 < eq2 >
end when;
when c3 then
 < eq1 >
 < eq2 >
end when;

This code is correct if we take into account all the
modifications suggested previously whether the ci,
i=1,2,3, are synchronous or not.

2 Back-end compiler
The back-end compiler can be divided into two
phases. The objective of the first phase is to transform
the model into one in which all the when clauses are
primary. This will allow us to generate, in phase two,
static code for each one independently of the others.

Consider the following example:
when time>3 then
 d = pre(d)+1;
end when;
when d>3 then
 a = pre(a)+1;
end when;
when a>3 then
 b = a;
end when;

We want to remove the secondary when clauses.
Clearly in this case we have to remove the last two
when clauses. We pick one (say when a>3) and copy
its content everywhere the variables involved in the
definition of the corresponding event are computed.
In this case the only variable involved is a, which is
defined in the second when clause:

when time>3 then
 d = pre(d)+1;
end when;
when d>3 then
 a = pre(a)+1;
 if edge(a>3) then
 b > a;
 end if;
end when;

and then
when time>3 then
 d = pre(d)+1;
 if edge(d>3) then
 a = pre(a)+1;
 if edge(a>3) then
 b > a;
 end if;
 end if;
end when;

+++ Hybr id Dynamics in Modelica +++
SN

E
17

/2
,

Se
pt

em
be

r
20

07

t N

22

This example shows how secondary when clauses can
be removed to obtain a single primary when clause at
the end. If the model contains more than one primary
when clause, the procedure would still be the same as
illustrated in the following example:

when time>2 then a = 1; end when;
when time>3 then b = pre(b)+1; end when;
when a>b then c = 1; end when;

In this case the first two when clauses are primary. We
now remove the secondary when:

when time>2 then
 a = 1;
 if edge(a>b) then
 c = 1;
 end if;
end when;
when time>3 then
 b = pre(b)+1;
 if edge(a>b) then
 c = 1;
 end if;
end when;

In this example, a variable is defined twice in two
different primary (so asynchronous) when clauses.
Clearly, this is not a problem. But the application of
the transformation, can also lead to a variable being
defined more than once in the same when clause. Let
us examine the following example:

when time>2 then
 a = pre(a)+1;
end when;
when a>d then
 b = pre(b)+1;
end when;
when {a>2,b>2} then
 n = pre(n)+1;
end when;

We start by removing the operator “union of events”.
Then we remove the secondary clauses as previously
described. We obtain (in two steps):

when time>2 then
 a = pre(a)+1;
 if edge(a>d) then
 n = pre(n)+1;
 end if;
 if edge(a>2) then
 b = pre(b)+1;
 if edge(b>2) then
 n = pre(n)+1;
 end if;
 end if;
end when;

This code, once edge replaced with its definition,
may seem to be ordered properly and usable as a

sequential code. But this is not the case since
n=pre(n)+1, in some cases, can be executed twice
instead of once. As discussed in the previous section,
it is allowed to have a variable defined twice syn-
chronously as long as the equations defining it are
identical. This is of course the case here (this is the
case in general when it happens because of the appli-
cation of our transformations).The second phase of
the compilation will transform the code into a sequen-
tial code correctly.

3 Conclusion
We have examined the notion of synchronism in
Modelica and have shown that by abandoning the
fully synchronous assumption, it is possible to design
more efficient compilers without loss of rigor in the
language specification. We have done that by propos-
ing a methodology to implement the first phase of a
back-end compiler. The second phase, which is
closely related to the second phase of the Scicos
compiler, will be presented in a future.

References
[1] M. Otter, H. Elmqvist, S. E. Mattsson. Hybrid Model-

ing in Modelica based on the Synchronous Data Flow
Principle. CACSD’99, Aug; 1999, Hawaii, USA.

[2] Modelica Association. Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling.
Language Specification, version 2.2. 2005, available
from www.modelica.org.

[3] Benveniste, P. Le Guernic, C. Jacquemot. Synchro-
nous programming with events and relations: the Sig-
nal language and its semantics. Science of Computer
Programming, 16, 1991, p. 103-149.

[4] R. Nikoukhah. Extensions to Modelica for efficient
code generation and separate compilation, in Proc.
EOOLT Workshop at ECOOP’07, Berlin, 2007.

[5] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1, Wiley-IEEE Press,
2003.

[6] S. L. Campbell, Jean-Philippe Chancelier, Ramine
Nikoukhah. Modeling and Simulation in
Scilab/Scicos, Springer, 2005.

Corresponding author: Ramine Nikoukhah
INRIA-Rocquencourt
BP 105, 78153 Le Chesnay Cedex, France
ramine.nikoukhah@inria.fr

Accepted EOOLT 2007, June 2007
Received: August 15, 2007
Revised: September 5, 2007
Accepted: September 20, 2007

+++ Enhancing Model ica towards Var iable Structure Systems +++ t

23

N
SN

E 17/2, Septem
ber 2007

Enhancing Modelica towards Variable Structure Systems

Dirk Zimmer, ETH Zürich, Switzerland, dzimmer@inf.ethz.ch

This paper explains the motivation behind variable structure systems and analyses the current Modelica lan-
guage with respect to those concerns. The major flaws and shortcomings are discussed to raise the awareness
for the most relevant problem sets. Furthermore we sketch our current research activity in broad terms and
explain our approach that consists of a new modeling language. Finally, a small example is presented.

1 Motivation
Many contemporary models contain structural
changes at simulation run time. These systems are
typically denoted by the collective term: variable
structure systems. The motivations that lead to the
generation of such systems are manifold:

• The structural change is caused by ideal switch-
ing processes. Classic examples are ideal switch-
ing processes in electric circuits, rigid mechani-
cal elements that can break apart, e.g. a breaking
pendulum or reconfiguration of robot models [4].

• The model features a variable number of vari-
ables: This issue typically concerns social or traf-
fic simulations that feature a variable number of
agents or entities, respectively.

• The variability in structure is to be used for rea-
sons of efficiency: A bent beam should be mod-
eled in more detail at the point of the buckling
and more sparsely in the remaining regions.

• The variability in structure results from user in-
teraction: When the user is allowed to create or
connect certain components at run time, this usu-
ally reflects a structural change.

The term variable structure system turns out to be a
rather general term that applies to a number of differ-
ent modeling paradigms, such as adaptive meshes in
finite elements, discrete communication models of
flexible computer networks, etc. We focus on the
paradigm that is represented by Modelica: declarative
models that are based on DAEs with hybrid exten-
sions. Within such a paradigm, a structural change is
typically reflected by a change in the set of variables,
and by a change in the set of relations (i.e., equations)
between these time-dependent variables. These
changes may lead to severe changes in the model
structure. This concerns the causalization of the equa-
tion system, as well as the perturbation index of the
DAE system.

A general modeling language supporting variable
structure systems offers a number of important bene-

fits. Such a potential language incorporates a general
modeling methodology that enables the convenient
capture of knowledge concerning variable structure
systems, and provides means for organizing and shar-
ing that knowledge both by industry and science. A
corresponding simulator is a valuable tool for engi-
neering and science education.
In concrete terms, our research is intended to aid the
further extension of the Modelica framework. This
benefits primarily the prevalent application areas of
mechanics and electronics.

• Ideal switching processes in electronic circuits
(resulting from ideal switches, diodes, and thyris-
tors) can be more generally modeled. Occurring
structural singularities can be handled at run
time.

• The modeling of ideal transitions in mechanical
models, like breaking processes or the transition
from friction to stiction, become a more amena-
ble task.

Additional applications may occur in domains that
are currently foreign to Modelica. This might concern
for instance: hybrid economic or social simulations
that contain a variable number of entities or agents,
respectively, and traffic simulations.
Finally, more elaborate modeling techniques become
feasible. For instance multilevel models can be de-
veloped, whereby the appropriate level of detail is
chosen at simulation run time in response to computa-
tional demands and/or level of interest.

2 Analysis of Modelica
Unfortunately, the modeling of variable structure
systems within the current Modelica framework is
very limited. This is partly due to a number of techni-
cal restrictions that mostly originate from the static
treatment of the DAEs. Specific techniques, like
inline-integrations [2] can help in certain situations,
but they do not provide a general solution. Although
the technical restrictions represent a major limiting
factor, other issues need to be concerned as well. An

+++ Enhancing Model ica towards Var iable Structure Systems +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

24

important problem is the lack of expressiveness in the
Modelica-language.
To get a better understanding, we analyze the Mode-
lica language with respect to the modeling of struc-
tural changes and list the most problematic points in
the following subsections.

2.1 Lack of conditional declarations
Modelica is a declarative language that is based upon
the declaration of equations, basic variables and sub-
models. Modelica offers conditional blocks (i. e.: if,
when) that enable the convenient formulation of
changes in the system-equations. However, the decla-
ration of variables or sub-models is kept away from
these conditional blocks and is restricted to the un-
conditional header-section. Hence there is no mecha-
nism for instance creation or removal at run-time (in
fact, there exists a small mechanism for conditional
declaration in Modelica that is supported by Dymola,
but the conditions are based upon parameters and the
way it is done restricts the access on such a condi-
tional object to connect-statements).

2.2 No dynamic linking
The linking of an identifier to its instance is always
static in Modelica. To conveniently handle objects
that are created at run time, a dynamic linking of
identifiers to their instances becomes desirable. Con-
sequently, the linking must be assigned by the use of
appropriate operators. Sub-models have now to be
treatable as an entity.

2.3 Nontransparent type system
Such assignments that operate on complete model-
instances also increase the emphasis on the type
analysis like type-compatibility. Modelica is based on
a structural type system [1] that represents a powerful
and yet simple approach. Sadly, the actual type is not
made evident in the language for a human reader
since type members and non-type members mix in the
header-section. Also the header section itself might be
partitioned in different parts. Hence it becomes hard
to identify the type of sub-models just by reading its
declaration. This becomes a crucial issue when ob-
jects need to be treated dynamically.

2.4 Accessing the environment
Each model in Modelica is defined as a closed entity
that cannot access by itself any outside variables.
Whereas such a restriction is meaningful in most of
the cases, it is inappropriate for certain tasks. One of
these tasks is for instance the automatic connection of
mass-holding objects to a gravity field. Modelica

offers the concept of outer-models for this purpose.
Unfortunately this approach is quite limited and
represents not a feasible approach for more complex
data-structures. At most, outer models could be used
to create pools for mutual gravitational attraction [8]
or potential collisions [3]. But to enable such pools,
the single-pool members had to be manually assigned
to an appropriate integer-ID. This is not a convenient
solution.

The dynamic creation of sub-models increases the
importance of a feasible solution for this task. When
objects are created dynamically, they also need to be
connected to other objects in their environment. Con-
nections to other sub-models need to be established
automatically at simulation time.

2.5 Insufficient handling of discrete events
Processes for the creation, removal and handling of
dynamic instances represent discrete processes.
Hence a powerful support for discrete-event handling
is necessary. Modelica offers hybrid extension for
such modeling tasks that are inspired by the synchro-
nous data-flow principle [5]. However, for larger
systems the current implementation may lead to an
computational overkill and hence more elaborated
concepts are needed.

The creation and connection have to be managed by
discrete events. During such a construction process,
singular equation systems may temporarily occur.
However, they are not meant to be evaluated. Thus, a
synchronous evaluation of the complete system repre-
sents an infeasible approach for such tasks, since it
can lead to the inappropriate evaluation of intermit-
tent singular systems.

In addition, the discrete event handling is insuffi-
ciently specified in the Modelica language definition.
There is a clear lack of specification for describing
what is supposed to happen exactly if one event is
subsequently causing (or canceling) other events
during the same point of simulation time. This con-
cerns for example the MultiBondLib [8] and its im-
pulse-models. The correctness of these models cannot
be proven on the basis of the language-specification.
Indeed, the correct simulation of these models is
bound to the specific implementation in Dymola.

2.6 Tedious complexity
In the attempt to enhance the Modelica-language with
regard to certain applicationspecific tasks, the origi-
nal language has lost some of its original beauty and

+++ Enhancing Model ica towards Var iable Structure Systems +++ t

25

N
SN

E 17/2, Septem
ber 2007

clarity. An increasing amount of specific elements
have been added to the language that come with
rather small advantages. Several of these small add-
ons are potential sources for problems when struc-
tural variability is concerned. Thus, a clean-up of the
language is an inevitable prerequisite for any further
development in this field. Furthermore the language
is subverted in daily practice by foreign elements, i.e.,
so-called annotations.

2.7 Summary
To express structural changes, a corresponding mod-
eling language has to meet certain requirements. The
language must support discrete events and hence
support hybrid modeling, since structural changes
clearly represent a discrete event. Furthermore, it
must be allowed to state relations between variables
or sub-models in a conditional form, so that the struc-
ture can change depending on time and state. In addi-
tion, variables and sub-models should be dynamically
declarable, so that the corresponding instances can be
created, handled, and deleted at run time. Modelica
meets these requirements only partly and provides
only very limited means for the description of such
models.

2.8 MOSILAB
MOSILAB[7] offers a first approach to handling
variable structure systems in a more general sense. It
combines an extensive subset of Modelica with a
description language for state charts to handle the
transition between different modeling modes. MOSI-
LAB features the dynamic creation of sub-model
instances, although it does so in a limited way. For us,
the use of state charts represents a practical but lim-
ited solution. However, state charts do not integrate
too well into the object-oriented and declarative
framework of Modelica. Hence the complexity of the
language had to be increased significantly and the
beauty and clarity of the original Modelica language
suffered in the process of extending the language.

3 Sol - A derivative language of Modelica
In attempting an enhancement of Modelica's capabili-
ties with respect to variable structure systems, one
arrives at the conclusion that a straight-forward ex-
tension of the language will not lead to a persistent
solution. The introduction of additional dynamics
inevitably violates some of the fundamental assump-
tions of the original language design and of its corre-
sponding translation and simulation mechanisms.

Hence we have taken the decision to design a new
language, optimized to suit the new set of demands.
This language is called Sol. In the design process, we
intend to maintain as much of the essence of Mode-
lica as possible. To this end, we review the major
strengths of Modelica:

• Modelica owns natural readable, intuitive syntax.
Models can be understood even by outsiders, and
beginners are enabled to quickly acquaint them-
selves with the language.

• The declarative, equation-based modeling ap-
proach enables the modeler to concentrate on
what should be modeled, rather than forcing him
or her to consider, how precisely the model is to
be simulated.

• Modelica offers convenient object-oriented
means for the organization of knowledge and
type-generation. This makes large projects feasi-
ble and eases the knowledge transfer.

• The structural type-system of Modelica separates
type-generation and implementation. Thus, even
separate implementations can be compatible and
exchangeable. The generic connection mecha-
nism enables intuitive and convenient modeling.

3.1 Sol – A new language for variable structure
systems

All those considerations of the previous sections have
been taken into account for the design process of Sol.
The decision to design a new language enables us to
take a more radical, conceptually stronger approach.
Hence, Sol attempts to be a language of low complex-
ity that still enables a high degree of expressiveness.

Like Modelica, Sol provides means for declaring
synchronous, non-causal relations between variables
(i.e., equations). As an extension to Modelica, we
furthermore offer a convenient way for declaring
asynchronous, causal transmissions from one variable
(or sub-model) to another. All of these declarations
can be grouped in an almost arbitrary fashion. These
groups of declarations may be activated or deacti-
vated in accordance with conditions, events or prede-
termined sequences.

Unlike in Modelica, also the declaration of variables
and sub-models can occur at the beginning of each
group or subgroup. Since these groups can be stated
in a conditional form, variables and sub-models may
be dynamically created and deleted at run time.
Hence instance creation and deletion does not need to
be stated in the (typical) imperative form. It results

+++ Enhancing Model ica towards Var iable Structure Systems +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

26

from the activation and deactivation of declarative
groups. The dynamically created objects can be han-
dled in an unambiguous way by the declaration of
asynchronous transmissions. Identifiers can also link
dynamically to an instance.

Hence systems that are expressed in Sol are described
in a constructive way, where the path of construction
and the corresponding interrelations might change in
dependence on the current system’s state or on cur-
rent evaluations. Conditional declarations enable a
high degree of variability in structure. The construc-
tive approach avoids memory leaks and the descrip-
tion of error-prone update-processes.

The new language will be well-structured, easily
readable, and intuitive to understand. The language
will provide various object-oriented tools that enable
the efficient handling of complex systems. The syntax
and grammar of Sol is significantly stricter than the
grammar of Modelica. Alternative writings have been
discarded and the different sections of a model must
obey a given order. This strictness unifies the writing
and intends to guide towards a clear and understand-
able modeling style.

3.2 Example
Without going into the details concerning Sol’s
grammar and semantics, we provide a small, intro-
ductory example to show its potential usage. Due to
Sol’s similarity to Modelica and its intuitive syntax,
the example should be understandable in its main
functionality. In addition to classic equations Sol
features copy-transmission (<<) and move-
transmissions (<-). We model a simple machine, con-
sisting of an engine that drives a fly-wheel. Two
models are provided for the engine: The first model
“Engine1” applies a constant torque on the flange. In
the second model “Engine2”, the torque is dependent
on the positional state similar to a piston-engine. The
machine-model connects the engine and the fly-
wheel. It contains a structural change that is reflected
by a substitution of the engine-models. Initially, the
fly-wheel is at rest, and the more complex engine
model is used. When the speed exceeds a certain
threshold, it seems appropriate to average the torque.
Thus, the simpler engine-model is used instead.

The structural change is contained in the model Ma-
chine. It declares a Boolean state-variable fast that
determines which model to use. Please note, that the
conditional if-clauses also contain declarations of

sub-models. This enables a convenient, easily read-
able formulation of the structural change based on the
current system state. There is also no need for an
explicit model of the transition or manual disconnec-
tions.

The example code below presents an alternative solu-
tion for the machine-model. The identifier E is de-
clared to be dynamic. This means: It can be dynami-
cally linked to any model-instance that is type-
compatible with Engine. The corresponding instances
are simply declared anonymously in the conditional
when-clauses. The type of a model is solely defined
by its interface-section.

1 model Machine
2 implementation:

package Rotational
connector Flange
 interface:
 static potential Real phi;
 static flow Real t;
end flange;
partial model Engine
 interface:
 parameter Real meanTorque << 1;
 static Flange f;
end Engine;
model Engine1 extends Engine;
 implementation:
 f.t = meapnTorque;
end Engine1;
model Engine2 extends Engine;
 implementation:
 static Real transmission;
 transmission = 1+sin(f.phi);
 f.t = meanTorque*transmission;
end Engine2;
model FlyWheel
 interface:
 parameter Real inertia << 1;
 static Flange f;
 static Real w;
 implementation:
 static Real z;
 w = der(f.phi);
 z = der(w);
 f.t = inertia*z;
 when initial
 then w=0; f.phi=0; end;
end FlyWheel;
model Machine
 implementation:
 static FlyWheel Wheel1{inertia << 10};
 static Boolean fast;
 if fast then
 static Engine1 E{meanTorque << 100};
 connection(E.f,Wheel1.f);
 else then
 static Engine2 E{meanTorque << 100};
 connection(E.f,Wheel1.f);
 end;

 when initial then fast << false; end;
 when Wheel1.w > 50
 then fast << true; end;
end Machine;
end Rotational;

+++ Enhancing Model ica towards Var iable Structure Systems +++ t

27

N
SN

E 17/2, Septem
ber 2007

3 static FlyWheel Wheel1{inertia << 10};
4 dynamic Engine E;
5 connection(E.f,Wheel1.f);
6 when initial then
7 E <- Engine2{meanTorque << 100};
8 end;
9 when Wheel1.w > 50 then

10 E <- Engine1{meanTorque << 100};
11 end;
12 end Machine;

This simple example contains only a very simple
structural change that is basically reflected by the
replacement of a single equation. Hence this could
have also been modeled in Modelica, but not at this
level of abstraction. The complete replacement of a
model, as it is done here, can as well be used for more
elaborate multi-level models.

4 Implementation and on-going
development

A first version of the language definition of Sol has
been written down in the form of an internal report. It
forms the fundamentals for a corresponding imple-
mentation that is currently under development. This
implementation will be represented by an interpreter
that parses the model-file, instantiates a selected
model and starts simulation. In addition to its main
task, the interpreter will provide various tools for the
analysis of the object-hierarchy, type-structure, etc.

Whereas the pair of a compiler and a simulator is the
preferred choice for high-end simulation tasks, an
interpreter is an appropriate tool for research work on
language design. The development process becomes
much easier, faster and more flexible. Hence the
development of the interpreter can proceed in parallel
with a further refinement of the language. Also, new
debugging techniques will be needed that can be
better provided by an interpreter, since all necessary
meta-information is available. Of course, any inter-
preter (even if it is well written) suffers from a certain
computational overhead that may prevent its usage
for highly demanding simulation applications. Hence
an important aspect will be to sketch the development
of a corresponding compiler.

4.1 Future goals
Sol is a language primarily conceived for research
purposes. We want to explore the full power of a
declarative modeling approach and how it can handle
potential, future problem fields. Some of our goals
and motivations are similar to [6], although we are
coming from a different direction. The implementa-

tion of Sol will be a small and open project that
should enable other researchers to test and validate
their ideas with a moderate effort. The longer term
goal of our research is to significantly extend Mode-
lica’s expressiveness and range of application. Fur-
thermore, the Sol-project gives us a development-
platform for technical solutions that concerns the
handling of structurally changing equation systems.
This includes solutions for dynamic recausalization or
the dynamic handling of structural singularities.

It is not our target to immediately change the Mode-
lica standard or to establish an alternative modeling
language. Our scientific work is intended to merely
offer suggestions and guidance for future develop-
ment. This will primarily benefit future development
of Modelica, but our results may also prove useful to
other modeling communities and researchers.

5 Conclusion
The development of a new modeling language should
be a well considered step, since it incorporates a lot
of effort. This does not only concern the developers
of the language and the corresponding software, it
includes as well the potential modelers and users that
are expected to get themselves acquainted with the
new methodology. However, the continuous progress
of modeling technology generates a new set of de-
mands. This makes such a step finally inevitable.

In this workshop-paper, we offered a first glance of
Sol, our new modeling language. Sol has been de-
signed to enable the modeling of variable-structure
systems using an equation-based framework. While
its development is currently still at the beginning, we
expect to make significant progress in the near future.
In the longer term, we hope that our research will
benefit Modelica’s future development (cf. [9]).

References
[1] Broman, D., Fritzson, P., Furic, S.: Types in the

Modelica Language. In: Proceedings of the Fifth In-
ternational Modelica Conference, Vienna, Austria
(2006) Vol. 1, 303-315

[2] Cellier, F.E., Krebs, M.: Analysis and Simulation of
Variable Structure Systems Using Bond Graphs and
Inline Integration. In: Proc. ICBGM’07, 8th SCS Intl.
Conf. on Bond Graph Modeling and Simulation, San
Diego, CA, (2007) 29-34.

[3] Elmqvist, H., Otter, M., Díaz López, D.: Collision
Handling for the Modelica MultiBody Library. In:
Proc. 4th International Modelica Conference, Ham-
burg, Germany (2006) 45-53

+++ Enhancing Model ica towards Var iable Structure Systems +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

28

[4] Höpler, R., Otter, M.: A Versatile C++ Toolbox for
Model Based, Real Time Control Systems of Robotic
Manipulators. In: Proc. of 2001 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
Maui, USA, (2001) 2208-2214

[5] Otter, M., Elmqvist, H., Mattsson, S.E.: Hybrid Mod-
eling in Modelica Based on the Synchronous Data
Flow Principle. In: Proc. IEEE International Sympo-
sium on Computer Aided Control System Design,
Hawaii. (1999) 151-157

[6] Nilsson, H., Peterson J., Hudak, P.: Functional Hybrid
Modeling. In: Proceedings of the 5th International
Workshop on Practical Aspects of Declarative Lan-
guages, New Orleans, LA (2003) 376—390

[7] Nytsch-Geusen, C. et. al.: Advanced modeling and
simulation techniques in MOSILAB: A system devel-
opment case study. In: Proceedings of the Fifth Inter-
national Modelica Conference, Vienna, Austria (2006)
Vol. 1, 63-71

[8] Zimmer, D., Cellier, F.E.: The Modelica Multi-bond
Graph Library. In: Proc. 5th Intl. Modelica Confer-
ence, Vienna, Austria (2006) Vol. 2, 559-568

[9] Zimmer, D.: Introducing Sol: A General Methodology
for Equation-Based Modeling of Variable-Structure
Systems. In: Proc. 6th International Modelica Confer-
ence, Bielefeld, Germany (2008), Vol.1 pp. 47-56

Corresponding author: Dirk Zimmer
Institute of Computational Science, ETH Zürich
CH-8092 Zürich, Switzerland
dzimmer@inf.ethz.ch

Accepted EOOLT 2007, June 2007
Received: August 15, 2007
Accepted: August 25, 2007

SNE Editorial board
Felix Breitenecker, Felix.Breitenecker@tuwien.ac.at

Vienna University of Technology, Editor-in-chief
Peter Breedveld, P.C.Breedveld@el.utwente.nl

University of Twenty, Div. Control Engineering
Agostino Bruzzone, agostino@itim.unige.it

Universita degli Studi di Genova
Francois Cellier, fcellier@inf.ethz.ch

ETH Zurich, Institute for Computational Science
Russell Cheng, rchc@maths.soton.ac.uk

University of Southampton, Fac. of Mathematics/OR Group
Rihard Karba, rihard.karba@fe.uni-lj.si

University of Ljubljana, Fac. Electrical Engineering
David Murray-Smith, d.murray-smith@elec.gla.ac.uk

Univ. of Glasgow, Fac. Electrical and Electronical Engineering
Horst Ecker, Horst.Ecker@tuwien.ac.at

Vienna University of Technology, Inst. f. Mechanics
Thomas Schriber, schriber@umich.edu

University of Michigan, Business School
Yuri Senichenkov, sneyb@dcn.infos.ru

St. Petersburg Technical University
Sigrid Wenzel, S.Wenzel@uni-kassel.de

University Kassel, Inst. f. Production Technique and Logistics

SNE - Editors /ARGESIM
c/o Inst. f. Analysis and Scientific Computation
Vienna University of Technology
Wiedner Hauptstrasse 8-10, 1040 Vienna, AUSTRIA
Tel + 43 - 1- 58801-10115 or 11455, Fax – 42098
sne@argesim.org; www.argesim.org

Editorial Info – Impressum

SNE Simulation News Europe ISSN 1015-8685 (0929-2268).
Scope: Technical Notes and Short Notes on developments in

modelling and simulation in various areas /application and the-
ory) and on bechmarks for modelling and simulation, member-
ship information for EUROSIM and Simulation Societies.

Editor-in-Chief: Felix Breitenecker, Inst. f. Analysis and Scien-
tific Computing, Vienna University of Technology, Wiedner
Hauptstrasse 8-10, 1040 Vienna, Austria;
Felix.Breitenecker@tuwien.ac.at

Layout: Markus Wallerberger, ARGESIM TU Vienna;
markus.wallerberger@gmx.at

Printed by: Grafisches Zentrum, TU Vienna,
Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria

Publisher: ARGESIM/ASIM; ARGESIM, c/o Inst. for Scientific
Computation, TU Vienna, Wiedner Hauptstrasse 8-10,
1040 Vienna, Austria, and ASIM (German Simulation Society),
c/o Wohlfartstr. 21b, 80939 Munich

© ARGESIM/ASIM 2007

Dear Readers,
We are glad to continue the SNE Special Issue Series with this special issue SNE 17/2 on ‘Object-oriented and Structural-dynamic Modelling
and Simulation I’. The editorial policy of SNE Special Issues is to publish high quality scientific and technical papers concentrating on state-
of-the-art and state-of-research in specific modelling and simulation oriented topics in Europe, and interesting papers from the world wide
modelling and simulation community. The subject ‘Object-oriented and Structural-dynamic Modelling and Simulation’ fulfils all prerequisites
for a special issue, and we are happy, that the organisers of EOOLT 2007 workshop and of EUROSIM 2007 special session on structural-
dynamic systems agreed to select contributions from these events to be published in revised and/or extended form in an SNE special issue.
The subject indeed turned out to be of big interest, and more contributions became candidates than could be published into one special issue-
so a second special issue ‘Object-oriented and Structural-dynamic Modelling and Simulation II’ is planned for 2008 or 2009. The already
announced SNE Special Issue ‘Verification and Validation’ is postponed to 2008 or 2009.
I would like to thank all authors and all people who helped in managing this SNE Special Issue, especially the Guest Editors, Peter Fritzson
(Linköping University, Sweden), François Cellier (ETH Zurich, Switzerland), Christoph Nytsch-Geusen, Fraunhofer FIRST, Berlin, Ger-
many), Peter Schwarz (Fraunhofer EAS, Dresden, Germany), and Borut Zupancic (Univ. Ljubljana, Slovenia).

Felix Breitenecker, Editor-in-Chief SNE; Felix.Breitenecker@tuwien.ac.at

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++ t

29

N
SN

E 17/2, Septem
ber

2007

Functional Hybrid Modeling from an Object-Oriented Perspective

Henrik Nilsson, University of Nottingham, United Kingdom, nhn@cs.nott.ac.uk
John Peterson, Western State College, USA, jpeterson@western.edu

Paul Hudak, Yale University, USA, paul.hudak@yale.edu

Declaration: This paper is closely on [19] that was published in the Proceedings of Practical
Aspects of Declarative Languages (PADL) 2003. The paper has been updated and adapted for
the Equation-Based Object-Oriented Languages and Tools (EOOLT) 2007 Workshop.

The modeling and simulation of physical systems is of key importance in many areas of science and engi-
neering, and thus can benefit from high-quality software tools. In previous research we have demonstrated
how functional programming can form the basis of an expressive language for causal hybrid modeling and
simulation. There is a growing realization, however, that a move toward non-causal modeling is necessary
for coping with the ever increasing size and complexity of modelling problems. Our goal is to combine the
strengths of functional programming and non-causal modeling to create a powerful, strongly typed fully de-
clarative modeling language that provides modeling and simulation capabilities beyond the current state of
the art: in particular, support for highly structurally dynamic systems. Additionally, we think our approach
could serve as a semantical framework for studying modeling and simulation languages supporting structural
dynamism, and maybe even as a core language in systems where the surface syntax is more conventional.
Although our work is still in its very early stages, we believe that this paper clearly articulates the need for
improved modeling languages and shows how functional programming techniques can play a pivotal role in
meeting this need.

Introduction
Modeling and simulation is playing an increasingly
important role in the design, analysis, and implemen-
tation of real-world systems. In particular, whereas
modeling fragments of systems in isolation was
deemed sufficient in the past, considering the interac-
tion of these fragments as a whole is now necessary.
The resulting models are large and complex, and span
multiple physical domains.

Furthermore, these models are almost invariably
hybrid: they exhibit both continuous-time and dis-
crete-time behaviors. In fact, the very structure of the
modeled system changes over time. Such models are
known as structurally dynamic. In general, the total
number of structural configurations, or modes, can be
enormous, or even unbounded. We refer to systems
whose number of modes cannot be practically prede-
termined as highly structurally dynamic. While sup-
porting structural dynamism is hard, supporting
highly structurally dynamic systems is even harder as
this necessitates comprehensive and flexible solutions
of a number of important subproblems: see Sect. 4.

There are two broad language categories of modeling
and simulation languages. Causal (or block-oriented)
languages are most popular; languages such as Simu-

link and Ptolemy II [13] represent this style of model-
ing. In causal modeling, the equations that represent
the physics of the system must be written so that the
direction of signal flow, the causality, is explicit. The
second, but less populated, class of language is non-
causal, where the model focuses on the interconnec-
tion of the components of the system being modeled,
from which causality is then inferred. Such languages
often support an object-oriented approach to model-
ing. Examples include Dymola [5] and Modelica
[15].
The main drawback of causal languages is the need to
explicitly specify the causality. This hampers modu-
larity and reuse [2]. Non-causal languages address
this problem by allowing the user to describe a model
in a way which does not commit to any specific cau-
sality. The appropriate causality constraints are then
inferred using both symbolic and numerical methods
depending on how the model is being used. Unfortu-
nately, current non-causal modeling languages tend to
sacrifice generality when it comes to hybrid model-
ing: in particular, we are not aware of any declarative
non-causal modeling language that supports highly
structurally dynamic models, even if recent efforts
like MOSILAB [20] and Sol [28] are important steps
in that direction.

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

30

In previous research at Yale, we have developed a
framework called Functional Reactive Programming
(FRP) [26], which is suited for causal hybrid model-
ing. This framework is embodied in a language called
Yampa (see haskell.org/yampa) as an extension of
Haskell. Yampa permits highly structurally dynamic
hybrid systems to be described clearly and concisely
[18], at present, however, Yampa lacks integration
with sophisticated numerical solvers, and its applica-
bility for serious simulation work is thus limited. In
addition, because the full power of a functional lan-
guage is available, it exhibits a high degree of modu-
larity, allowing reuse of components and design pat-
terns. It also employs Haskell’s polymorphic type
system to ensure that signals are connected consis-
tently, even as the system topology changes. The
semantic foundations of Yampa are well defined and
understood, making models expressed using Yampa
suited for formal manipulation and reasoning. Yampa
and its predecessors have been used in robotics simu-
lation and control as well as a number of related do-
mains [23, 24]. It has even been used for video games
[4, 3]. We are currently investigating biological cell
population modeling, where Yampa’s support for
highly structurally dynamic systems provides an
interesting declarative approach to handling cell divi-
sion in contrast to the imperative approach of agent-
based simulators [12].
Non-causal modeling and FRP complement each
other almost perfectly. We therefore aim to integrate
the core ideas of FRP with non-causal modeling to
create Hydra, a powerful, fully declarative modeling
language combining the strengths of each. If we treat
causality and dynamism as two dimensions in the
modeling language design space, we see that Hydra
occupies a unique point:

 Mostly static
structure

Highly dynamic
structure

Causal Simulink Yampa
Non-causal Modelica Hydra

MOSILAB and Sol are somewhere between Modelica
and Hydra.
We refer to the combined paradigm of functional
programming and non-causal, hybrid modeling as
Functional Hybrid Modeling, or FHM. Conceptually,
FHM can be seen as a generalization of FRP, since
FRP’s functions on signals are a special case of
FHM’s relations on signals. In its full generality,
FHM, like FRP, also allows the description of struc-
turally dynamic models.

The main contribution of this paper is that it outlines
how notions appropriate for non-causal, hybrid simu-
lation in the form of first-class relations on signals
and switch constructs can be integrated into a func-
tional language, yielding a non-causal modeling lan-
guage supporting structural dynamism. It also identi-
fies key research issues, and suggests how recent
developments in the field of programming languages
could be employed to address those issues.

1 Yampa
To help readers who are not familiar with Functional
Reactive Programming put the ideas of this paper into
context, we provide a brief review of the key ideas of
Yampa in the following. For further details, see ear-
lier papers on Yampa [9, 18]

1.1 Fundamental concepts
Yampa is based on two central concepts: signals and
signal functions. A signal is a function from time to a
value:

 Signal Timeα α≈ →

Time is continuous, and is represented as a non-
negative real number. The type parameter α speci-
fies the type of values carried by the signal. For ex-
ample, the type of a varying electrical voltage might
be Signal Voltage.

A signal function is a function from Signal to Signal:

 SF Signal Signalα β α β≈ →

When a value of type SF α β is applied to an input
signal of type Signalα , it produces an output signal
of type Signal β . Signal functions are first classenti-
ties in Yampa. Signals, however, are not: they only
exist indirectly through the notion of signal function.
In general, the output of a signal function at time t is
uniquely determined by the input signal on the inter-
val [0,]t . If a signal unction is such that the output at
time t only depends on the input at the very same
time instant t , it is called stateless. Otherwise it is
stateful.

1.2 Composing signal functions
Programming in Yampa consists of defining signal
functions compositionally using Yampa’s library of
primitive signal functions and a set of combinators.
Yampa’s signal functions are an instance of the arrow
framework proposed by Hughes [10]. Three combina-
tors from that framework are arr, which lifts an ordi-

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++ t

31

N
SN

E 17/2, Septem
ber

2007

nary function to a stateless signal function, and the
two signal function composition combinators <<< and
&&& :

:: ()

() ::
(&&&) :: (,)

arr a b SF ab
SF bc SF ab SF ac
SF ab SF ac SF a b c

→ →
<<< → →

→ →

We can think of signals and signal functions using a
simple flow chart analogy. Boxes represent signal
functions, with one signal flowing in to the box’s
input port and another signal flowing out of the box’s
output port. Figure 1 illustrates some of the central
arrow combinators using this analogy. The similarity
to a block-oriented modeling language like Simulink
is hopefully clear. The main difference is that the
notion of composing blocks into larger blocks has
been formalized through a handful of composition
combinators, which is helpful from a semantical per-
spective, in contrast to the more unstructured ap-
proach of connecting outputs to inputs in an arbitrary
fashion.

1.3 Arrow syntax
While the arrow framework provides a useful seman-
tical structure, it is not convenient for expressing
large networks. It is much easier to simply connect
whatever needs to be connected Simulink style, e.g.
by naming nodes and then explicitly stating the con-
nection topology. Fortunately, it is easy to provide a
layer of syntax that allows this, and then translate this
into a network description in terms of the core arrow
combinators. Paterson’s arrow notation [22] does
exactly that. An expression denoting a signal function
has the form:

1 1 1

proc dopat
pat sfexp exp

→
← −�

2 2 2

n n n

pat sfexp exp

pat sfexp exp
return A exp

← −

← −
−

�
�

�
�

The keyword proc is analogous to the λ in λ -
expressions, pat and ipat are patterns binding signal
variables pointwise by matching on instantaneous
signal values, exp and iexp are expressions defining
instantaneous signal values, and iexp are expressions
denoting signal functions. The idea is that the signal
being defined pointwise by each iexp is fed into the
corresponding signal function isfexp , whose output is
bound pointwise in ipat . The overall input to the
signal function denoted by the proc-expression is
bound by pat , and its output signal is defined by the
expression exp . The signal variables bound in the
patterns may occur in the signal value expressions,
but not in the signal function expressions isfexp). An
optional keyword rec, applied to a group of defini-
tions, permits signal variables to occur in expressions
that textually precede the definition of the variable,
allowing recursive definitions (feedback loops).

For a concrete example, consider the following:

 (,)
(1, 2) 1&&& 2

3 4 (1,)

5 (2, ,)
(,)

sf a b
c c sf sf a

d sf sf c b

e sf c d e
return A d e

= →
← −

← <<< −

← −
−

proc do

rec

�
�

�
�

Note the use of the tuple pattern for splitting sf’s input
into two “named signals”, a and b. Also note the use
of tuple expressions and patterns for pairing and split-
ting signals in the body of the definition; for example,
for splitting the output from 1&&& 2sf sf . Also note
how the arrow notation may be freely mixed with the
use of basic arrow combinators.

1.4 Accessing the Environment
While some aspects of a program are naturally mod-
eled as continuous signals, other aspects are more
naturally modeled as discrete events. To this end,
Yampa introduces the Event type, isomorphic to Has-
kell’s Maybe type:

 data Event a = NoEvent | Event a

The instantaneous value of signal of type Event T for
some type T is either NoEvent or Event x for some
value x of type T, thus mimicking a discrete-time
signal that is only defined at discrete points in time.

:: (,) ()switch SF a b Event c c SF ab

SF ab
→ →

→

The switch combinator switches from one subordinate

Figure 1. Basic signal function combinators

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

32

signal function into another when a switching event
occurs. Its first argument is the signal function that
initially is active. It outputs a pair of signals. The first
defines the overall output while the initial signal
function is active. The second signal carries the event
that will cause the switch to take place. Once the
switching event occurs, switch applies its second
argument to the value of the event and switches into
the resulting signal function.

Thus, note that the second argument of switch is a
function of type c SF ab→ , that, when given the
value of type c carried by the event, dynamically
computes a new signal function to switch into. Using
a Simulink analogy, switch in principle rips out a
block, and then dynamically instantiates a parameter-
ized block as a replacement. The design of switch
thus exploits the fact that signal functions (“blocks”)
are first class entities in Yampa.

Yampa also includes parallel switching constructs
that maintain dynamic collections of signal functions
connected in parallel [18]. Signal functions can be
added to or removed from such a collection at run-
time in response to events, while preserving any in-
ternal state of all other signal functions in the collec-
tion; see Fig. 2. The first class status of signal func-
tions in combination with switching over dynamic
collections of signal functions makes Yampa an un-
usually flexible language for describing hybrid sys-
tems. For example, this makes it possible to handle
systems where the number of modeled entities varies
over time, like cell population models as mentioned
earlier (see Introduction).

2 Non-causal and hybrid modeling
While the simulation of pure continuous systems is
relatively well understood, hybrid systems pose a
number of unique challenges [16, 1]. Problems in-
clude handling a large number of modes, event detec-
tion, and consistent initialization of state variables.
The integration of hybrid modeling with non-causal
modelling raises further problems. Indeed, current

non-causal modeling languages are quite limited in
their ability to express hybrid systems. Many of the
limitations are related to the symbolic and numerical
methods that must be used in the non-causal ap-
proach. But another important reason is that most
such systems insist on performing all symbolic ma-
nipulations before simulation begins [16]. Avoiding
these limitations is an important part of our approach,
see Sec. 4.
Since Modelica is representative of state-of-the-art,
non-causal, hybrid modeling languages, we illustrate
the limitations of present languages with an example
from the Modelica documentation [14, pp. 31–33].
The system is a pendulum in the form of a mass m at
the end of a rigid, massless rod, subject to gravity mg
and an externally applied torque u at the point of
suspension; see Fig. 3(a). Additionally, the rod could
break at some point, causing the mass to fall freely.

Figure 3(b) shows a Modelica model of this system
that, on the surface, looks like it achieves the desired
result. Note that it has two modes, described by con-
ditional equations. In the non-broken mode, the posi-
tion pos and velocity vel of the mass are calculated
from the state variables phi and phid. In the broken
mode, pos and vel become the new state variables.
This implies that state information has to be trans-
ferred between the non-broken and broken mode.
Furthermore, the causality of the system is different
in the two modes. When non-broken, the equation
relating vel and pos is used to compute vel from
pos. When broken, the situation is reversed.

These facts make simulation hard. Modelica attempts
to simplify matters by avoiding too radical structural

 (a) Pendulum (b) Modelica model

Figure 3. A pendulum, subject to externally applied torque
and gravity.

Figure 2. System of interconnected signal functions with
varying structure

model BreakingPendulum
 parameter Real m=1, g=9.81, L=0.5;
 parameter Boolean Broken;
 input Real u;
 Real pos[2], vel[2];
 Real phi(start=PI/4), phid;
equation
 vel = der(pos);
 if not Broken then
 // Equations of the pendulum
 pos = {L*sin(phi), -L*cos(phi)};
 phid = der(phi);
 m*L*L*der(phid) + m*g*L*sin(phi)=u;
 else
 // Equations of the free-flying mass
 m*der(vel) = m*{0, -g};
 end if;
end BreakingPendulum;

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++ t

33

N
SN

E 17/2, Septem
ber

2007

changes. To that end, Modelica either requires the
condition for selecting between two sets of equation
to be a parameter, and thus unchanging during simu-
lation, or else that the number of equations in each set
is the same. In this case, as the number of equations is
not the same, Broken has to be declared a parameter.
Therefore the model above does not really solve the
hybrid simulation problem at all! In order to actually
model a pendulum that dynamically breaks at some
point in time, the model must be expressed in some
other way. The Modelica documentation suggests a
causal, block-oriented formulation with explicit state
transfer. Unsurprisingly, the result is considerably
more verbose, nullifying the advantage of working in
a non-causal language.
Moreover, even if Broken were allowed to be a dy-
namic variable, a fundamental problem would re-
main: once the pendulum has broken, it cannot be-
come whole again. Modelica provides no way to
declaratively express the irreversibility of this struc-
tural change. The best that can be done is to capture
this fact indirectly through a state machine model that
control the value of Broken.

3 Integrating functional programming
and non-causal modeling

In the preceding sections we discussed the advantages
of non-causalmodeling and the importance of hybrid
modeling. We also pointed out serious shortcomings
in current modeling languages with respect to these
features. In this section, we describe a new way to
combine non-causal and hybrid modeling techniques
that addresses these issues. Inspired by FRP and
Yampa, the two key ideas are to give first-class status
to relations on signals and to provide constructs for
discrete switching between relations. The result is
Hydra, a functional hybrid modelling language capa-
ble of representing structurally dynamic systems.

While we, based on our experience of Yampa, believe
that a language like Hydra would be a very expres-
sive and powerful modeling and simulation language
in its own right, we would like to emphasize that we
also think our approach could serve as a valuable
semantical framework for general study of modelling
and simulation languages that supports structural
dynamism, and maybe even as a core language in
systems where the surface syntax is more conven-
tional. Thus, what is important in the following is not
the syntax (which is tentative and likely lacking in
many ways), but the underlying principles.

3.1 First-class signal relations
A natural mathematical description of a continuous
signal function is that of an ODE in explicit form. A
function is just a special case of the more general
concept of a relation. While functions usually are
given a causal interpretation, relations are inherently
non-causal. Differential Algebraic Equations (DAEs),
which are at the heart of non-causal modeling, ex-
press dependences among signals without imposing a
causality on the signals in the relation. Thus it is
natural to view the meaning of a DAE as a non-causal
signal relation, just as the meaning of an ODE in
explicit form can be seen as a causal signal function.
Since signal functions and signal relations are closely
connected, this view offers a clean way of integrating
non-causal modeling into an Yampa-like setting.

In the following, first-class signal relations are made
concrete by proposing a (tentative) system for inte-
grating them into a polymorphically typed functional
language. Signal functions are also useful, but since
they are just relations with explicit causality, we need
not consider them in detail in the following.

Similarly to the signal function type SF of Yampa
(Sect. 2.1), we introduce the type SR � for a relation
on a signal of type Signal �. Specific relations use a
more refined type; e.g., for the derivative relation der
we have the typing:

 der :: SR (Real, Real)

Since a signal carrying pairs is isomorphic to a pair of
signals, we can understand der as a binary relation on
two real-valued signals.

Next we need a notation for defining relations. In-
spired by the arrow notation (Sect. 1.3), we introduce
the following to denote a signal relation:

 pattern equationssigrel where

The pattern introduces signal variables that at each
point in time are bound to the instantaneous value of
the corresponding signal. Given p :: t, we have:

 sigrel p where … :: SR t

Consequently, the equations express relationships
between instantaneous signal values. This resembles
the standard notation for differential equations in
mathematics. For example, consider ' ()x f y= ,
which means that the instantaneous value of the de-
rivative of (the signal) x at every time instant is
equal to the value obtained by applying the function
f to the instantaneous value of y .

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

34

We introduce two styles of equations:

 1 2

3

e e
sr e

=
�

where ie are expressions (possibly introducing new
signal variables), and sr is an expression denoting a
signal relation. We require equations to be well-typed.
Given ::i ie t , this is the case iff 1 2t t= and 3::sr SRt .

The first kind of equation requires the values of the
two expressions to be equal at all points in time. For
example:

 () ()f x g y=

where f and g are functions.

The second kind allows an arbitrary relation to be
used to enforce a relationship between signals. The
symbol � can be thought of as relation application;
the result is a constraint which must hold at all times.
The first kind of equation is just a special case of the
second in that it can be seen as the application of the
identity relation.

For another example, consider a differential equation
like (,)x f x y′ = . Using our notation, this equation
could be written:
 (, (,))der x f x y�

where der is the relation relating a signal to its deriva-
tive. For convenience, a notation closer to the
mathematical tradition should be supported as well:

 () (,)x f x y=der

The meaning is exactly as in the first version.

We illustrate our language by modeling the electrical
circuit in Figure 4 (adapted from [14]). The type Pin
is a record type describing an electrical connection. It
has fields v for voltage and i for current (the name
Pin is perhaps a bit misleading since it just represents

a pair of physical quantities, not a physical “pin com-
ponent”; i.e., Pin is the type of signal variables rather
than signal relations).

:: (, ,)
(, ,)

. .
. . 0

twoPin SR Pin Pin Voltage
twoPin p n u

u p v n v
p i n i

=
= −

+ =

sigrel where

:: (,)
() (,)

(, ,)
.

resistor Resistance SR Pin Pin
resistor r p n

twoPin p n u
r p i u

→
=

�
⋅ =

sigrel where

:: (,)
() (,)

(, ,)
(.)

inductor Inductance SR Pin Pin
inductor l p n

twoPin p n u
l der p i u

→
=

�
⋅ =

sigrel where

:: (,)
() (,)

(, ,)
() .

capactior Capacitance SR Pin Pin
capacitor l p n

twoPin p n u
c der u p i

→
=

�
⋅ =

sigrel where

As in Modelica, the resistor, inductor and capacitor
models are defined as extensions of the twoPin
model. However, we accomplish this directly with
functional abstraction rather than the Modelica class
concept. Note how parameterized models are defined
through functions returning relations. Since the pa-
rameters are normal function arguments, not signal
variables, their values remain unchanged throughout
the lifetime of the returned relations (compare to
Modelica’s parameter-variables mentioned in Sect.
2).

To assemble these components into the full model,
we adopt a Modelica-like connect-notation as a con-
venient abbreviation for connection equations. This is
syntactic sugar which is expanded to proper connec-
tion equations, i.e. equality constraints or sum-to-zero
equations depending on what kind of physical quan-
tity is being connected. We assume that a voltage
source model vSourceAC and a ground model ground
are available in addition to the component models
defined above. Moreover, we are only interested in
the total current through the circuit, and, as there are
no inputs, the model thus becomes a unary relation:

 simpleCircuit :: SR Current
 simpleCircuit = sigrel i where
 resistor (1000) � (r1p, r1n)

Figure 4. A simple electrical circuit

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++ t

35

N
SN

E 17/2, Septem
ber

2007

 resistor (2200) � (r2p, r2n)
 capacitor (0.00047) � (cp, cn)
 inductor (0.01) � (lp, ln)
 vSourceAC(12) � (acp, acn)
 ground � gp
 connect acp, r1p, r2p
 connect r1n, cp
 connect r2n, lp
 connect acn, cn, ln, gp
 i = r1p.i + r2p.i

3.2 Modeling systems with dynamic structure
In order to describe structurally dynamic systems we
need to represent an evolving structure. To this end,
we introduce two Yampa-inspired switching conal-
lows repeated switching between equation groups.
structs: the recurring switch and the progressing
switch. The recurring switch allows repeated switch-
ing between equation groups. In contrast, the pro-
gressing switch expresses that one group of equations
first is in force, and then, once the switching condi-
tion has been fulfilled, another group, thus irreversi-
bly progressing to a new structural configuration. For
either sort of switching, difficult issues such as state
transfer and proper initialization have to be consid-
ered.

We revisit the breaking pendulum example from Sect.
3 to illustrate these switching constructs. To deal with
initialization and state transfer, we introduce special
initialization equations that are only active at the time
of switching, that is, during events, and we allow such
equations to refer to the values of signal variables just
prior to the event through a special pre-construct
devised for that purpose. The initialization equations
describe the initial conditions of the DAE after a
switch. Mathematically, these equations must yield an
initial value for every state variable in the new con-
tinuous equations. It is important that each branch of
a switch can be associated with its own initialization
equations, since each such branch may introduce its
proper set of state variables. Initialization equations
typically state continuity assumptions, like pos and
vel below.

First, consider a direct transliteration of the equation
part of the Modelica model using a recurring switch.
The necessary initialization equations have also been
added:

 vel = der(pos)
 switch broken
 when False then
 init phi = pi/4
 init phid = 0
 pos = {l · sin (phi),�l · cos (phi)}
 phid = der(phi)
 m · l · l · der(phid) + m · g · l · sin (phi) = u
 when True then
 init vel = pre(vel)
 init pos = pre(pos)
 m · der(vel) = m · {0,�g}

A recurring switch has one or more when-branches.
The idea is that the equations in a when-branch are in
force whenever the pattern after when (which may
bind variables) matches the value of the expression
after switch. Thus, whenever that value changes, we
have an event and a switch occurs (this is similar to
case in a functional language).

To express the fact that the pendulum cannot become
whole once it has broken, we refine the model by
changing to a progressing switch:

 vel = der(pos)
 switch broken
 first
 …
 once True then
 …

A progressing switch has one first-branch and one or
more once-branches Initially, the equations in the
first-branch are in force, but as soon as the value of
the expression after switch matches one of the once-
patterns, a switch occurs to the equations in the corre-
sponding branch, after which no further switching
occurs (for that particular instance of the switch).

By combining recursively-defined relations and pro-
gressing switches, it is possible to express very gen-
eral sequences of structural changes over time, from
simple mode transitions to making and breaking of
connections between objects. A simple example of a
recursively defined relation parameterized on a dis-
crete state variable n is shown below. Initially, the
relation behaves according to the equations in the
first-branch, which may depend on n. Whenever the

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

36

switching condition is fulfilled, the relation switches
to a new instance of itself with the parameter n in-
creased by one. In functional parlance, this is a form
of tail call.

 sysWithCntr :: Int � SR (Real, Real)
 sysWithCntr (n) = sigrel (x, y) where
 switch …
 first
 …
 once … then
 sysWithCntr (n + 1) � (x, y)

As explained in Sect. 2.5, Yampa supports even more
radical structural changes, including dynamic addi-
tion and deletion of objects. Our goal is to carry over
as much as possible of that functionality to Hydra.

4 Implementation issues
There are a number of challenges that must be ad-
dressed in an implementation of a language like Hy-
dra. The primary issues are ensuring model correct-
ness, simulation in the presence of dynamic mode
changes, and mode initialization.

It is critical that dynamic changes in the model should
should not weaken the static checking of the model,
i.e. we want to ensure compositional correctness. A
Haskell-like polymorphic type system, as in Yampa,
ensures that the system integrity is preserved. In addi-
tion we would like to find at least necessary con-
ditions for statically ensuring that causality analysis
can always be carried out, that the equations at least
could have a solution, and so on, regardless of how
relations are composed dynamically. An example of a
necessary but not sufficient condition is that the num-
ber of equations and number of variables agree, and
that each variable can be paired with one equation.
Since it will be necessary to keep track of the balance
between equations and variables across relation
boundaries, it is natural to integrate this aspect into
the type system. Similar considerations apply to the
number of initialization equations and continuous
state variables. Recent work on dependent types is
relevant here [27]. We also aim at extending the type
system to handle physical dimensions [11].

In a highly structurally dynamic language, it is im-
possible to identify all possible operating modes and
then factor them out as separate systems. Modes thus
have to be generated dynamically during simulation
as follows. Whenever a switch occurs, a new, global,

“flattened” DAE has to be generated. The DAE is
obtained by first carrying out the necessary discrete
processing, which amounts to standard functional
evaluation, including evaluation of the relational
expressions in the equations that are to be active after
the switch. The evaluation of relational expression is
what creates new instances of relations, and carrying
out the instantiation dynamically when switching
occurs is what enables modelling of highly structur-
ally dynamic systems. Once the new flattened DAE
has been generated, it is subjected to causality analy-
sis and other symbolic manipulations in preparation
for simulation using suitable numerical methods [21,
6, 7]. The result is causal simulation code.

The hybrid bond graph simulator HYBRSIM has dem-
onstrated the feasibility of this dynamic approach,
and that it indeed allows some difficult cases to be
handled [17]. However, HYBRSIM is an interpreted
system. Simulation is thus slowed down both by
occasional symbolic processing and by the interpre-
tive overhead. To avoid interpretive overhead, we
intend to leverage recent work on run-time code gen-
eration, such as ‘C [8] or Cyclone [25]. We will need
to adapt the sophisticated mathematical techniques
used in existing non-causal modeling languages [21,
6, 7] to this setting. In part, it may be possible to do
this systematically by staging the existing algorithms
in a language like Cyclone.

The initial conditions of the (new) differential equa-
tions must be determined on transitions from one
mode to another. However, arriving at consistent
initial conditions is, in general, hard. Some state vari-
ables in the continuous part of the system may exhibit
discontinuities at the time of switching while others
will not: simply preserving the old value is not al-
ways the right solution. Structural changes could
change the set of state variables, and the relationship
between the new and old states may be difficult to
determine. One approach is to require the modeler to
provide a function that maps the old state to the new
one for each possible mode transition [1]. However,
the declarative formulation of non-causal models
means that the simulator sometimes has a choice
regarding which continuous variables should be
treated as state variables. Requiring the user to pro-
vide a state mapping function is therefore not always
reasonable.

A key to the success of HYBRSIM is that bond graphs
are based on physical notions such as energy and
energy exchange, which are subject to continuity and

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++ t

37

N
SN

E 17/2, Septem
ber

2007

conservation principles. We intend to generalize this
idea by exploring the use of declarations for stating
such principles, along the lines illustrated in Sec. 4.2.
It may also be possible to infer continuity and con-
servation constraints automatically based on physical
dimension types.

5 Related work
There has been substantial interest in supporting
structural dynamism within the non-causalmodeling
community recently. The most advanced effort at
present is probably MOSILAB [20]. Similarly to
what is proposed here, MOSILAB supports dynamic
addition and deletion of behavioral objects. The
switching is controlled through a form statecharts. A
modern, sophisticated DAE solver, with support for
computing consistent initial conditions, is used.

However, the statechart approach implies an explicit
enumeration of the modes, and even if the number of
modes could be large due to combinatorial effects,
this rules out a Yampa-style, truly dynamic number of
simulation objects, which is the ultimate goal of Hy-
dra.

Another aspect of MOSILAB is the use of Python for
various meta-modeling tasks, such as writing “ex-
periment scripts”. We think that Hydra in itself,
thanks to being a general-purpose functional language
with first-class signal relations and functions, should
be expressive enough to mostly provide equivalent
meta-modeling capabilities, all in a uniform, declara-
tive setting, without resorting to external imperative
languages.

Sol [28] is another effort to create a non-causal mod-
eling and simulation language supporting structural
dynamism. It expressively avoids the statechart ap-
proach to retain more of the declarative clarity of
languages like Modelica. It is also claimed that the
Sol approach to dynamism scales better. A key aspect
of the Sol approach is the capability to dynamically
determine model instances. This idea seems to be
somewhat similar to the notion of first-class signal
functions and relations in Hydra. Like MOSILAB,
Sol seems to stop short of the Hydra goal of support-
ing systems with a dynamic number of objects.

6 Conclusions
Hybrid modeling is a domain in which the techniques
of declarative programming languages have the po-
tential to greatly advance the state of the art. The

modeling community has traditionally been con-
cerned more with the mathematics of modeling than
language issues. As a result, present modeling lan-
guages do not scale in a number of ways, particularly
in hybrid systems that undergo significant structural
changes. Hydra uses functional programming tech-
niques to describe dynamically changing systems in a
way that preserves the non-causal structure of the
system specification and allows arbitrary switching
among modes, yielding expressive power beyond
current non-causal modeling languages.

Although we have not completed an implementation
of Hydra, this paper demonstrates our basic design
approach and maps out the design landscape. We
expect that further research into the links between
declarative languages and hybrid modeling will pro-
duce significant advances in this field.

Acknowledgements
The authors would like to thank the anonymous
EOOLT reviewers for many useful suggestions for
adapting the paper to this venue.

References
[1] P. I. Barton, C. K. Lee. Modeling, simulation, sensitiv-

ity analysis, and optimization of hybrid systems. Sub-
mitted to ACM Transactions on Modelling and Com-
puter Simulation: Special Issue on Multi-Paradigm
Modeling, September 2001.

[2] F. E. Cellier. Object-oriented modelling: Means for
dealing with system complexity. In Proceedings of the
15th Benelux Meeting on Systems and Control,
Mierlo, The Netherlands, pages 53–64, 1996.

[3] M. H. Cheong. Functional programming and 3D
games. BEng thesis, University of New South Wales,
Sydney, Australia, November 2005.

[4] A. Courtney, H. Nilsson, J. Peterson. The Yampa ar-
cade. In Proceedings of the 2003 ACM SIGPLAN
Haskell Workshop (Haskell’03), pages 7–18, Uppsala,
Sweden, August 2003. ACM Press.

[5] H. Elmqvist, F. E. Cellier, M. Otter. Object-oriented
modeling of hybrid systems. In Proceedings of ESS’93
European Simulation Symposium, pages xxxi–xli,
Delft, The Netherlands, 1993.

[6] H. Elmqvist, M. Otter. Methods for tearing systems of
equations in object-oriented modeling. In Proceedings
of ESM’94, European Simulation Multiconference,
pages 326–332, Barcelona, Spain, June 1994.

[7] H. Elmqvist, M. Otter, F. E. Cellier. Inline integra-
tion: A new mixed symbolic/numeric approach. In
Proc. ESM’95, European Simulation Multiconference,
pages xxiii–xxxiv, Prague, June 1995.

+++ Funct ional Hybr id Modeling from an Object-Or iented Perspective +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

38

[8] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek. ‘C: A
language for high-level, efficient, and machine-
independent dynamic code generation. In Proceedings
of the 23rd ACM Symposium on Principles of Pro-
gramming Languages (POPL’96), pages 131–144,
January 1996.

[9] P. Hudak, A. Courtney, H. Nilsson, J. Peterson. Ar-
rows, robots, and functional reactive programming. In
J. Jeuring and S. P. Jones, eds., Advanced Functional
Programming, 4th International School 2002, volume
2638 of Lecture Notes in Computer Science, pp. 159–
187. Springer-Verlag, 2003.

[10] J. Hughes. Generalising monads to arrows. Science of
Computer Programming, 37:67–111, May 2000.

[11] A. Kennedy. Programming Languages and Dimen-
sions. PhD thesis, University of Cambridge, Computer
Laboratory, April 1996. Published as Technical Re-
port No. 391.

[12] J. King, M. Lees, B. Logan. Agent-based and contin-
uum modeling of populations of cells. Technical re-
port, University of Nottingham, December 2006.

[13] E. A. Lee. Overview of the Ptolemy project. Technical
memorandum UCB/ERLM01/11, Electronic Research
Laboratory, University of California, Berkeley, March
2001.

[14] The Modelica Association. Modelica – A Unified Ob-
ject-Oriented Language for Physical Systems Model-
ing: Tutorial version 1.4, December 2000.
http://www.modelica.org/documents/ModelicaTut

orial14.pdf.
[15] The Modelica Association. Modelica – A Unified Ob-

ject-Oriented Language for Physical Systems Model-
ing: Language Specification version 2.2, February
2005. http://www.modelica.org/documents/Mode-

licaSpec22.pdf.
[16] P. J. Mosterman. An overview of hybrid simulation

phenomena and their support by simulation packages.
In F. W. Vaadrager and J. H. van Schuppen, eds., Hy-
brid Systems: Computation and Control ’99, number
1569 in Lecture Notes in Computer Science, pages
165–177, 1999.

[17] P. J. Mosterman, G. Biswas, M. Otter. Simulation of
discontinuities in physical system models based on
conservation principles. In Proceedings of SCS Sum-
mer Conference 1998, pages 320–325, July 1998.

[18] H. Nilsson, A. Courtney, J. Peterson. Functional reac-
tive programming, continued. In Proceedings of the
2002 ACM SIGPLAN Haskell Workshop (Has-
kell’02), pages 51–64, Pittsburgh, Pennsylvania, USA,
October 2002. ACM Press.

[19] H. Nilsson, J. Peterson, P. Hudak. Functional hybrid
modeling. In Proceedings of PADL’03: 5th Interna-
tional Workshop on Practical Aspects of Declarative
Languages, volume 2562 of Lecture Notes in Com-

puter Science, pages 376–390, New Orleans, Lousi-
ana, USA, January 2003. Springer-Verlag.

[20] C. Nytsch-Geusen et al. MOSILAB: Development of a
Modelica based generic simulation tool supporting
model structural dynamics. In Proceedings of the 4th
International Modelica Conference, Hamburg, Ger-
many, March 2005. Modelica Association.

[21] C. C. Pantelides. The consistent initialization of dif-
ferential-algebraic systems. SIAM Journal on Scien-
tific and Statistical Computing, 9(2):213–231, March
1988.

[22] R. Paterson. A new notation for arrows. In Proceed-
ings of the 2001 ACM SIGPLAN International Con-
ference on Functional Programming, pages 229–240,
Firenze, Italy, September 2001.

[23] J. Peterson, G. Hager, P. Hudak. A language for de-
clarative robotic´programming. In Proceedings of
IEEE Conference on Robotics and Automation, May
1999.

[24] J. Peterson, P. Hudak, A. Reid, and G. Hager. FVi-
sion: A declarative language for visual tracking. In
Proceedings of PADL’01: 3rd International Workshop
on Practical Aspects of Declarative Languages, pages
304–321, January 2001.

[25] F. Smith, D. Grossman, G. Morrisett, L. Hornof, T.
Jim. Compiling for run-time code generation. Submit-
ted for publication to JFP SAIG.

[26] Z. Wan and P. Hudak. Functional reactive program-
ming from first principles. In Proceedings of PLDI’01:
Symposium on Programming Language Design and
Implementation, pages 242–252, June 2000.

[27] Hongwei Xi and F. Pfenning. Dependent types in
practical programming. In Proceedings of ACM SIG-
PLAN Symposium on Principles of Programming
Languages, pages 214–227, San Antonio, January
1999.

[28] D. Zimmer. Enhancing Modelica towards variable
structure systems. In Proceedings of 1st International
Workshop on Equation-Based Object-Oriented Lan-
guages and Tools (EOOLT 2007), Berlin, Germany,
July 2007. LiU E-Press.

Corresponding author: Henrik Nisson
School of Computer Science and IT
University of Nottingham, United Kingdom
nhn@cs.nott.ac.uk

Accepted EOOLT 2007, June 2007
Received: August 10, 2007
Accepted: September 10, 2007

+++ Simulators for Hybrid Systems, Including State Events +++ t

39

N
SN

E 17/2, Septem
ber 2007

Structure of Simulators for Hybrid Systems �
Development and New Concept of External and Internal State Events

Felix Breitenecker1,. Günther Zauner2, Nikolas Popper2, Florian Judex1, Inge Troch1
1Vienna Univ. of Technology, Austria, 2dieDrahtwarenhandlung Simulation Services, Austria

At first this paper discusses discrete elements in the CSSL Standard, and- more detailed- the classification of
‘classical’ state events, where, structural-dynamic systems are generated by state events, changing the di-
mension of the state space. The paper continues with recent developments coming from Modelica and
VHDL-AMS, which introduce non-causal modelling on a high level, including implicit models and state
events associated with boundary conditions. While both new standards extend the CSSL standard, with focus
on continuous systems; especially Modelica also allows defining pure discrete model constructs based on
events, state charts, and Petri nets.

The main chapters concentrate on further extensions of the CSSL frames, mainly in order to handle hybrid
and structural-dynamic systems properly. There, features of two competiting ‘ideas’ are sketched, maximal
state space versus hybrid decomposition. In order to allow a highly flexible modelling level, state events are
characterised as ‘internal state events’ (I-SE) or ‘external state event’ (E-SE). Both types of event can be de-
scribed by state charts; implementation is the simulator’s task. Finally, simulators being able to implement
both state event types are reviewed: Modelica/Dymola, Mosilab, AnyLogic, and MATLAB/Simulink
/Stateflow.

Introduction
Since early times of simulation, attempts were made
to standardize digital simulation programs by means
of a self standing structure for simulation systems.

But only in 1968 the CSSL Standard (The CSSL
Report commissioned by the Simulation Council Inc -
SCI) became a milestone in the development: it uni-
fied the concepts and language structures of the avail-
able simulation programs, it defined a structure for
the model, and it described minimal features for a
runtime environment. In principle, this basic CSSL
structure standard has been a standard for almost four
decades, although a lot of extensions and other con-
cepts have been developed and discussed. Also mod-
ern simulation systems, like Dimple, follow an ex-
tended CSSL standard. Mainly these extensions deal
with discrete model parts and with DAE modelling.

An alternative standardised structure on basis of sys-
tem theory is Zeigler’s hybrid extension of the DES
formalism (Discrete Event Systems). Unfortunately
this approach is not commonly used in the area of
continuous system modelling, and prototype imple-
mentations rather focus on the discrete world. Since
three years a new idea is discussed in combined con-
tinuous / discrete modelling and simulation, namely,
the challenge of structural dynamic systems.

Those can be modelled and simulated in CSSL struc-
tures, but there happen difficulties with the fixed state
space, as well in the CSSL structure as in hybrid
DES.

In any case, state events are bridging the gap between
the continuous world and the discrete world. On the
one side, continuous modelling considers state events
to be an interruption of the continuous course of the
system, which has to be handled properly, in order to
continue continuously. On the other side, discrete
system theory puts state events in the foreground,
which update states and which control switching
between different update algorithms (static algo-
rithmic update, stochastic update based on event
mechanisms, or also ODEs and DAEs).

Coming from the continuous side of simulation, state
events may be viewed in an ambivalent way. They
may cause discontinuous changes within a running
algorithm updating the states (ODE solver), or they
may cause a termination of the current update algo-
rithm (ODE solver), starting a new update algorithm
(ODE solver) with the same or with another model.
Latest would allow easy modelling and simulation of
structural dynamic systems.

Thus, it is worth to develop the mentioned idea based
on a structure with internal and external state events,
which will be discussed in chapter 5.

+++ Simulators for Hybrid Systems, Including State Events +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

40

Interestingly, this idea of a distinction of state events
is related to the development of Modelica, where
external state events are discussed as basis for model
switching based on state charts. Furthermore, since
about five years it is tried to implement features for
dynamic structures, by switching state events, in
simulation systems. First, this was tried by means of
simulator coupling, while now generic extensions and
new systems are available (discussed in chapter 6).

1 CSSL standard
The CSSL standard suggests structures and features
for a model frame and for an experimental frame.
This distinction is based on Zeigler’s concept of a
strict separation of these two frames. Model frame
and experimental frame are the user interfaces for the
heart of the simulation system, for the simulator ker-
nel or simulation engine. The simulation engine
drives the calculations in the time domain. This basic
structure of a simulator - due to CSSL standard – is
illustrated in Figure 1.

There are not included any features for discontinuous
changes, thus, very soon at least time event features
were incorporated.

2 Discrete elements and events in
continous simulation

The CSSL standard defines segments for discrete
actions, which were at first mainly used for modelling
discrete control. So-called DISCRETE regions or
sections manage the communication to and from the
continuous world and compute the discrete model
parts.

These discrete section models discrete events, sched-
uled by time-dependent inputs (time events), or
scheduled by state-dependent threshold functions
(state events).

2.1 Time Events
In the graphical model description discrete controllers
and the time delay could be modelled by a z-transfer
block. If a discrete action is more complex, graphical
descriptions have problems. For this purpose SIMU-
LINK offers triggered submodels, which can be exe-
cuted only at one time instant, controlled by a logical
trigger signal. New versions of MATLAB also inte-
grate a state machine (State Flow) for event control.
Recently (2006) event control is supported in MAT-
LAB/ Simulink by the SimEvent Blockset, offering
also the entity concept.
In any case, the simulation engine has to handle an
event list, representing the time instants of discrete
action and the calculations associated with the action,
where in-between consecutive actions the ODE solver
have to be called.

2.2 State Events
Much more complicated, but defined in CSSL, are the
so-called state events. Here, a discrete action takes
place at a time instant, which is not known in ad-
vance, it is only known as a function of the states,
described by a threshold function. This discrete action
(‘timeless’ action) may simply change an input – or
the structure of a system.
As example we consider the pendulum with con-
straints. If the pendulum is swinging, it may hit a pin
positioned at angle pϕ with distance pl from the point
of suspension. After hit case the pendulum swings on
with the position of the pin as the point of rotation
and the shortened length s pl l l= − and the angular
velocity /d dtϕ is multiplied at position pϕ by / sl l ,
etc.These discontinuous changes are state events. For
state events the classical state space description is
extended by the state event function ()h x , the zero of
which determines the event:
 0() ((), (), ,), ((), (), ,)x t f x t u t t p h x t u t t p x= =

�� � � � � � � ��

 1 2 2 1 2 1 2 1, sin , (,) 0p
g d h
l m

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= = − − = − =� �

The example involves two different events: change of
parameter (length), and change of state (angular ve-
locity). Generally, state events can be classified in
four types:

1. parameter change: SE-P
2. one or more inputs change discontinuously: SE-I
3. one or more states change discontinuously: SE-S
4. the dimension of the state vector changes discon-

tinuously: SE-D

Figure 1. Basic Structure of a Simulation Language due to

CSSL Standard

+++ Simulators for Hybrid Systems, Including State Events +++ t

41

N
SN

E 17/2, Septem
ber 2007

State Events Type 1 (SE-P) could also be formulated
by means of IF-THEN-ELSE constructs and by swit-
ches in graphical model descriptions, without syn-
chronisation with the ODE solver. Big changes in
parameters may cause problems for ODE solvers with
step-size control.

State Events Type 2 (SE-I) are no real state events,
they are time events – and listed here due to historic
reasons.

State Events Type 3 (SE-S) are essential state events.
They have to be located, transformed into a time
event, and modelled in discrete model parts. In prin-
ciple, these types of state events cannot exist, because
a state variable cannot jump; jumps in states are
caused by simplified modelling approaches.

In case of the pendulum, in reality the hit at the pin is
not an event changing the velocity; it is a short physi-
cal process different to the oscillation process. The
whole process may be seen as sequence of different
processes: oscillation of long pendulum (differential
equations) – hit at pin (event or differential equation)
– oscillation of short pendulum (differential equa-
tions), etc.

State Events of Type 4 (SE-D) are essential ones and
indicate a structural change in the model. In mechani-
cal systems, they indicate a change of degrees of
freedom.

Very often the threshold function switches between
different algebraic constraints, so that these state
events are coupled with differential-algebraic equa-
tions. In principle, these events may occur frequently,
so that the system is called structural dynamic, be-
cause the dimension of the systems changes quasi-
dynamically.

Two philosophies are found in handling these struc-
tural dynamic problems: a hybrid decomposition of
the process, or making use of frozen states (combined
with index reduction algorithms).

2.3 Handling of State Events
The handling of a state event requires four steps:

1. Detection: usually by checking the change of the
signum-function of ()h x .

2. Localisation: algorithms make use of either itera-
tive techniques, or of interpolation techniques for
determining the time instant of the event with
sufficient accuracy.

3. Handling: calculating / setting new parameters,
inputs and states; switching to new equations.

4. Restart of the ODE solver (in a ‘maximal’ state
vector), or starting another model (hybrid de-
composition).

State events face simulators with severe problems. Up
to now the simulation engine had to call independent
algorithms, now a root finder for the state event func-
tion ()h x needs results from the ODE solver, and the
ODE solver calls the root finder by checking the sign
of h.

Figure 2, an extension of Figure 1, shows the new
more complex structure of calls between model
frame, experimental frame, simulation engine and
libraries. Basically, the kernel of the simulation en-
gine has become an event handler. Furthermore it has
to be noted, that not only classical time domain
analysis by ODE solvers is offered, but also linear
analysis by means of eigenvalue algorithms. Figure 2
also shows an interesting relation to discrete simula-
tion: an event list manager has to be implemented,
which can handle also pure discrete systems without
any ODE.

In case of a structural change of the system equations
(SE-D), simulators usually can manage only fixed
structures of the state space.

In textual model description the DISCRETE construct
allows to define events of any type, in graphical
model descriptions calculations at discrete time in-
stants are difficult to formulate within the continuous
input/output form.

2.4 Classical implementations of the Con-
strained Pendulum model

In this example state events of type 1 (SE-P: discon-
tinuous change of pendulum length) and type 3 (SE-
S: change of angular velocity) are involved. Listing 1
presents parts of a classical ACSL model description,
working with two discrete sections hit and leave,
representing the two different modes. These sections
model the events, which are scheduled by the SCHED-
ULE statement in the dynamic model description.

In pure graphical model descriptions we are faced-
with the problem that calculations at discrete time
instants are difficult to formulate. For the detection of
the event SIMULINK provides the Hit Crossing
block (Figure 2). This block starts state event detec-
tion (interpolation method) depending on the input,

+++ Simulators for Hybrid Systems, Including State Events +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

42

the state event function, and outputs a trigger signal.

For restarting the integration with new values for the
angular velocity, a formulation going back to the
times of analog computation is used: the integrator
block is extended by a logical reset signal input; as
this signal triggers, the integration is restarted with
initial values fed into the initial value input. In this
implementation, the new angular velocity is calcu-
lated continuously, while needed only at the hit event.

A more event-oriented implementation would make
use of a triggered subsystem, which is executed only
when the trigger from the hit crossing activates the
event.

1 PROGRAM constrained pendulum
2 CONSTANT m = 1.02, g = 9.81, d =0.2
3 CONSTANT lf=1, lp=0.7
4 DERIVATIVE dynamics
5 ddphi = -g*sin(phi)/l – d*dphi/m
6 dphi = integ (ddphi, dphi0)
7 phi = integ (dphi, phi0)
8 SCHEDULE hit .XN. (phi-phip)
9 SCHEDULE leave .XP. (phi-phip)

10 END ! of dynamics
11 DISCRETE hit
12 l = ls; dphi = dphi*lf/ls
13 END ! of hit
14 DISCRETE leave
15 l = lf; dphi = dphi*ls/lf
16 END ! of leave
17 END ! of constrained pendulum

Listing 1. ACSL textual model description

3 From CSSL to physical object-
oriented modelling and state charts

In the 1990s, a lot of attempts have been made to
improve and to extend the CSSL structure. The basic
problem was the state space description, which lim-
ited the construction of modular and flexible model-

ling libraries. Two developments helped to overcome
this problem. On modelling level, the idea of physical
modelling gave new input, and on implementation
level the object oriented view helped to leave the
constraints of input/output relations. Furthermore,
UML offers new input for hybrid modelling.

3.1 Physical modelling in Modelica and VHDL-
AMS

A typical procedure for physical modelling is to cut a
system into subsystems and to account for the behav-
iour at the interfaces. Each subsystem is modelled by
balances of mass, energy and momentum and mate-
rial equations. The complete model is obtained by
combining the descriptions of the subsystems and the
interfaces. This approach requires a modelling para-
digm different to classical input/output modelling. A
model is considered as a constraint between system
variables, which leads naturally to DAE descriptions.
The approach is very convenient for building reusable
model libraries.

An international effort was initiated in September
1996 for the purpose of bringing together expertise in
object-oriented physical modelling (portbased model-
ling) and defining a modern uniform modelling lan-
guage, called Modelica. Modelica is intended for
modelling within many application domains and their
combinations. It supports several modelling formal-
isms: ODEs, DAEs, bond graphs, finite state auto-
mata, Petri Nets, etc. Modelica is intended to serve as
a standard format so that models arising in different
domains can be exchanged between tools and users.

Modelica is no simulator, Modelica is a modelling
language, supporting and generating mathematical
models in physical domains.

At the time the development of Modelica started, also
a competitive development, the extension of VHDL
towards VHDL-AMS was initiated. Both modelling
languages aimed for general purpose use, but VHDL-
AMS mainly addresses circuit design, and Modelica
covers the broader area of physical modelling; model-
ling constructs such as Petri nets and finite automata
could broaden the application area.

Modelica offers a graphical model frame, where the
connections are bidirectional physical couplings. An
example demonstrates how drive trains are handled.
The drive train consists of four inertias and three
clutches, where the clutches are controlled by input
signals (Figure 3).

Figure 2. SIMULINK model of Constrained Pendulum

+++ Simulators for Hybrid Systems, Including State Events +++ t

43

N
SN

E 17/2, Septem
ber 2007

The graphical model layout corresponds with a tex-
tual model representation. This code can be changed
and extended by the user, so that graphical and textual
modelling can be combined. For example Figure 4
shows a graphical model of a double pendulum, con-
sisting of two revolute joints (one with damper), and
two masses modelling the rods. For joints and masses
equations are predefined and sorted together during
compilation.

Modelica can handle very different modelling ap-
proaches, not only ODEs and DAEs, but also finite
state automata, and Petri nets. By means of state
automata or state charts, conditions can be described
more clear and transparent.

The translator from Modelica into the target simulator
is not only able to sort equations; it also has to be able
to process the implicit equations symbolically and to
perform DAE index reduction.

Up to now, similar to VHDL-AMS, two simulation
systems understand Modelica, Dymola from Dyna-
sim, and MathModelica from MathCore Engineering.
At present (2006/2007) the University of Lyngby
develops and provides a Modelica simulation envi-
ronment, the Open Modelica System, and Fraunhofer
Gesellschaft develops a generic simulator, Mosilab,
which understands Modelica models and supports
variable dynamic structures.

The model for the constrained pendulum can be for-
mulated in Modelica textually as a physical law for
angular acceleration. The event with parameter
change is put into an algorithm section, defining and
scheduling the parameter event SE-P (Listing 2).
Instead of angular velocity, the tangential velocity is
used as state variable; the second state event SE-S

‘vanishes’. In principle, one could use also graphical
modelling for joint and mass using elements as in
Figure 4, but the change of length has to be formu-
lated textually in an algorithm section.

1 equation /*pendulum*/
2 v = length*der(phi); vdot = der(v);
3 m*vdot/length + m*g*sin(phi)+damp*v=0;
4 algorithm
5 if (phi<=phipin) then length:=ls; end if;
6 if (phi>phipin) then length:=l1; end if;

Listing 2. Modelica model of Constrained Pendulum

3.2 Modelling events by state charts in Any-
Logic

In the end of the 1990s, computer science put the
simulator development forward. The Unified Model-
ling Language (UML) is one of the most important
standards for specification and design of object ori-
ented systems. This standard was tuned for real time
applications in the form of a new proposal, UML for
Real-Time (UML-RT). By means of UML-RT objects
can hold the dynamic behaviour of an ODE. There
exist a lot of simulation libraries for discrete simula-
tion, based on the UML (class diagrams, state charts,
etc). They allow for convenient modelling and simu-
lation of Discrete Event Systems (DEVS).

In 1999, a simulation research group at the Technical
University of St. Petersburg used this approach in
combination with a hybrid state machine for the de-
velopment of a hybrid simulator, from 2000 on avail-
able commercially as simulator AnyLogic. The main
building block is the active object. Active objects
have internal structure and behaviour, and allow en-
capsulating of other objects to any desired depth.
Relationships between active objects set up the hy-
brid model.

Active objects interact with their surroundings solely
through boundary objects: ports for discrete commu-
nication, and variables for continuous communica-

Figure 3: Graphical Modelica model for coupled clutches

Figure 5. Acitive objects with connectors exchanging
discrete messages (rectangle) and continuous signals

(triangle)

Figure 4: Graphical Modelica model for double pendulum

+++ Simulators for Hybrid Systems, Including State Events +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

44

tion. The activities within an object are usually de-
fined by statecharts. While discrete model parts are
described by means of statecharts, events, timers and
messages, the continuous model parts are described
by ODEs and DAEs in CSSL-txpe notation and state
charts.

The following AnyLogic implementation of the
Bouncing Ball example shows a simple use of state-
chart modelling (Figure 6). The equations are defined
in the active object ball, together with the state chart
ball.main. This state chart describes the interruption
of the state flight by the event bounce (SE-P and SE-S
event).

4 Hybrid and structural-dynamic sys-
tems

Continuous simulation and discrete simulation have
different roots, but they are using the same method,
the analysis in the time domain.

In continuous and hybrid simulation the explicit or
implicit state space description is used as common
denominator. This state space may be described tex-
tually, by signal-oriented graphic blocks, or by
power-based block descriptions. In discrete simula-
tion we meet very different techniques for the model
frame.

Application-oriented flow diagrams, network dia-
grams, state diagrams, etc. allow describing complex
behaviour of event-driven dynamics. These descrip-
tions are mapped to an event-based description.

On the other side, the simulator kernel is similar for
discrete and continuous simulators. The model de-
scription is mapped to an event list with adequate
update functions of the states within state update
events. In discrete simulation the states are usually
the status variables of servers and queues in the

model, and state update is simple increase or decrease
by increments.
In continuous simulation the state space is based on
various laws used in the application area, and usually
defined by DAEs. DAE solvers generate a grid for the
approximation of the solutions. This grid drives an
event list with state update events using complex
formula depending on the chosen solver and on the
defined DAE. Additional time events and state events
are inserted into the global event list.

Hybrid systems often come together with a change of
the dimension of the state space, then called struc-
tural-dynamic systems. The dynamic change of the
state space is caused by a state event of type SE-D. In
contrary to state events SE-P and SE-S, states and
derivatives may change continuously and differenti-
able in case of structure change.

In principle, structural-dynamic systems can be seen
from two extreme viewpoints. The one says, in a
maximal state space state events switch on and off
algebraic conditions which freeze certain states for a
certain period. The other one says that a global dis-
crete state space controls local models with fixed
state spaces, whereby the local models may be also
discrete or static. These viewpoints derive two differ-
ent approaches for structural-dynamic systems, the
maximal state space, and the hybrid decomposition.

4.1 Maximal State Space for structural-
dynamic systems – internal events

Most implementations of physically-based models
support a big monolithic model description, derived
from laws, ODEs, DAEs, state event functions and
internal events. The state space is maximal and static,
index reduction in combination with constraints keep
a consistent state space. Dymola, OpenModelica, and
VHDL-AMS follow this approach.

This approach can be classified with respect to event
implementation.It handles all events of any kind (SE-
P, SE-S, and SE-D) within the ODE solver frame,
also events which change the state space dimension
(change of degree of freedoms) – consequently called
internal events.

Using the classical state chart notation, internal state
events I-SE caused by the model schedule the model
itself, with usually different re-initialisations (depend-
ing on event type I-SE-P, I-SES, I-SE-D; Figure 7).

Modelica, VHDL-AMS, and Dymola follow this
approach, handling also DAE models with index

Figure 6. AnyLogic model for the Bouncing Ball example;

graphical modeling combined with the equation layer

+++ Simulators for Hybrid Systems, Including State Events +++ t

45

N
SN

E 17/2, Septem
ber 2007

higher than 1; discrete model parts are only supported
at event level. MATLAB/Simulink also generates a
maximal state space.

4.2 Hybrid Decomposition for structural-
dynamic systems – external events

The hybrid decomposition approach makes use of
external events (E-SE), which controls the sequence
and the serial coupling of one or more models. A
convenient tool for switching between models is a
state chart, driven by external events – which itself
are generated by the models. In the following exam-
ple the UML-RT notation, control for continuous
models and for discrete actions can be modelled by
state charts. Figure 8 shows the hybrid coupling of
two models, which may be extended to an arbitrary
number of models, with possible events E-SE-P, E-
SE-S, and E-SE-D. As special case, this technique
may also be used for serial conditional ‘execution’ of
one model –Figure 9 (only for SE-P and SE-S).

This approach additionally allows not only dynami-
cally changing state spaces, but also different model
types, like ODEs, linear ODEs (to be analyzed by
linear theory), PDEs, etc. to be processed in serial or
also in parallel, so that also co-simulation can be
formulated based on external events. This approach
allows handling all events also outside the ODE
solver frame. After an event, a totally new model can
be started. This makes sense especially in case of
events of type SE-D and SE-S.

Figure 10 shows a structure of a simulator supporting
this hybrid approach. Some work has to be investi-

gated into extension of e.g. Modelica for using this
external control of models. The figure summarizes
the outlined ideas by extending the CSSL structure by
control model, external events and multiple models.

Clearly, not only ODE solver can make use of the
model descriptions (derivatives), but also eigenvalue
analysis, steady state calculation and other analysis
algorithms may be used.

4.3 Mixed approach with internal/external
events

A simulator structure as proposed in Figure 10 is a
very general one, because it allows as well external
and internal events, so that hybrid coupling with
variable state models of any kind with internal and
external events are possible (Figure 11).

Both approaches have advantages and disadvantages.
The classical Dymola approach generates a fast simu-

Figure 7: State chart control for

 internal events of one model

Figure 10: Structure for a simulation system with external

state events E-SE and classical internal state events I-SE for
controlling different models.

Figure 9: State Chart Control for

External Events for one Model

Figure 8: State Chart Control for
External Events for two Models

+++ Simulators for Hybrid Systems, Including State Events +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

46

lation, because of the monolithic program. But the
state space is static.

A hybrid approach handles separate model parts and
has to control the external events. Consequently, two
levels of programs have to be generated: dynamic
models, and a control program – today’s implementa-
tions are interpretative and not compiling, so that
simulation time increases - but the overall state space
is really dynamic.

• A challenge for the future lies in the combination
of both approaches. The main ideas are:

• Moderate hybrid decomposition,
• External and internal events, and
• Efficient implementation of models and control.

For instance, for SE-P an implementation with an
internal event may be sufficient (I-SE-P), for an event
of SE-S type implementation with an external event
may be advantageous because of easier state re-
initialisation (E-SE-S), and for SE-D an implementa-
tion with an external event may be preferred (E-SE-
D), because of much easier handling of the dynamic
state change – and less necessity for index reduction.

An efficient control of the sequence of models can be
made by state charts, but also by a definitions and
distinction of if- and when- constructs, like discussed
in extensions of SCILAB/SCICOS for Modelica.

5 Simulators for hybrid and structural
dynamic systems

Up to now no simulator fulfils the structure given in
Figure 12 completely. The main questions are:

• whether acausal physical modelling is supported,
• whether a-causal physical modelling is obeying

the Modelica standard,

• whether external events are supported (equal to
whether hybrid decomposition into independent
submodels is possible), and

• whether state chart modelling is supported.
In principle each combination of the above features is
possible.

5.1 MATLAB/Simulink
The mainly interpretative system MATLAB/Simulink
offers different approaches. First, it allows hybrid de-
composition at MATLAB level. There, from MAT-
LAB different Simulink models are called condition-
ally, and in Simulink a state event is determined by
the hit-crossing block (terminating the simulation).
For control, in MATLAB only if-then-else constructs
and while structures are available (Listing 3, Fig. 12).

1 if ((phi_p-phi0)*phi_p<0 |
2 (phi0==phi_p & phi_p*v>0))
3 dphi0=v/ls;
4 sim('pendulum_short',[t(length(t)),
5 10]);
6 v=dphi(length(dphi))*ls;
7 else
8 dphi0=v/l;
9 ...

10 end

Listing 3. MATLAB control in Constrained Pendulum
example for external events switching between long
and short pendulum

At Simulink level, different submodels may be con-
trolled by Stateflow, Simulink’s state chart modelling
tool. But the system generates in any case a maximal
state space. In both cases, a-causal modelling is not
supported. Currently a number of new toolboxes for
physical modelling are under development or quite
new on the market.

5.2 Dymola/Modelica
Modelica and Dymola have already been discussed in
Section 4, together with examples also for the Con-
strained Pendulum example. Modelica clearly offers
a-causal modeling, and so Dymola does.

Figure 11. State chart control for different models with

internal and external events

Figure 12: Simulink model for Constrained Pendulum with

external event detected by hit-crossing block

+++ Simulators for Hybrid Systems, Including State Events +++ t

47

N
SN

E 17/2, Septem
ber 2007

But the Modelica definition says nothing about struc-
tural - dynamic systems, and Dymola builds up a
maximal state space. Up to now there exit a Modelica
standard library for state charts, but this construct is
working only with internal events within the maximal
state space. Figure 13 shows a Constrained Pendulum
implementation with Dymola’s state chart library.

5.3 Mosilab / Mosilab
At present Fraunhofer Gesellschaft Dresden develops
in a cooperation of six institutes (FIRST, IIS/EAS,
ISE, IBP, IWU and IPK) a generic simulator Mosilab,
which defines an extension of Modelica: multiple
models controlled by state automata. This simulator
meets most of the challenges for the hybrid decompo-
sition approach: at state chart level, state events of
type SE-D control the switching between different
models and service the events (E-SE-D). State events
affecting a state variable (SE-S type) can be modelled
at this external level (E-SE-S type), or also as classic
internal event (I-SE-S). Also parameter events may be
handled in both manners.

As first example, a model is presented, which de-
scribes the simplified dynamics of a landing device,
which is falling and slowing down alternatively. The
state chart in Figure 14 is translated into extended
textual Modelica model description given in Table 4.

1 model System
2 statechart
3 state SystemSC extends State;
4 state Moving extends State;
5 state SlowDown extends State;...
6 end SlowDown;
7 State falling,State start(isInitial=true);
8 ...
9 transition t2: falling->slowDown event sw

10 guard sw==1 action body.add(boost)

11 end transition;...
12 end Moving;
13 State stop, start(isInitial=true);
14 Moving moving;
15 entry action // executed, if state
16 SystemSC activ
17 gr := new Gravity();
18 boost := new Boost(empty=false);
19 end entry;...
20 end SystemSC;
21 end System;

Listing 4: Textual state chart notation for dynamics of
landing device, Modelica extension in Mosilab

The dynamic models for the different phases may be
modelled textually in Modelica standard or using
elements from a graphical Modelica library. Mosilab
translates each model separately, and generates a
main simulation program from the state chart, con-
trolling the call of the precompiled models and pass-
ing data between the models.
Mosilab is in development phase, so it supports only
a subset of Modelica, and it does not perform index
reduction, so that a-causal modelling is supported
only at a lower level.
In a standard Modelica approach, the Constrained
Pendulum is defined in the MOSILAB equation layer
as implicit law (it is not necessary to transform to an
explicit state space); the state event, which appears
every time when the rope of the pendulum ‘hits’ or
‘leaves’ the pin, is modelled in an algorithm section
with if (or when) – conditions.

Mosilabs state chart approach models discrete ele-
ments by state charts, which may be used instead of
if- or when- clauses, with much higher flexibility and
readability in case of complex conditions. There,
Boolean variables define the status of the system and
are managed by the state chart.

Figure 13: Graphical Dymola model for Constrained

Pendulum with internal events managed by elements of
Dymola’s state chart library

Figure 14: State chart for dynamics of landing device,
Modelica Extension in Mosilab

+++ Simulators for Hybrid Systems, Including State Events +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

48

The state charts initialize the system and manage
switching between long and short pendulum, by
changing the length appropriately (Listing 5).

1 event Boolean lengthen(start=false),
 shorten(start=false);

2 equation
3 lengthen=(phi>phip); shorten=(phi<=phip);
4 v = l1*der(phi); vdot = der(v);
5 mass*vdot/l1+mass*g*sin(phi)+damping*v = 0;
6 statechart
7 state LengthSwitch extends State;
8 State Short,Long,Initial(isInitial=true);...
9 transition Long -> Short event shorten

10 action length := ls;
11 end transition;...
12 end LengthSwitch;

Listing 5. Mosilab model for Constrained Pendulum –
state chart model with internal events (I-SE-P)

From the modelling point of view, this description is
equivalent to the description with if-clauses. The
Mosilab translator clearly generates an implementa-
tion with different internal equations. Mosilabs simu-
lator performs simulation by handling the state event
within the integration over the simulation horizon.

Mosilabs state chart construct is not only a good
alternative to if- or when- clauses within one model,
it offers also the possibility to switch between struc-
tural different models. This very powerful feature
allows any kind of hybrid composition of models
with different state spaces and also of different type
(example see listing 6).

1 model Long
2 equation
3 mass*vdot/l1+mass*g*sin(phi)+damping*v = 0;
4 end Long;// the same for model Short with other paramaters
5 event discrete Boolean lengthen(start=true),

 shorten;
6 equation
7 lengthen=(phi>phipin);shorten=(phi<=phipin);
8 statechart
9 state ChangePendulum extends State;

10 State Short, Long,
 startState(isInitial=true);

11 transition startState -> Long action
12 L:=new Long(); K:=new Short(); add(L);
13 end transition;
14 transition Long->Short event shorten action
15 disconnect …; remove(L); add(K); connect …
16 end transition;
17 end ChangePendulum;

Listing 6. Mosilab model for Constrained Pendulum –
state chart switching between different pendulum
models by external events (E-SE-P)

In case of the constrained pendulum, the system is de-
composed into two different models, Short pendulum
model, and Long pendulum model, controlled by a
state chart. The state chart creates first instances of
both pendulum models during the initial state (new).
The transitions organise the switching between the
pendulums (remove, add).

5.4 AnyLogic
AnyLogic, already discussed in Section 4, is based on
hybrid automata. Therefore hybrid decomposition and
control by external events is possible. AnyLogic can
deal partly with implicit systems, but does not sup-
port a-causal modelling. Furthermore, new versions
of AnyLogic concentrate more on discrete modelling
and modelling with System Dynamics, whereby state
event detection has been sorted out. For the Con-
strained Pendulum example, a hybrid decomposed
model may make use of a model structure ‘similar’ to
that one in Figure 6, but now two sets of the state
equations are found in the sub states Short and Long.
The events defined at the arcs stop the actual model,
set new initial conditions and start the alternative
model.

References
[1] Strauss, J. C. ‘The SCi continuous system simulation

language (CSSL)’, Simulation 9, 281-303. San Diego:
SCS Publishing, 1967.

[2] P. Fritzson: Principles of Object-Oriented Modeling
and Simulation with Modelica, Wiley IEEE Press,
ISBN 0-471-471631, 2005.

[3] C. Nytsch-Geusen, P. Schwarz, ‘MOSILAB: Devel-
opment of a Modelica based generic simulation tool
supporting model structural dynamics’, In Proc. 4th
Modelica Conference TU Hamburg-Harburg, pp 527
– 535, 2005;

Corresponding author: Felix Breitenecker
Vienna University of Technology
Department of Analysis and Scientific Computing,
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
Felix.Breitenecker@tuwien.ac.at

Accepted EUROSIM 2007, June 2007
Received revised contribution: August 24, 2007
Revised: September 2, 2007
Accepted: September 5, 2007

+++ Modeling Structural-Dynamics Systems +++ t

49

N
SN

E 17/2, Septem
ber 2007

Modeling Structural - Dynamics Systems in MODELICA/Dymola,
MODELICA/Mosilab and AnyLogic

Günther Zauner, Felix Breitenecker, Vienna University of Technology, Austria
Daniel Leitner, Austrian Research Centres, Austria

With the progress in modeling dynamic systems new extensions in model coupling are needed. The models
in classical engineering are described by differential equations. Depending on the general condition of the
system the description of the model and thereby the state space is altered. This change of system behavior
can be implemented in different ways. In this work we focus on three state-of-the-art DAE simulation envi-
ronments, Dymola, Mosilab and AnyLogic, and compare the possibilities of coupling of different state
spaces. This can be done either using a parallel model setup, a serial model setup, or a combined model
setup. The analogies and discrepancies are figured out on the basis of the classical constrained pendulum as
defined in ARGESIM comparison C7.

Introduction
In the last decade the increase of computer power and
the apace growth of model complexity leads to a new
generation of simulation environments. Concurrently
ambitions pointed towards establishing standardiza-
tion. Especially Modelica organization develops a
range of syntax description and standard libraries.

This paper will compare the solutions of the con-
strained pendulum as an easy to model example,
implemented in the most common Modelica simula-
tor Dymola, Mosilab, a product from six Fraunhofer
Institutes which uses Modelica syntax with exten-
sions for state charts, and the simulator AnyLogic
from Xjtek in St. Petersburg. This simulator also has
object oriented structure and is implemented in Java.

We will focus on how the model can be implemented
and we will have a look in which time slot the state
events are and if there is a significant difference refer-
ring to the implementation method.

1 Model
The constrained pendulum is a classical nonlinear
model in simulation techniques. This model has been
presented in the definition of ARGESIM comparison
C7 [1]. There is no exact analytical solution to this
problem. Therefore, the results have to be obtained by
numerical methods. In this section a description of
the model will be given.

The motion of the pendulum is given by
 sin() ,ml mg dl� � �� � ��� � (1)

where � denotes the angle measured in counter
clockwise direction from the vertical position. The

parameter m is the mass and l is the length of the
pendulum. Damping is realized with the constant d .

In the case of a constrained pendulum a pin is fixed at
a certain position given by the angle p� and the
length pl . If the pendulum is swinging it may hit the
pin. In this case the pendulum swings on with the
position of the pin as the point of rotation and the
shortened length s pl l l� � .

Two experiments have been defined. The first one is
starting in the long pendulum modus and is swinging
towards the pin. The second experiment is a model
where the starting conditions are set in a way that the
pendulum is shortened in the beginning of the simula-
tion run.

2 Simulation environments
In this section the focus is on three simulation envi-
ronments. Two simulators, namely Dymola and Mosi-
lab, are based on the model description standard
Modelica [2]. Modelica is a freely available, object-
oriented language for modeling of large, complex,
and heterogeneous physical systems.

One of its most important features is non-causal mod-
eling. In this modeling paradigm, users do not specify
the relationship between input and output signals
directly, but they rather define variables and the equa-
tions that must be satisfied.

It is suited for multi-domain modeling and control
subsystems and process oriented applications. Mode-
lica is designed that it can be utilized in a similar way
as an engineer builds a real system: first trying to find
standard components like motors, pumps and valves

+++ Modeling Structural-Dynamics Systems +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

50

from manufacturers catalogues with appropriate
specifications and interfaces and only if there does
not exist a particular subsystem, a component model
would be newly constructed based on standardized
interfaces.

The actual version of the Modelica Standard Library
is 2.2.1, which has been released in April 2006.

2.1 Dymola
Dymola, DYnamic MOdeling LAboratory, is an envi-
ronment for modeling and simulation of integrated
and complex systems. It has unique multi-engineering
capabilities which mean that models can consist of
components from many engineering domains.

The basic structure of the simulator is divided into
two separate parts: the Modeling layer and the Simu-
lation layer. Thereby the modeling layer is separated
in three parts. One part, the so called ICON layer, is
used to define the shape of the new defined blocks.
The DIAGRAM layer is the interface for graphical
modeling. The third plane is the MODELICA TEXT
part where the Modelica source code can be imple-
mented directly.

Dymola has a strong focus on using symbolic meth-
ods for mass-matrix inversion and equation sorting.

Integration algorithms for non-real-time simulation
typically handle discontinuities by detecting when
certain variables cross a boundary. They then calcu-
late the time of the event by iteration and then change
the step size to advance the time exactly to the time
of the event (crossing) [3].

The default integration method is the Dassl code as
defined by Petzold. The method can also be freely
chosen out of 15 standard solvers, including algo-
rithms for stiff systems. There is until now no possi-
bility implemented to make graphical model switch-
ing for subsystems with different state space dimen-
sion.

2.2 Mosilab
The simulator Mosilab (MOdeling and SImulation
LABoratory) is an environment developed from the
Fraunhofer-Institutes FIRST, IIS/EAS, ISE, IBP, IWU
and IPK in the research project GENSIM.

It has been developed for time-continuous and time-
discrete analysis of heterogeneous technical systems.
The main innovation from point of simulation tech-
niques view in this simulator is the illustration of
condition-based changes in the model structure

(model structure dynamics). With this mechanism it is
possible develop and simulate models with different
modeling depth.

The model description in general is done in the Mod-
elica standard. Additional features to assure high
flexibility during modeling and the concept of struc-
tural dynamics is implemented. This is done by ex-
tending the Modelica standard with state charts, con-
trolling dynamic models. The extended object-
oriented model description language resulting is
called MOSILA [1,4] Moreover simulator coupling
with standard tools (e.g. MATLAB/Simulink, FEM-
LAB) is realized.

Code generation is done in a quite similar way as in
Dymola/Modelica. This makes sense, because this
relatively new simulator will also be able to simulate
problems defined in the standard Modelica notation
with other tools, which use the same syntax. The
main difference is the extension for graphical repre-
sentation of state charts. This is solved with an inter-
face where the user can define UML statecharts.

The analysis part of the model is split into two layers:
the simulation and the post processing layer. The
defined code is translated into C++. The default inte-
gration method is the so called IDADASSL.

2.3 AnyLogic
AnyLogic is a multiparadigm simulator supporting
Agent Based modeling as well as Discrete Event
modeling, which is flowchart-based, and System
Dynamics, which is a stock-and-flow kind of descrip-
tion. Due to its very high flexibility AnyLogic is
capable of capturing arbitrary complex logic, intelli-
gent behavior, spatial awareness and dynamically
changing structures. It is possible to combine differ-
ent modeling approaches making AnyLogic a hybrid
simulator. AnyLogic is highly object oriented and
based on the Java programming language

The development of AnyLogic in the last years has
been towards business simulation. In version 6 of
AnyLogic it is possible to calculate problems from
engineering, but there are certain restrictions. For
example the integration method cannot be chosen
freely and there is no state event finder.

When a model starts, the equations are assembled
into the main differential equation system. During the
simulation, this DES is solved by one of the numeri-
cal methods built in AnyLogic. AnyLogic provides a
set of numerical methods for solving ordinal differen-

+++ Modeling Structural-Dynamics Systems +++ t

51

N
SN

E 17/2, Septem
ber 2007

tial equations (ODE), algebraic-differential equations
(DAE), or algebraic equations (NAE).

AnyLogic chooses the numerical solver automatically
at runtime in accordance to the behavior of the sys-
tem. When solving ordinal differential equations, it
starts integration with forth-order Runge-Kutta
method with fixed step. Otherwise, AnyLogic plugs
in another solver—Newton method. This method
changes the integration step to achieve the given
accuracy.

3 Solution methods
New advantages in computer numerics and the fast
increase of computer capacity lead to necessity of
new modeling and simulation techniques. In many
cases of modern simulation problems state events
have to be handled.

There exit more or less different categories of struc-
tural dynamic systems which should be focused on
and solved.

The first class of hybrid systems are the one, where
the state space dimension does not change during the
whole simulation time and also the system equations
stay the same. Only so called parameter events occur
at discrete time points. These are the more or less
simplest form of state events. Modern simulators
offer different solution methods. A Part of them have
a discrete section or as implemented in Dymola and
Mosilab a so called algorithm section. In this part the
user can define the parameter value change using the
commands when, if, etc. In this section the use of a
causal modeling has to be switched off. This means
that we have to make assignments for the parameter
values at time point the event occurs.

Furthermore many software environments support the
usage of UML state charts. This is a very intuitive
and convenient way to describe a system which con-
tains multiple discrete states. In the combination with
dynamical equations this approach enables a simple

implementation of structural dynamics. The dynamic
equations or parameters are dependent of the discrete
state of the model. On the other hand the states can be
altered in dependence of the dynamic variables.

In case of the constrained pendulum the states are
normally swinging (state ‘long’) or swinging with
shortened length around the pin (state ‘short’). The
discrete state of the model depends on the angle �
and the pins angle p� . The state alters the model
parameters or the models set of equations, see fig-
ure 1.

3.1 Switching states
When the state of a system changes, often the state
space of the model stays unchanged, thus the same set
of differential equation can be used for different
states. In this situation only certain parameters must
be changed when a state is entered.

In case of the constrained pendulum the differential
equation for movement stays the same for both states
‘long’ and ‘short’. If the state changes the parameter
length and angular velocity are updated before the
calculation can continue, see figure 2.

When the state of a system changes, often the state
space of the model stays unchanged, thus the same set
of differential equation can be used for different
states. In this situation only certain parameters must
be changed when a state is entered.

In case of the constrained pendulum the differential
equation for movement stays the same for both states
‘long’ and ‘short’. If the state changes the parameter
length and angular velocity are updated before the
calculation can continue, see figure 2.

3.2 Switching models
Often the previous approach is not possible. Some-
times situation occur where the state space of the
model changes, thus a simple change of parameters is
not possible. Normally the whole set of differential
equations, thus the complete model, must be changed.

Figure 1. UML state diagram controlling the pendulum.

Figure 2. The parameters of the model are changed by an

UML state diagram.

+++ Modeling Structural-Dynamics Systems +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

52

In many simulation environments this approach can
lead to complication.

In case of the constrained pendulum two differential
equations are set up describing the movement of the
pendulum. One describes the normal pendulum the
other one the shortened pendulum. Which equation is
set to be active is determined by the state diagram.
When the states are switched the initial values must
be passed on the equation must be activated and the
other one must be frozen, see figure 3.

4 Dymola
The implementation of the constrained pendulum has
been done in two more or less different ways. As
Dymola does not support the UML notation for state
charts and there is in the moment no method imple-
mented to switch between two or more independent
models during one simulation run, the solution meth-
ods described in section 3.1 and 3.2 can not be used.

In our example the state event, which appears every
time when the rope of the pendulum hits the pin or
looses the connection to it, is modeled in an algo-
rithm section. This can be done with the following
code digest:

1 algorithm
2 if (phi<=phipin) then
3 length := ls;
4 end if;
5 if (phi>phipin) then
6 length := l1;
7 end if;

Another method for implementing the constrained
pendulum in Dymola is the use of standard blocks in

combination with a predefined model which includes
the equations or using only the Modelica.Blocks
components.

In this example the solution is made by using stan-
dard blocks with little extension. Figure 4 shows a
screenshot of the Diagram layer of this model.

The simulations are done for both tasks and the solu-
tions are compared. This is done by plotting all the
results in one picture. The time of the last event in
task a (figure 5) is in both cases the same, namely
6.72198 seconds. There is no easy possibility to plot
the difference of special variables from different
simulation runs. The same model has to be checked
with other starting values. This is done in next step.
The figure 6 shows the plot for starting angle 6

�� � �
instead of 6

� .

5 Mosilab
Similar to the way the solutions in Dymola were
calculated, the system can be solved with Mosilab.
But as mentioned before, this structure can not handle
changes in the state space dimension. The imple-
mented Modelica extension enables the handling of
discrete elements as well as structure changes in the
general description.

We focus on two different solution methods for the
constrained pendulum.
First approach: State charts may be used instead of
if- or when- clauses (similar to 3.1 Switching states),
with much higher flexibility and readability in case of
complex conditions. Boolean variables define the
status of the system and are managed by the state

Figure 3. The differential equations of the system are

switched in dependence of the UML state diagram.

Figure 4. The screenshot of the Diagram layer in
Dymola/Modelica.

+++ Modeling Structural-Dynamics Systems +++ t

53

N
SN

E 17/2, Septem
ber 2007

chart. The most important part of the source code is
as follows:

1 equation
2 lengthen = (phi > phipin);

 shorten = (phi <= phipin);
3 /* pendulum equations here */
4 statechart
5 state LengthSwitch extends State;
6 State Short, Long, Initial(isInitial=true);
7 transition Initial -> Long end transition;
8 transition Long -> Short event shorten

 action length := ls;
 end transition;

9 transition Short -> Long event lengthen
 action length := l1;
 end transition;

10 end LengthSwitch;
From the modeling and mathematical point of view,
this description is equivalent to the description with
if-clauses. The question is, how the Mosilab transla-
tor generates the implementation of the equations in
both cases. The Mosilab/Modelica simulator performs
simulation by handling the state event within the
integration over the simulation horizon.

Second approach: These models are the conversion of
concepts from section 4.2, which is switching models
into Mosilab notation. For the constrained pendulum,
we decompose the system into two different models,
a short and a long pendulum model, controlled by a
state chart. This can again be done with graphical aid
in the form of UML diagrams.
In the development status at the end of 2006, there
still occurred several problems with the graphical

interface of the state chart layer. The functionality of
the system is not restricted. The results are similar to
the solutions done with Dymola/Modelica.

6 AnyLogic
The implementation of the constrained pendulum has
been done in two different ways. In the first approach
only the parameter states have been switched corre-
sponding to section 4.1, in the second approach the
whole differential equation is switched corresponding
to section 4.2. Both examples from chapter 2 have
been calculated with both approaches. The results in
AnyLogic are identical in both methods because the
times of the state transitions are the same.

In the first approach the model consists of two ordi-
nary differential equations describing the movement
of the pendulum. In these equations four parameters
are used length l , mass m , damping d , and gravity
g . Further a state diagram with states long and
‘short’ and two transitions are used to update the
equations. When the state changes length l and angu-
lar velocity � are updated. The results calculated by
AnyLogic 6 are plotted in figures 7 and 8.

The second approach uses two separate models. The
implemented model consists of two times two ordi-
nary differential equations. Both equations have four
parameters separately: length l , mass m , damping
d , and gravity g . A state diagram is implemented
analog to the first approach. If the state changes the
right differential equations are activated and their

Figures 7, 8. Results for example 1 and 2, respectively:

angle (red, inner graph), angular velocity (blue).

Figures 5, 6. Angle (red, inner graph) and angular velocity

(blue) as described in section 1.

+++ Modeling Structural-Dynamics Systems +++

SN
E

17
/2

,
Se

pt
em

be
r

20
07

t N

54

initial values are set, while the other differential equa-
tion is frozen.

7 Discussion
For this nonlinear model, there exists no exact solu-
tion. For this reason we can only calculate the nu-
merical solutions and compare, for example, the time
points where the last state event appears. This is the
moment when the rope of the pendulum looses the
connection to the pin the last time. In the first model
under investigation, this happens after the fourth time
shortening the pendulum, which means after eight
state events all together. In the second simulation run,
this occurs earlier, namely already after two times
lengthening the rope, which means after three state
events, because of the special initial condition (pen-
dulum is in short modus at starting time).

The solutions are calculated with the default simula-
tion method, if possible. With this approach we try to
test the simulation environments from the user’s point
of view. Many programmers and modelers do not care
that much about the implemented integration meth-
ods. For this reason the standard method has to pro-
duce reliable results in an appropriate calculation
time.

The solution in the Mosilab simulator with standard
Modelica components cannot be calculated with the
standard method (Dassl code), because during simu-
lation of this task a numerical error occurs and there-
fore the calculation is interrupted. The integration
method pins at the time point of the first state event.
Because of this reason the Implicit Trapez method
was chosen. The other results are all done with the
standard integration method and the given step
sizes/number of intervals.

Table 1 shows that the solutions with Dymola and
Mosilab are equivalent, if the solution is rounded
towards two digits after the comma. By contrast, the
solution in AnyLogic differs. We can try to explain
this difference by taking a look on state event finding.
This is not implemented in AnyLogic and is missing
as an important standard feature of modern simula-
tion environments. The lack of influence on the nu-
merical methods can be explained by the main field
of application of AnyLogic. Its main focus is on pro-
duction and logistics, not on simulation of DAE systems.

In table 1 we see that there is only one row for Dy-
mola/Modelica. This is because of equivalent results
in all three implementations. Also AnyLogic delivers
the same result for both methods. As we see, in this
case Dymola outperforms Mosilab, because the result
does not depend on the way of implementation. On
the other hand we cannot implement real structural
dynamics without blowing up the state space and
problems in starting variable definition.

The graphical user interface for UML diagrams is a
big advantage of Mosilab and AnyLogic compared to
the possibilities of Dymola. But we have to keep in
mind, that this feature is not Modelica standard,
which complicates model exchange between different
simulators based on Modelica.

References
[1] Nytsch-Geusen, C. et. al. Advanced modeling and

simulation techniques in MOSILAB: A system devel-
opment case study. Proc. of the 5th International
Modelica Conference, 2006.

[2] P. Fritzson, 2004. Principles of Object Oriented Mod-
eling and Simulation with Modelica 2.1., IEEE Press,
John Wiley&Sons, Inc., Publication, USA.

[3] H. Elmquist, et. al. Real-time Simulation of Detailed
Automotive Models, Proceedings of the 3rd Interna-
tional Modelica Conference, Linköping, Sweden

[4] T. Ernst, A. Nordwig, C. Nytsch-Geusen, C. Claus,
A. Schneider: MOSILA Modellbeschreibungssprache,
Spezifikation, Version 2.0, from the homepage:
www.mosilab.de/downloads/dokumentation

Corresponding author: Günther Zauner
Vienna University of Technology
Department of Analysis and Scientific Computing
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
gzauner@osiris.tuwien.ac.at

Accepted EOOLT 2007, June 2007
Received: September 10, 2007
Revised: September 20, 2007
Accepted: September 25, 2007

Simulator Simulation Method
Dymola/Modelica 6.72198 Dassl

500 intervals
Mosilab/Modelica

Switch models
6.7204 IDA Dassl

Min. step 1e-6
Max. step 0.08

Mosilab/Modelica
Pure Modelica

6.7199 Impl. Trapez
Min. step 1e-6
Max. step 1e-4

Mosilab/Modelica
Parameter switch-

ing

6.7224 IDA Dassl
Min. step 1e-6
Max. step 0.08

AnyLogic 6.725 No influence
Step size 0.001

Table 1. End time of the last shortening of the pendulum
for example 1.

TITEL, NACHNAME

VORNAME

FIRMA / UNIVERSITÄT

ABTEILUNG

ADRESSE

PLZ, ORT

TELEFON, FAX

EMAIL

Fax: +49(0)551 / 99 721- 29
www.comsol.de/conference2005/cd/

• Akustik und Fluid-Struktur-Interaktion
• Brennstoffzellen
• Chemietechnologie und Biotechnologie
• COMSOL Multiphysics™ in der Lehre
• Elektromagnetische Wellen
• Geowissenschaften
• Grundlegende Analysen, Optimierung, numerische Methoden
• Halbleiter
• Mikrosystemtechnik
• Statische und quasi-statische Elektromagnetik
• Strömungssimulation
• Strukturmechanik
• Wärmetransport

ANWENDUNGSBEREICHE:

 Proceedings CD der
 Konferenz zur Multiphysik-Simulation

www.comsol.de

Bestellen Sie hier Ihre kostenlose Proceedings CD mit
Vorträgen, Präsentationen und Beispielmodellen
zur Multiphysik-Simulation:

Accelerating the pace of engineering and science

515.000.000 KM, 380.000 SIMULATIONEN
UND KEIN EINZIGER TESTFLUG.

DAS IST MODEL-BASED DESIGN.

Nachdem der Endabstieg der beiden

Mars Rover unter Tausenden von

atmosphärischen Bedingungen simuliert

wurde, entwickelte und testete das

Ingenieur-Team ein ausfallsicheres

Bremsraketen-System, um eine

zuverlässige Landung zu garantieren.

Das Resultat – zwei erfolgreiche

autonome Landungen, die exakt gemäß

der Simulation erfolgten.

Mehr hierzu erfahren Sie unter:

www. mathworks.de/mbd

MBD-Mars_Ad_A4.indd 1MBD-Mars_Ad_A4.indd 1 18.08.2005 15:33:3518.08.2005 15:33:35

