
S I M U L AT I O N
NEWS EUROPE

Journal on Developments and
Trends in Modelling and Simulation

Special Issue

Volume 16 Number 2 September 2006, ISSN 0929-2268

ARGESIM

SNE

Special Issue

Parallel and Distributed

Simulation Methods

and Environments

bbb

++ Editorial - Content +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

Content

Editorial SNE Special Issue Parallel and Distributed
Simulation Methods and Environments;
T. Pawletta, S. Pawletta ... 2

Call for SNE Special Issue 2007 Verification and
Validation in Modelling and Simulation; S. Wenzel ... 3

Overview about the High Level Architecture for
Modelling and Simulation and Recent
Developments; S. Straßburger ... 5

Lookahead Computation in G-DEVS/HLA Environ-
ment; G. Zacharewicz, C. Frydman, N. Giambiasi ... 15

Parallel Simulation Techniques for DEVS/Cell-DEVS
Models and the CD++ Toolkit; G. Wainer, E. Glinsky ... 25

SCE based Parallel Processing and Applications in
Simulation; R. Fink, S. Pawletta, T. Pawletta, B. Lampe ... 37

HLA Applied to Military Ship Design Process;
C. Stenzel, S. Pawletta, R. Ems, P. Bünning ... 51

Co-simulation of Matlab/Simulink with AMS Designer
in System-on-Chip Design; U. Eichler, U. Knöchel,
S. Altmann, W. Hartong, J. Hartung ... 57

Parallel Computation in Blood Flow Simulation using
the Lattice Boltzmann Method; S. Wassertheurer,
D. Leitner, F. Breitenecker, M. Hessinger, A. Holzinger ... 64

ARGESIM Benchmark on Parallel and Distributed
Simulation; F. Breitenecker, G. Höfinger,
R. Fink, S. Pawletta, T. Paletta, ... 69

SNE Editorial Board

Felix Breitenecker (Editor-in-Chief), Vienna Univ. of
Technology, Felix.Breitenecker@tuwien.ac.at

Peter Breedveld, University of Twenty, Div. Control
Engineering, P.C.Breedveld@el.utwente.nl

Francois Cellier, ETH Zurich, Inst. f. Computational
Science / University of Arizona, fcellier@inf.ethz.ch,

Russell Cheng, Fac. of Mathematics / OR Group, Univ.
of Southampton, rchc@maths.soton.ac.uk

Rihard Karba, University of Ljubljana, Fac. Electrical
Engineering, rihard.karba@fe.uni-lj.si

David Murray-Smith, University of Glasgow,
Fac. Electrical & Electronical Engineering;
d.murray-smith@elec.gla.ac.uk

Horst Ecker, Vienna Univ. of Technology.
Inst. f. Mechanics, Horst.Ecker@tuwien.ac.at

Thomas Schriber, University of Michigan, Business School
schriber@umich.edu

Sigrid Wenzel, University of Kassel, Inst. f. Production
Technique and Logistics, S.Wenzel@uni-kassel.de

Guest Editors Special Issue Parallel and
Distributed Simulation Methods and Environments
Thorsten Pawletta, pawel@mb.hs-wismar.de
Sven Pawletta, s.pawletta@et.hs-wismar.de

Res. Group Computational Engineering and Automation,
Wismar University, 23952 Wismar, Germany
WWW.MB.HS-WISMAR.DE/cea

SNE Contact

SNE-Editors / ARGESIM
c/o Inst. f. Analysis and Scientific Computation
Vienna University of Technology
Wiedner Hauptstrasse 8-10, 1040 Vienna, AUSTRIA
Tel + 43 - 1- 58801-10115 or 11455, Fax - 42098
sne@argesim.org; WWW.ARGESIM.ORG

Dear readers,
We are glad to present the first SNE Special Issue - a Special Issue on ‘Parallel and Distributed Simulation Methods and Envi-
ronments’. The idea for special issues was born in ASIM, the German Simulation Society. As there was and as there still is a
need for state-of-the-art publications in topics of modelling and simulation, ASIM first tried to publish monographs on this
subject. But publication of such books showed disadvantages: too slow production time, too high costs, and lack of publication
issues. ASIM, seeking for alternatives, contacted ARGESIM with the idea of SNE Special Issues - while ARGESIM itself thought
on Special Issues, because of lack in publication space in the regular SNE issues. Now, one year after the first contact, we can
present the first Special Issue, edited by Thorsten & Sven Pawletta from University Wismar, Germany.
The editorial policy of SNE Special Issues is to publish high quality scientific and technical papers concentrating on state-of-the-art
and state-of-research in specific modeling and simulation oriented topics in Europe, and interesting papers from the world wide
modeling and simulation community. This Special Issue ‘Parallel and Distributed Simulation Methods and Environments’ (SNE
16/2), will be sent to all ASIM members - together with the regular SNE 16/1 (SNE 46), and sample copies will be sent to other
European Simulation Societies; furthermore, it is available on basis of an individual subscription of SNE - SNE Special Issues are
open for everybody, for publication and subscription (not only for ASIM). We think also on Special Issues publishing selected
papers from EUROSIM conferences.
We hope, you enjoy this Special Issue, which presents state-of-the-art in parallel and distributed simulation, from theory with lookahead
formulas via implementation with HLA and other systems to applications in ship desgin and blood flow simulation.
It is planned to publish a SNE Special Issue each year, for 2007 a Special Issue on ‘Verification and Validation’ (Guest Editor
Sigrid Wenzel, University Kassel) is scheduled (SNE 17/2). I would like to thank all people who helped in managing this first
Special Issue, especially the Guest Editors, Thorsten and Sven Pawletta from Wismar University.

Felix Breitenecker, Editor-in-Chief SNE; Felix.Breitenecker@tuwien.ac.at

Editorial Info - Impressum

SNE Simulation News Europe ISSN 1015-8685 (0929-2268).
Scope: Development in modelling and simulation, benchmarks on modelling
and simulation, membership info for EUROSIM and Simulation Societies.
Editor-in-Chief: Felix Breitenecker, Inst. f. Analysis and Scientific
Computing, Mathematical Modelling and Simulation, ,
Vienna University of Technology, Wiedner Hauptstrasse 8-10,
1040 Vienna, Austria; Felix.Breitenecker@tuwien.ac.at
Layout: A. Breitenecker, ARGESIM TU Vienna / Linz;
Anna.Breitenecker@liwest.at
Printed by: Grafisches Zentrum TU, Wiedner Hauptstr. 8-10, A-1040, Wien
Publisher: ARGESIM and ASIM
ARGESIM, c/o Inst. for Analysis and Scientific Computation, TU Vienna,
Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria, and
ASIM (German Simulation Society), c/o Wohlfartstr. 21b, 80939München
© ARGESIM / ASIM 2006

++ Editorial Special Issue +++

2

This is the first Special Issue of SNE, edited by mem-
bers of the ASIM working group Methods of Modeling
and Simulation . The new SNE Special Issue Series has
been introduced as an extension of the regular SNE.
The aim is to publish high quality scientific and tech-
nical papers concentrating on a specific topic. Using
this approach the SNE Special Issues will present the
state of research in specific modeling and simulation
oriented topics in Europe, and interesting papers from
the world wide modeling and simulation community.
This Special Issue of SNE is devoted to Parallel and
Distributed Simulation Methods and Environments
and includes seven selected papers and a call for a
benchmark in distributed and parallel simulation.

The development of parallel and distributed simula-
tion methods and software tools has been strongly
influenced by High Level Architecture (HLA) in re-
cent years. HLA has its origins in the military simula-
tion community. As a consequence of its openness and
generic character it has also had a significant impact
on non-military applications and is now an IEEE stan-
dard for distributed simulation.
The first paper by Strassburger (Fraunhofer Institute
Magdeburg, Germany) introduces the history of HLA,
presents its main concepts and discusses recent deve-
lopments. It provides enough background information
for non-experienced readers in this field for the two
further HLA related contributions in this journal.

The second paper and the third paper discuss specific
parallel and distributed simulation approaches for Dis-
crete EVent specified Systems (DEVS) and the associa-
ted simulator algorithms. Zacharewicz, Frydman and
Giambiasi (University Marseille, France) investigate
new lookahead computation methods in the G-
DEVS/HLA environment. G-DEVS is a specific exten-
sion of the DEVS theory and of DEVS simulator algo-
rithms for hybrid dynamic systems. Continuous and dis-
crete model components and their associated simulators
can be located on different computers and integrated
into a global simulation model using HLA technology.

The contribution by Wainer and Glinsky (Carleton Uni-
versity, Ottawa, Canada) investigates parallel simulation
techniques for DEVS and Cell-DEVS models that com-
bine cellular automata with DEVS theory. In their paral-
lel simulation environment, CD++, the DEVS simula-
tion algorithms are modified and combined with conser-
vative and optimistic synchronization algorithms.

Scientific and Technical Computing Environments
(SCEs) such as MATLAB, Scilab or Octave are es-
sential tools in today's computational engineering and
science. Especially optimization and simulation are
well supported by integrated algorithms and subsys-
tems like Simulink, Scicos or Stateflow. The fourth
paper by Fink, Pawletta and Lampe (Wismar Univer-
sity, Germany) gives a detailed overview about SCE
based parallel processing. In this paper, a new taxo-
nomy on SCE based parallel processing is presented,
followed by the identification and assignment of more
than 30 existing projects. Furthermore, simulation and
optimization applications which have been paralleli-
zed under usage of SCEs are discussed. Parallel run-
time results as well as general application characteri-
stics are presented.

The fifth, sixth and seventh papers have been moti-
vated by engineering applications.

Stenzel, Pawletta, Ems and Bünning (Wismar Univer-
sity and MTG Marinetechnik GmbH, Hamburg; Ger-
many) describe an application, where existing real-
world software components, mainly written in Fort-
ran, have to be integrated into an HLA compliant
federation. Fortran/HLA integration approaches are
examined in detail, whereas experiences in the field of
MATLAB/HLA connectivity serve as design pattern.

The contribution by Eichler, Knöchel, Altmann, Har-
tong and Hartung (Fraunhofer Institute Dresden and
Cadence Design Systems GmbH, Feldkirchen; Ger-
many) describes the coupling of different simulators
via TCP/IP network socket connection. The imple-
mentation and application of such a co-simulation is
described in detail for the simulators MAT-
LAB/Simulink and AMS Designer.

The contribution by Leitner, Wassertheurer, Breiten-
ecker, Hessinger and Holzinger (ARC Seibersdorf
research GmbH, Vienna; Vienna University of Tech-
nology; Medical University Graz; Austria) presents a
Lattice-Boltzmann model (LBM) for solving fluid
mechanical problems in engineering and biomedical
applications. The investigated model is relevant for
blood flow simulation because it uses Reynolds and
Womersley numbers found in haemodynamics with a
realistic time dependent pressure gradient as a bound-
ary condition. A big advantage of LBM is the possi-
bility of easy parallelization.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

Editorial SNE Special Issue

Parallel and Distributed Simulation Methods and Environments

Therefore different approaches and implementations
are discussed and compared with respect to paralleli-
zation efficiency.

Furthermore, this SNE Special Issue publishes a call
for a benchmark on parallel and distributed simula-
tion tasks. This new ARGESIM Benchmark on Paral-
lel and Distributed Simulation extends the ARGESIM
Comparison on Parallel Simulation Techniques from
1994. The three tasks of this benchmark are more
general, so that not only simulation software is ad-
dressed, so that also different algorithms for solving
the tasks can be used, and so that different strategies
for parallelization or distribution of the tasks can be
set up and compared.

This SNE Special Issue on Parallel and Distributed
Simulation Methods and Environments (SNE 16/2),
will be sent to all ASIM members - together with the
regular SNE 16/1 (SNE 46), and sample copies will be
sent to other European Simulation Societies (with
ordering offer). Furthermore, it is available on basis of
an individual subscription of SNE.

It is planned to publish a SNE Special Issue each year.
We would like to draw your attention to the Call for
Papers for the next special issue (see below) on Veri-
fication and Validation in Modeling and Simulation,
edited by the ASIM working group Simulation in Pro-
duction and Logistics (Guest Editor Sigrid Wenzel,
University Kassel).

Finally, we would like to thank all authors, who have
contributed to this special issue, our co-workers at
Wismar University for various support, the ARGE-
SIM people at Vienna University of Technology for
editorial support, and F. Breitenecker (Editor-in-Chief
of SNE) for good co-operation.

Thorsten Pawletta & Sven Pawletta
Guest Editors SNE Special Issue Parallel and
Distributed Simulation Methods and Environments
Res. Group Computational Engineering and
Automation, Wismar University
PF 1210, 23952 Wismar, Germany
WWW.MB.HS-WISMAR.DE/cea

SN
E 16/2, Septem

ber 2006

3

+++ Editorial Special Issue / Call for SNE Special Issue ++

Simulation is an important method which helps to
take right decisions in system planning and operation.
Building high-quality simulation models and using
the right input data are pre-conditions for achieving
significant and usable simulation results.
For this purpose, a simulation model has to be well-
defined, consistent, accurate, comprehensive and
applicable. The quality criteria can be proved by veri-
fication (building a model in the right way) and vali-
dation (building the right model).

The ASIM-Working Group Simulation in Production
and Logistics which has worked on this topic since
three years accommodates the increased significance
of verification and validation and will publish the
forthcoming Special Issue of Simulation News
Europe (SNE) on this topic.

Papers on the following topics will be welcome:

- Procedure Models for Verification and
Validation

- Methods for Verification and Validation
- Certification and Accreditation
- Information / Data Acquisition for Simulation

Models and their Verification and Validation

- Verification and Validation -
Documentation Aspects

- Credibility
- Automatic Verification and Validation
- Case Studies and Practical Experiences

The Guest Editor of this SNE Special Issue (SNE
17/2), Prof. Dr. Sigrid Wenzel from University Kassel,
invites for submitting contributions.

Contributions should not exceed 8 pages and should
be mailed directly to the editor not later than March
31, 2007; contributions will be peer reviewed (templa-
tes available at ASIM and ARGESIM web page -
WWW.ASIM-GI.ORG, WWW.ARGESIM.ORG).

Sigrid Wenzel
Guest Editor SNE Special Issue

Verification and Validation in
Modeling and Simulation

Department of Mechanical Engineering
University of Kassel, Kurt-Wolters-Strasse 3
D-34125 Kassel, Germany
s.wenzel@uni-kassel.de
WWW.UNI-KASSEL.DE/fb15/ipl/pfp/

Call for Contributions SNE Special Issue 2007

Verification and Validation in Modelling and Simulation

slo
im

EUROSIM - Federation of European Simulation Societies

DEADLINES:

Proposal special sessions and tutorials:

Submission of extended abstracts:

cceptance:

Early registration:

Submission of camera ready papers:

Hotel Reservation:

for

-

9

9

Feb. 2007

April 2007

May 2007

June 2007

July 2007

July 2007

1

30

11

27

N of aotification

VENUE:

University of Ljubljana, Faculty of Electrical
Engineering, Ljubljana, Slovenia

CONGRESS COMMITTEE:

Borut Zupančič, EUROSIM,

Rihard Karba, SLOSIM

niv. of Lj. . . .

Felix Breitenecker, of

president of chair

president of

Tomaž Slivnik, U , Fac of El Eng , dean

ASIMpresident

INTERNATIONAL PROGRAMME COMMITTEE:
R. Karba (SI), chair
D. Al – Dabass (UK),
M. Alexik (SK),
I. Bausch-Gall (DE),
L. Bobrowski (PL),
W. Borutzky, (DE)
J. Božikov (HR),
F. Breitenecker (AT),
P. Bunus (SE),
P. Cafuta (SI),
R. Cant (UK),
A. Carvalho Brito (PT),
G. Cedersund (SE),
F. Cellier (CH),
V. Čerić (HR),
E. Dahlquist (SE),
B. Elmegaard (DK),
P. Fritzson (SE),
J.M. Gir -

R
O

U
I

čić (SI),
K. Juslin (FI),
E. Juuso (FI),
H. Karatza (GR),
E. Kindler (CZ),
M. Kljajić (SI),
M. Klug (AT),

J. Kocijan (SI),
J. Kunovsky (CZ),
F. Lebon (FR),
B.H. Li (CN),
H.X. Lin (NL),
F. Maceri (IT),
W. Maurer (CH),
Y. Merkuryev (LV),
A. Munitić (HR),
D. Murray-Smith (UK),
S. Oharu (JP),
A. Orsoni (UK),
K. Panreck (DE),
T. Pawletta (DE),
H. Pierreval (FR),
J. Pollard (UK),
C.Z. Radulescu (RO),
M. Radulescu (RO),
F. Rocaries (FR),
P. Schwarz (DE),
M. Savastano (IT),
W. Smari (US),
F. Stanciulescu (RO),
G. Szucs (HU),
M. Šnorek (CZ),
I. Troch (AT),
S. Wenzel (DE),
W. Wiechert (DE),
E. Williams (US),
R. Zobel (UK, TH),
B. Zupančič (SI),
L. Žlajpah (SI)

on Sierra (ES),
Y. Hamam (F),
F. Hartescu (R),
A. Heemink (NL),
V. Hlupic (UK),
F. Javier Otamendi (ES),
A. Jávor (H),
K. Jezernik (S),
Ð. Juri

ORGANISERS:

- SLOSIM - Slovene Society for Simulation and Modelling

University of Ljubljana, Faculty of Electrical Engineering

EUROSIM societies CROSSIM, CSSS,
DBSS, FRANCOSIM, HSS, ISCS, SIMS, UKSIM, AES,
PSCS, ROMSIM

CASS Chinese Association for System Simulation,

ECMS European Council for Modelling and Simulation,

JSST Japan Society for Simulation Technology,

LSS Latvian Simulation Society,

SCS The Society for Modeling and Simulation Int.

-

- member : ASIM,

-

-

-

-

-

CO-SPONSORS

EXHIBITION

:

:

Exhibitors with software, hardware and books from the
area of M&S are cordially invited to participate.

CONTACTS:
Borut Zupančič

Rihard Karba

, congress chair
, IPC chair

University of Ljubljana, Faculty of Electrical Engineering
Tržaška 25, SI-1000 Ljubljana, Slovenia
Phone: +386 1 4768 306
E-mail: borut.zupancic@fe.uni-lj.si
E-mail: rihard.karba@fe.uni-lj.si
Alenka Kregar, registration, accommodation
Cankarjev dom, Cultural and Congress Centre
Prešernova 10, SI-1000 Ljubljana, Slovenia
Phone:+386 1 241 7133
Fax: +386 1 241 7296
E-mail: alenka.kregar@cd-cc.si

M&S applications: aerospace, automotive systems and
transportation, agriculture, architecture, biopharmacy,
biomedicine, bioinformatics, genomics, business, applied
chemistry, civil engineering, communications, ecological
and environmental systems, economics, econometrics,
economics of M&S, education, electrical engineering,
geophysical systems, industrial processes, logistics,
manufacturing systems, maintenance, reliability, marine
systems, materials modelling and simulation, mechanical
engineering, mechatronics, meteorology/climate, military
systems, organisational processes, process engineering,
traffic/transportation power systems, applied psychology,
computational fluid dynamics, training simulators, social
systems biology, sciences, robotics, water management
and treatment, mobile robotics, seismism, pulp & paper,
supply chains, lifecycle management plant data

,

and

About EUROSIM:

EUROSIM is the Federation of European Simulation
Societies and EUROSIM congress (
triennial event) is one of the most important activities of the
federation.

ore information about EUROSIM :

the organization a

For m see
www.eurosim.info

PROGRAMME:

SCOPE AND TOPICS:

The me

modelling and
simulation of complex, large scale, distributed, hybrid,
hierarchical, stochastic, control, expert, adaptive, fuzzy,
decision support, multivariable, multiagent, reconfigurable,
agent based, knowledge based, real time, queuing
systems, scheduling, parallel processing concepts, high
performance computing, M&S system architectures, neural
networks, model validation and verification, simulation life-
cycle evolution, genetic algorithms, man-in-the loop
simulation, hardware-in-the loop simulation, nested
simulation models, distributed enterprise simulation, data
mining, bond graphs, simulation with Petri nets, discrete
event simulation, statistic modelling, component based
modelling, object oriented modelling, mathematical
/numerical methods in simulation, graphical modelling,
nano technology modelling, embedded and firmware
modelling, middleware architecture modelling,
visualisation, graphics and animation, modelling and
simulation tools, WEB based simulation, human behaviour
representation techniques, virtual reality and virtual
environments, CAD/CAM/CIM/CAE, experiential digital
media, future of M&S

EUROSIM 2007 scientific program consists of:
Plenary lectures, Regular sessions, Special sessions,
Posters, Students’ competition and Tutorials. Papers will be
published in two Proceedings Volumes: Volume 1: Book of
Abstracts, Volume 2: DVD volume with full papers and
multimedia files.

The scope includes all aspects of continuous, discrete
(event) and hybrid modelling, simulation, identification and
optimisation approaches. So the common denominator is
problems solving with modelling and simulation in a way
that can be useful also for solving other problems in similar
or different areas. Contributions from technical
(engineering) areas but also from nontechnical areas are
welcome.

M&S methods and technologies:

CALL FOR PAPERS CALL FOR PAPERS

September 9-13, 2007, Ljubljana, Slovenia

September 9 - 13, 2007, LJUBLJANA, SLOVENIA

http://www.eurosim2007.org

on Modellin and Simulationon Modellin and Simulation

+++ HLA - High Level Architecture for Modelling and Simulation ++
SN

E 16/2, Septem
ber 2006

5

Introduction and Motivation

The development of the High Level Architecture for
Modeling and Simulation (HLA) was initiated by the
U.S. Department of Defense (DoD) in 1995 out of the
need for a common high-level simulation architecture.
The standard was supposed to facilitate the interop-
erability and reusability of all types of simulation used
and sponsored by the DoD.

The necessity of the standard is derived from the com-
plexity and variety of simulation applications in use
and the manifold of expectations towards simulation
applications. They include different levels of abstrac-
tion, different levels of interactivity, different tem-
poral behavior, etc. In essence, no single monolithic
simulation application could fulfill all requirements of
all users.

Considering the different simulation applica-tions in
use, no one could foresee all their potential usage and
combinations in advance. Thus, the idea of a modular,
composable approach for building federations of
simulations was born which eventually led to the
development of the HLA.

HLA's main objective was to provide an open archi-
tecture offering services for interoperability and re-
usability. The architecture has no limitations towards
a specific simulation paradigm. It is not even limited
to simulation applications, rather it offers interopera-
bility to all kinds of programs. However, HLA provi-
des specific interoperability support services to
accommodate specific needs of simulation applica-
tions. With that, HLA supersedes general interopera-
bility standards like CORBA or DCOM.

Initiated as a standard in the military simulation commu-
nity the development of the HLA has been overseen by
the Defense Modeling and Simulation Office (DMSO)
for the U.S. DoD. DMSO has deliberately taken a very
open approach in the definition and accessibility of
HLA and has sponsored publicly available software
implementations of the HLA software.

With this policy DMSO has ensured a broad com-
munity involvement in the development of HLA,
which can be seen as a cornerstone to its rather good
acceptance and adoption. In the military simulation
domain HLA is a mandatory standard not only in the
U.S., but also throughout most NATO countries.

HLA involvement of the civilian simulation commu-
nity has mostly originated from academia [1] and has
been rather research oriented. Significant efforts have
been focused on using HLA as a standard for inter-
operability between commercial of the shelf simula-
tion packages [2,3,4].

An important joint research project in the field of civi-
lian HLA applications was the IMS Mission project.
Its focus was on adopting HLA as a standard for de-
sign, planning and operation of globally distributed
enterprises. One outcome was a concept and solution
for distributed supply chain simulation [5].

Serious practical applications of HLA have been inve-
stigated by several companies, among them Daimler
Chrysler in the automotive sector [6]. Especially for
the automotive industry with its large supplier net-
works and rather advanced use of digital planning and
simulation methods within their Digital Factory eff-
orts, HLA can play a substantial role for providing
plug-and-play simulation interoperability.

Overview about the High Level Architecture for
Modelling and Simulation and Recent Developments

Steffen Straßburger, steffen.strassburger@iff.fraunhofer.de
Fraunhofer Institute for Factory Operation and Automation, Magdeburg, Germany

The High Level Architecture for Modeling and Simulation, or HLA for short, is an IEEE standard for distribu-
ted simulation. It focuses on interoperability and reusability of the components (called federates) and offers
time management interoperability as well as sophisticated data distribution concepts. HLA has its origin in the
military simulation community where one of its major tasks is the networking of military training simulators.
However, due to its openness and generic character it also has a large impact on non-military distributed simu-
lation applications. Due to these facts, HLA can still be regarded the state-of-the-art standard for distributed
simulation. This article introduces the background and history of HLA, introduces its main concepts, and
discusses recent developments. A summary and evaluation of the future of HLA concludes this contribution.

1 A Short History of HLA

Research in the field of distributed simulation has a long
tradition. Parallel distributed event simulation (PDES)
is one important branch of distributed simulation prima-
rily driven from the civilian simulation community
which aims at performance and speedup issues. Conser-
vative and optimistic synchronization protocols were
developed to handle possible causality violations bet-
ween simulations. In the military simulation commu-
nity, the Distributed Interactive Simulation (DIS) tech-
nology was developed primarily for the connection of
real-time training simulators. DIS is defined in the IEEE
1278 standard since 1993. Another standard for the con-
nection of constructive military simulations was the
Aggregate Level Simulation Protocol (ALSP).

Outside the simulation domain, standards for distributed
computing like the Parallel Virtual Machine (PVM) and
the Message Passing Interface (MPI) have been develo-
ped which also influenced the field of distributed simu-
lation. The HLA combines its predecessor technologies
from the military sector, DIS and ALSP, and is the desi-
gnated standard architecture for all U.S. DoD modeling
and simulation activities. The HLA development started
in 1995 with the DoD Modeling & Simulation Master
Plan which demanded to ‘establish a common high-
level simulation architecture to facilitate the interopera-
bility of all types of models and simulations ..., as well
as to facilitate the reuse of M&S components’.

The timeline of the development of the HLA is depic-
ted in Figurei1. The base definition of the HLAi1.0
Standard in August 1996 can be regarded the first sta-
ble HLA definition. Shortly after its release, different
versions of the RTI software developed under DMSO
sponsorship became publicly available. This software
was distributed freely in the community and included
an RTI Help Desk as a support infrastructure for main-
taining the software. The next major release of the HLA
standard was HLA 1.3 in February 1998. This version
of the standard is still quite commonly in use today in
many simulation applications. Two RTI developments
following this 1.3 release of the standard were made

publicly available in the following time, the first being
RTI 1.3 in 1998, the next being RTI 1.3 NG in 1999.
The latter release offered improved performance and
is still available today from the Virtual Technology
Corporation as RTI NG Pro. The HLA 1.3 release for-
med the base for further standardization efforts.
Among them was the adoption of HLA by the OMG
as facility for distributed simulation.
The most important standardization activity was the
release of the IEEE version of the HLA standard. This
release is in most parts similar to HLA 1.3, but con-
tains several needed improvements which surfaced in
the practical use of HLA 1.3 [7]. Also, some modifi-
cations needed in order to comply with IEEE require-
ments were made.

The year 2002 marked the end of a transition phase in
which DMSO had led (and sponsored) the efforts to
develop HLA. Having become an IEEE standard the
further development of HLA was given into the hands
of the Simulation Interoperability Standards Organi-
zation (SISO).
SISO originated over ten years ago with the Distributed
Interactive Simulation (DIS) Workshops and was since
that time focused on creating standards for simulation
interoperability. SISO is a volunteer organization with
members from industry, military and academia.
Besides hosting the Simulation Interoperability Work-
shops (SIW) which are organized three time a year
(two in the U.S.A, one in Europe) SISO hosts a Stan-
dards Activity Committee (SAC) which oversees the
work of several Product Development Groups (PDG).
PDGs are the actual groups of people developing stan-
dards for simulation interoperability. Most of their
work is based on HLA, including its future refinement
and development of standards.
The most important PDG is the HLA-Evolved Initia-
tive as it oversees the review of the IEEE 1516 speci-
fication. Many new potential HLA requirements
have been identified based on feedback from the
various domains and application areas. The PDG
seeks to address these requirements via a formal

open review of the IEEEi1516 series of specifications.

++ HLA - High Level Architecture for Modelling and Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

6

Tim e

1996 1997 1998 19991995

05/9705/97
DM SO RTI1.0

12/9612/96
RTIF.0

03/9503/95:
InitialDef.

HLA

08/9608/96:
Base Def.
HLA V1.0

01/98
DM SO
RTI1.3

20012000

02/9802/98
ReleaseRelease
HLA HLA V1.3

11/97
OM D-Tools

20032002 20052004

11/9811/98
OM G OM G
FacilityFacility
forDSforDS

09/0009/00
IEEE 1516IEEE 1516

12/0112/01
1.Version1.Version
ofPitch RTIofPitch RTI

9/99
DM SO

RTI1.3NG

09/02
DM SO

term inates
sponsoring

2004
HLA-Evolved
initiative starts

03/0303/03
1516 Certified RTI1516 Certified RTI

(Pitch)(Pitch)

Tim e

19961996 19971997 1998 199919991995

05/9705/97
DM SO RTI1.0

12/9612/96
RTIF.0

03/9503/95:
InitialDef.

HLA

08/9608/96:
Base Def.
HLA V1.0

01/98
DM SO
RTI1.3

2001200120002000

02/9802/98
ReleaseRelease
HLA HLA V1.3

11/97
OM D-Tools

2003200320022002 2005200520042004

11/9811/98
OM G OM G
FacilityFacility
forDSforDS

09/0009/00
IEEE 1516IEEE 1516

12/0112/01
1.Version1.Version
ofPitch RTIofPitch RTI

9/99
DM SO

RTI1.3NG

09/02
DM SO

term inates
sponsoring

2004
HLA-Evolved
initiative starts

03/0303/03
1516 Certified RTI1516 Certified RTI

(Pitch)(Pitch)

Figure 1: HAL development timeline.

As part of this process, the PDG will incorporate those
aspects raised in the DoD Interpretations Document
for IEEE 1516 [8] and a Dynamic Link Compatible
HLA API for IEEE 1516.1.

2 Major Concepts of HLA

In order to facilitate interoperability and reusability,
HLA differentiates between the simulation functiona-
lity provided by the members of the distributed simu-
lation and a set of basic services for data exchange,
communication and synchronization. Figurei2 gives
an functional overview of a distributed simulation
under the HLA paradigm.

In HLA, individual simulations and other participants of
a distributed simulation are referred to as federates.
Federates which are supposed to co-operate together
under certain guidelines and a defined object model
form a so-called federation. Federates use a common
runtime infrastructure (RTI) for communication. The
RTI is a piece of software which can be regarded as a
distributed operating system add-on. HLA defines a bi-
directional interface between federates and the RTI. A
single run is referred to as a federation execution.

The current version of the High Level Architecture for
Modeling and Simulation, or HLA for short, is formally
defined in the three key documents of IEEE standard 1516.

These documents are
- 1516-2000: Framework and Rules
- 1516.1-2000: Federate Interface

Specification
- 1516.2-2000: Object Model Template

(OMT) Specification
All three elements are briefly discussed in detail in the
following sections.

2.1 HLA Rules

The HLA Rules define the required behavior of a
federation and its federates and are thus part of the
formal HLA compliance definition. There are 5 rules
for federations and 5 for federates ([11]).

Rules for federations:

1. Federations shall have an HLA FOM, docu-
mented in accordance with the HLA OMT.

2. In a federation, all simulation-associated
object instance representations shall be in the
federates, not in the runtime infrastructure.

3. During a federation execution, all exchange
of FOM data among federates shall occur
via the RTI.

4. During a federation execution, joined fede-
rates shall interact with the RTI in accor-
dance with the HLA interface specification.

5. During a federation execution, an instance
attribute shall be owned by at most one
joined federate at any given time.

Rules for federates:

6. Federates shall have an HLA SOM, docu--
mented in accordance with the HLA OMT.

7. Federates shall be able to update and/or
reflect any instance attributes and send
and/or receive interactions, as specified in
their SOMs.

8. Federates shall be able to transfer and/or
accept ownership of instance attributes
dynamically during a federation execution,
as specified in their SOMs.

9. Federates shall be able to vary the conditions
under which they provide updates of instance
attributes, as specified in their SOMs.

10. Federates shall be able to manage local time
in a way that will allow them to coordinate
data exchange with other members of a
federation.

2.2 HLA Federate Interface Specification

The HLA Federate Interface Specification describes
the services which federates have to use for communi-
cating with other federates via a runtime infrastructure
(RTI). The interface specification describes which ser-
vices can be used by a federate and which services it
has to provide [12].

This bi-directional character of the interface is encapsu-
lated into an ambassador paradigm. A federate commu-
nicates with the RTI using its RTI ambassador. Conver-
sely, the RTI communicates with a federate via its fede-
rate ambassador. From the federate programmer's point
of view, these ambassadors are objects and the commu-
nication among the participants is performed by calling
methods of these objects. Thus, the services defined in
the interface specification are either methods of the RTI
ambassador or of the federate ambassador.

+++ HLA - High Level Architecture for Modelling and Simulation ++
SN

E 16/2, Septem
ber 2006

7

Operating System LevelOperating System Level

HLA Runtime Infrastructure (RTIExec) FedEx-Management, Naming Service etc.HLA Runtime Infrastructure (RTIExec) FedEx-Management, Naming Service etc.

NetworkNetwork

HLA InterfaceHLA Interface

Federate AFederate Ann

HLA InterfaceHLA Interface

Federate AFederate A11

Federation „A“Federation „A“

......
FederationFederation

Execution (FedEx) „A“Execution (FedEx) „A“

(RTI of the Defense Modeling & Simulation Office)(RTI of the Defense Modeling & Simulation Office)

Figure 2: Functional view of a distributed
simulation under HLA.

The interface specification defines six categories of
services, which will be briefly described in the fol-
lowing sections. A special advantage of HLA com-
pared to other technologies are the time management
and the data distribution management services.

The time management services provide a mechanism
for coordinating simulation clocks of simulations
using a wide variety of time advance mechanisms. In
comparison with other technologies, where time man-
agement/synchronization is only available to a certain
type of simulation, HLA provides a general solution
for all types of simulations.

The services provided in the data distribution category
provide new mechanisms for efficiently transferring
data among certain federates and for reducing the
amount of data transferred. They are special in that
regard, in that previous technologies (like DIS) are usu-
ally based on broadcast principles for distributing data.

Federation Management

The main focus of the services in the Federation
Management service group is the coordination of fed-
eration-wide activities during a federation execution.
They are used by federates to initiate, join, resign, and
manage a federation execution.

Interface services include:

- Create/Destroy Federation Execution: These
service are used to create and destroy federation exe-
cution. Usually the first federate joining a federation
execution has the task of creating it. The last federate
leaving a federation execution commonly destroys it.

- Join/Resign Federation Execution: These
services are used by federates to join a federation exe-
cution and to resign from it once the federate has com-
pleted its tasks.

- Services to save and restore federation exe-
cutions: These services can be used to save and re-
store the state of the federation. It should be noted that
these service only coordinate the save/restore process.
The internal state saving mechanisms have to be
implemented by the federates themselves.

Declaration Management

Federates shall use declaration management ser-vices
to declare their intention to generate and receive infor-
mation. A federate shall invoke appropriate decla-
ration management services before it can register or
discover object instances, update or reflect instance
attribute values, and send or receive interactions.

With that, declaration management could also be seen
as an ‘interest management’. Federates specify, which
data types they would like to send or receive. The
publishing and subscribing of data types (object and
interaction classes with their attributes and parame-
ters) has to be performed in accordance with the
SOMs and the FOM. Although declarations can be
changed dynamically during a federation execution,
the declaration management belongs to the initializa-
tion phase of a federation.

Interface services include:
- Publish Object Class Attributes/Interaction
Class: These services are used to announce that a fed-
erate intends to generate the specified object and inter-
action classes ‘later on’ during a federation execution.
- Subscribe Object Class Attributes/ Interaction
Class: These services are used to announce that a
federate is interested in the specified object and inter-
action classes and would like to receive infor-mation
about these classes from now on.
- Start (Stop) Registration For Object Class/
Turn Interactions On (Off): Using these callback func-
tions to the federate, the RTI can inform a federate
whether other federates are interested in the object
classes and interactions it has published. These servi-
ces implement the so-called ‘advisory switches’ which
inform federates of the relevance of their publications.
Federates can chose to ignore these switches and regi-
ster object instances/ send interactions regardless of
whether other federates are interested.

Figure 3 gives an example of services that two federates
might use to manage their subscription and publications.

Object Management

This group of the interface specification provides servi-
ces for the registration, modification, and deletion of
object instances and the sending and receiving of inter-
actions. The services of this group provide the necessary
functionality for all data exchange among federates.

++ HLA - High Level Architecture for Modelling and Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

8

Interface

Runtime Infrastructure

Federation Management DeclarationDeclaration ManagementManagement

Object Management Ownership Management

Time Management Data Distribution Management

Federate A

intends to generate data

and receive interactions

Federate B

is interested in the data

modeled by “A” and may

send interactions

- Subscribe Object Class Attributes

- Publish Interaction Class

- Publish Object Class Attributes

- Subscribe Interaction Class
Interface

Runtime Infrastructure

Federation Management DeclarationDeclaration ManagementManagement

Object Management Ownership Management

Time Management Data Distribution Management

Federate A

intends to generate data

and receive interactions

Federate B

is interested in the data

modeled by “A” and may

send interactions

- Subscribe Object Class Attributes

- Publish Interaction Class

- Publish Object Class Attributes

- Subscribe Interaction Class

Figure 3: Declaration management (adopted from [9])

RTI services include:

- Register Object Instance/Discover Object In-
stance: Each object that is relevant to a federation exe-
cution needs to be registered with the RTI using the
Register Object Instance service. Interested federates
will be notified of the existence of such an object
instance via the Discover Object Instance callback to
their federate ambassador.
- Update/Reflect Attribute Values: After infor-
ming the RTI about the existence of an object in-
stance, the registering federate can start sending upda-
tes for this object via the Update Attribute Values ser-
vice. Interested federates will receive updates via the
Reflect Attribute Values callback to their federate
ambassador.
- Send/Receive Interaction: Interactions can be
sent via the Send Interaction service and are received
via the Receive Interaction callback service.
- Delete Object Instance: This service removes
an object instance from a federation execution.
- Change Transport and Ordering Mechanisms:
Object updates and interactions are transported using
certain transportation and ordering mechanisms which
can be changed at runtime. Transportation types
include reliable and besteffort transmission, ordering
mechanisms include time stamp order and receive
order.

Figurei4 gives an example for the usage of the servi-
ces introduced in this section.

Ownership Management

Ownership management can be used by federates and
the RTI to transfer ownership of attribute instances
among federates. The ability to transfer ownership is
intended to support the cooperative modeling of a
given object instance across a federation.

The services provided by this group support both push
and pull mechanisms for ownership transfer.

RTI services include:
- Negotiated Attribute Ownership Divestiture/
Request Attribute Ownership Assumption: The service
Negotiated Attribute Ownership Divestiture is inten-
ded for federates that want to wishes to divest itself of
the instance attribute (push). Request Attribute
Ownership Assumption is the corresponding callback
to the federate ambassador for informing the federate
about the request.
- Attribute Ownership Acquisition/ Request
Attribute Ownership Release: The service Attribute
Owner-ship Acquisition is intended for federates that
want to become owner of a certain set of attributes
(pull). Request Attribute Ownership Release is the
corresponding callback to the federate ambassa-dor
for informing a remote federate about the re-quest.
- Attribute Ownership Divestiture Notification/
Acquisition Notification: These services inform the fed-
erates about the success of their respective requests.

Figurei5 illustrates the push mechanism outlined above.

Time Management

Time management is concerned with the mechanisms
used by simulations to advance through simulation
time. Time advances are coordinated by the RTI with
object management services so that information is
delivered to federates in a causally correct and or-
dered fashion. HLA Time Management provides
mechanisms to support all major types of regimes to
advance simula-tion time, such as (scaled) real-time
and as-fast-as-possible simulations.

An important design principle that is used to allow this
functionality is time management transparency. This
means the local time management mechanism used in a
certain federate does not have to concern other federates.
For instance, a federate using an event-oriented mecha-
nism does not need to know whether the federate with
which it is interacting is also using an event-oriented
mechanisms, or (say) a time-stepped mechanism.

+++ HLA - High Level Architecture for Modelling and Simulation ++
SN

E 16/2, Septem
ber 2006

9

Interface

Runtime Infrastructure

FederationManagement Declaration Management

ObjectObject ManagementManagement Ownership Management
Time Management Data Distribution Management

Federate A

has published an object
class and intends to start

modeling an instance

Federate B

has subscribedto the
object class modeled by

federate “A”

1. Reserve Object Instance
Name (optional)

2. Register object instance

3. Update attribute values

4. Discover object

instance

5. Reflect Attribute

Values

Interface

Runtime Infrastructure

FederationManagement Declaration Management

ObjectObject ManagementManagement Ownership Management
Time Management Data Distribution Management

Federate A

has published an object
class and intends to start

modeling an instance

Federate B

has subscribedto the
object class modeled by

federate “A”

1. Reserve Object Instance
Name (optional)

2. Register object instance

3. Update attribute values

4. Discover object

instance

5. Reflect Attribute

Values

Interface

Runtime Infrastructure

FederationManagement DeclarationManagement
Object Management OwnershipOwnership ManagementManagement
Time Management Data Distribution Management

Federate A

wants to hand over
ownership of object

attribute(s)

Federate B

wants to adopt
ownership of object

attibute(s)

1. Negotiated Attribute
Ownership Divestiture

3. Attribute Ownership
Divestiture Notification

2. Req. Attr. Owner-
ship Assumption

3. Attr. Ownership
Acquisition Notif.

Interface

Runtime Infrastructure

FederationManagement DeclarationManagement
Object Management OwnershipOwnership ManagementManagement
Time Management Data Distribution Management

Federate A

wants to hand over
ownership of object

attribute(s)

Federate B

wants to adopt
ownership of object

attibute(s)

1. Negotiated Attribute
Ownership Divestiture

3. Attribute Ownership
Divestiture Notification

2. Req. Attr. Owner-
ship Assumption

3. Attr. Ownership
Acquisition Notif.

Figure 4: Object management (adopted from [9]). Figure 5: Ownership management (adopted from [9]).

An HLA federation may even include federates using
HLA Time Management services to co-ordinate their
time advances, and others, that do not. In such an
environment, the RTI must determine those federates
that must be considered when coordinating time
advances. Therefore HLA introduces two boolean
flags that determine the federate's time management
characteristics. They are called time-constrained and
time-regulating flags. A time regulating federate is
one that wishes send time-stamped messages to other
federates and thus influence their time advancement.
A time-constrained federate is one that wishes to be
able to receive time-stamped messages, and thus sub-
ordinates itself to the federation time advancement.

The HLA time management services are strongly rela-
ted to the services for exchanging messages, e.g., attri-
bute updates and interactions. There are two general
ordering types for messages under HLA: receive-
order (RO) and time-stamp-order (TSO). Receive-
ordered messages are simply placed in a queue when
they arrive, and are immediately eligible for delivery
to the federate. TSO messages are assigned a time-
stamp by the sending federate, and are delivered to
each receiving federate in the order of non-decreasing
time stamps. Incoming TSO messages are placed into
a queue within the RTI, but are not eligible for deli-
very to the federate until the RTI can guarantee that
there will be no TSO messages for that federate with
a smaller time stamp.

In order to allow the RTI to perform time manage-
ment, a federate must use one of the following time
management services (as appropriate for the internal
time advance mechanism of the federate):

- Next Event Request (NER). Event driven federates
need to process local and external events, i.e., events
generated by other federates, in time-stamp-order. The
federate time, i.e., its logical simulation time, typi-
cally advances to the time stamp of each event as it is
processed. An event driven federate will typically use
the Next Event Request service when it has completed
all simulation activity at its current logical time in
order to advance to the time stamp of its next local
event.
- Time Advance Request (TAR). Time step driven fede-
rates make time advances in time steps with some
fixed duration of simulation time. The simulator does
not advance to the next time step until all simulation
activities within the current time step have been com-
pleted. This type of federate will usually use the Time
Advance Request service to request to advance its
logical time to the next time step.

- Flush Queue Request (FQR). FQR can be used for
optimistically synchronized federates to request the out-
of-order delivery of events. HLA supports optimistic
federates while maintaining time management transpa-
rency. Specifically, the HLA time management services
do not require all federates to support a rollback and
recovery capability even if one federate is using optimi-
stic event processing. FQR is used by optimistic federa-
tes to receive all buffered messages (although there
might be some messages at a later point in time which
carry a smaller time stamp). In such a case the federate
will have to use the other important service Retract,
which can be used to cancel a previously sent message.
The RTI ensures that ‘optimistic’ messages are only
received by optimistic federates, as long as there is a
possibility of a later cancellation of that message.

Using one of these services a typical synchronization
loop of an HLA federate would work in the following
three step order:
1. Request advancement of logical time by

calling the appropriate RTI service
(e.g., NextEvent, ...)

2. Receive zero or more messages from the
RTI (e.g., receive Reflect Attribute Value or
receive Interaction callback from the RTI)

3. Receive a Time Advance Grant callback
from the RTI to indicate that the federate's
logical time has been advanced.

A more detailed discussion of HLA Time Manage-
ment can be found in [10].

Data Distribution Management

The data distribution management (DDM) services
provide a mechanism to reduce both the transmission
and the reception of irrelevant data. Whereas declara-
tion management services provide information on data
relevance at the class attribute level, data distribution
management services add a capability to further refine
the data requirements at the instance attribute level.

This is achieved be defining multi-dimensional rou-
ting spaces. The producers of data (the sending fede-
rates) are expected to specify an update region associ-
ated with a specific attribute update or interaction.
This is the region in which the update or interaction is
relevant. Receiving federates have to specify which
regions they are interested in (subscription regions).
The actual data transfer only takes place if the update
and subscription regions for a specific update or inter-
action overlap (Figure 6).

The usage of DDM is optional, but provides a sophi-
sticated means for the minimization of the amount of
transferred data and thus the network load.

++ HLA - High Level Architecture for Modelling and Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

10

Figure 6: Data distribution management -
example of routing spaces.

2.3 HLA Object Model Template Specification

The Object Model Template (OMT) defines the way in
which federations and federates have to be documented.
The HLA object models are the formal definition of the
data that is transferred between federates [13] and thus
are one of the main vehicles for interoperability in HLA.
While the HLA interface specification provides for
the technical interoperability between software sys-
tems regardless of platform and language (the ‘trans-
mission line’, the object model template (OMT) defi-
nes the ‘language’ spoken over that line).

HLA applies an object oriented world view which is
slightly different from the one known from the area of
object oriented programming (OOP). In HLA, two
types of classes exist: object classes and interaction
classes. Object classes describe the simulated entities
with their attributes. Interaction classes describe the
relationships between different object classes, i.e.,
their interactions, and can have parameters associated
with them. In contrast to OOP, HLA object models do
not specify the methods of objects, since in the com-
mon case the behavioral description is nothing that
needs to be transferred between federates.
It should be noted that this object oriented world view
does only define how federates have to represent
themselves to other federates. The object oriented
world view does not dictate any internal representa-
tion inside the federate, i.e., it merely defines the
interface to the outside world.

The HLA specification requires that each individual fede-
rate provides a so-called simulation object model (SOM)
which is produced according to the OMT. The SOM of a
federate defines its modeling capabilities in terms of what
kind of data the federate is providing to other federates
and what it is expecting to receive from others.

In addition to each federate's SOM, the HLA speci-
fication also requires that for each federation a so-
called federation object model (FOM) is provided.

The FOM is a superset of the information from the
individual SOMs of the federates. It thus contains all
the classes defined by the individual participants of
the federation and gives a description of all shared
information. The FOM can be seen as a contract
among n simulations to satisfy the objectives of a spe-
cific federation.

In general, the object models under HLA describe:
- The set of objects chosen to represent the real

world for a specific simulation/federation.
- The attributes, associations, and interactions

of these objects.
- The level of detail at which these objects

represent the real world, including spatial
and temporal resolution.

Both the SOM and the FOM are based on a format
specified in the OMT, which is a general template spe-
cifying the tables that need to be documented:
- Object Class Structure Table: This table lists
the namespace of all simulation/federation object
classes and describes their class-subclass relations-
hips. Thus it contains the (static) object class descrip-
tions of a federate/federation and supports hierarchi-
cal class structures. There is no mechanism for multi-
ple inheritance.
- Interaction Class Structure Table: This table
describes the ‘dynamics’ among objects by depicting
all possible types of interactions among them. It also
supports class-subclass relationships.
- Attribute/Parameter Table: This table gives
detailed information about objects and interactions by
specifying the ‘features’ of object attributes and in-
teraction parameters in a simulation/federation.
- Data Type Table: This table specifies details
of the data representation in the object model. This is
esp. important since HLA allows the specification of
complex and enumerated datatypes.
- FOM/SOM Lexicon: Each term listed in one
of the above tables (e.g., object class names) has to be
described in a verbal form in this part of the OMT.
The FOM/SOM lexicon is essential to ensure that the
semantics of the terms used in an HLA object model
are understood and documented.

The issue of defining semantic interoperability is very
difficult to solve. For a general, non-application spe-
cific architecture like HLA, it is necessary to keep
application specific definitions separated from the ac-
tual architecture definition. In its predecessor DIS this
guideline had not been taken account of, leading to a
mixture of network protocol and application specific
definitions.

+++ HLA - High Level Architecture for Modelling and Simulation ++
SN

E 16/2, Septem
ber 2006

11

In HLA a strict separation of syntactic and semantic
interoperability has been followed. HLA provides the
syntax for interoperability. For solving the semantic
interoperability, HLA provides the framework for its
definition, i.e., the templates for establishing the
object models (SOM and FOM), but the task of filling
the contents is left to the federation developers.

Since establishing FOMs and agreeing upon common
definitions and understandings of certain terms which
might be contained in a specific FOM is an effort and
time consuming task, the notion of reference FOMs
was soon introduced. Reference FOMs are not part of
the actual HLA definition. They are usually establis-
hed by a group of people from a certain niche of the
simulation community, summarizing all the semantic
definitions agreed upon in this group. One example
for such a reference FOM is the Real-time Platform
Reference FOM (RPR-FOM), which has been develo-
ped in one of the SISO PDGs. The RPR-FOM provi-
des the definitions commonly used in the real-time
simulation community.
The process of developing object models is supported
by different existing tools (e.g., the Object Model
Development Tool (OMDT) by AEgis, the Visual
OMT by Pitch). These tools provide an intuitive user
interface for creating object models and allow the con-
version between the HLA 1.3 format of the OMT and
the new XML-based IEEE 1516 representation.

3 Recent Developments

This section introduces recent developments and
ongoing efforts that go beyond the existing HLA stan-
dard trying to improve it or to come up with alterna-
tive solutions.

3.1 COTS Simulation Package Interoperability

Soon after the creation of HLA it became obvious that
its applicability would not be limited to military ap-
plications. A majority of HLA's concepts could also
form the basis for a much needed simulation interop-
erability standard in the civilian simulation commu-
nity, the manufacturing, logistics, and transportation
industry being example target application areas.

Since simulation models in industry are mainly de-
signed and developed in commercial-off-the-shelf
(COTS) simulation packages, the prerequisites in this
sector are different. As HLA itself is not focused on
coupling models created in COTS simulation pack-
ages, ways have been investigated to adopt HLA for
the usage with these packages [2,3,14]. Principal so-
lutions have been developed for several packages,
SLX being one of the first [15].

Ongoing standardization activities concentrate of
defining standardized ways of providing HLA based
interoperability for COTS packages. The challenge
here is not in adopting HLA as such, but coming up
with an easy and standardized approach for a certain
class of simulation problems. The necessity of these
efforts is derived from the different possibilities of us-
ing the HLA standard, e.g., a simple matter like entity
passing from one model to another can be solved in
different ways: an entity being passed could be mod-
eled as an HLA interaction sent from a sink in the first
model to a source in the second model. An equivalent
solution could model the entities as HLA object in-
stances and use ownership management services to
pass the entities [16]. Both solutions are valid HLA-
based solutions, but they are not interoperable.

The SISO PDG on Commercial Off-the-Shelf Simula-
tion Package Interoperability is devoting its efforts to
solving these problems [17]. Their approach is based
on establishing so-called interoperability reference
models (IRM). These IRMs describe different classes
of commonly faced problems when adopting HLA for
a COTS package and a standardized way to solve
them. It is anticipated that COTS package vendors
adopt these IRMs when creating HLA interfaces for
their packages, thus achieving full interoperability for
the designated problem classes.

3.2 SISO Standardization Activities

SISO is devoted on continuously creating standards
and solutions for simulation interoperability issues. As
already discussed, the HLA-Evolved PDG is in charge
of revising the HLA standard within the cyclic 5-year
review process of IEEE. Other important PDGs are
briefly described in the following.

BOM PDG - Base Object Model Specification. Base
Object Models (BOMs) can be considered as reusable
packages of information representing independent
patterns of simulation interplay, and are intended to be
used as building blocks in the development and exten-
sion of simulations [18].
The BOM is intended as a component-based standard
for describing a reusable piece part of a federation or
an individual federate. BOMs provide developers and
users a modular approach for defining and adding new
capabilities to a federate or federation, and in quickly
composing object models. BOM elements include
object classes, interaction classes, patterns of inter-
play, state machines, and events.
SRML PDG - Simulation Reference Markup Lan-
guage. SRML is an XML-based language for descri-
bing and executing web-based simulation models.

++ HLA - High Level Architecture for Modelling and Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

12

SRML is defined as an XML schema that adds simu-
lation behavior to XML documents.

The intention of the PDG is to standardize SRML as
the interchange of self-describing simulation models
that include content and behavior, as well as standar-
dizing the description of how that language would
operate in a simulator. The fundamental premise is
that an open XML-based standard language and exe-
cution environment for simulations will benefit the
simulation industry in a similar way to that in which
the standardization of HTML and the web browser
have benefited the general computing industry.

3.3 Standardization Activities outside SISO

The German Armed Forces Technical Centre for
Communications and Electronics, WTD 81, has taken
a very active role in the evaluation of the applicability
of HLA and has introduced several interesting con-
cepts that go beyond it.
Initially, the efforts started with the sponsored de-
velopment of GERTICO. GERTICO is an acronym
for ‘GErman Run-Time Infrastructure based on
COrba’. With this effort, the WTD has propagated its
preference for building HLA on top of an existing
well-known standard like CORBA.

In a related effort, the WTD has devised the concept
of pSISA. pSISA is the Proposed Standard Interface
for Simulation Applications. Its purpose is to foster
the reusability of the HLA interface code and to ease
the implementation of HLA compliant applications.
The major design goal is the complete encapsulation
of the RTI in a object oriented shell. The application
programming interface (API) accessible to the appli-
cation is largely based on the object model to convey.
As a result, the API is object oriented and can be built
by a code generator from the HLA simulation object
model (SOM) to provide C++ classes in one-to-one
correspondence with the SOM object.

Simulations built on pSISA are thus expected to be
independent from the underlying communication
infrastructure. The latter can be based on CORBA,
HLA, or any other upcoming standard [19].
Further discussions and standardization efforts out-
side SISO are driven by several national groups out-
side USA, e. g. the HLA Competence Centre in Mag-
deburg, Germany with its annual HLA-Forum [20].

4 Evaluation and Summary

This section attempts to give an unbiased evalua-tion of
the current state of HLA and its potential for the future.

4.1 Is HLA worth the effort?

An often heard opinion about HLA is that it is too com-
plex to use, too heavy in its performance characteristics
and that there is too much overhead involved in using it.
Admittedly, HLA with its federate interface specifi-
cation is indeed one of the most complex standards out
there. Consequently, there is certainly a rather high
learning curve between getting a first glance at the stan-
dard and having the first federation running.

However, with the objectives in mind that HLA was
developed for, the author has the strong conviction that
it would be difficult if not impossible to devise a stan-
dard with less complexity still fulfilling all require-
ments HLA fulfills. The answer to the question, if it is
always HLA that is needed to network two simulators
highly depends on the circumstances. If there is a very
high certainty that the two simulators must be networ-
ked for a single purpose only and it is highly unlikely
that they ever be re-used again, then there are certainly
solutions for networking them with less effort and over-
head. Otherwise the effort for creating a standardized
interoperable version of both simulators with a high
degree of reusability is certainly worth it.

4.2 Will HLA ever become a mainstream technology?

Having been involved with HLA on both sides, acade-
mia and industry, the author postulates the thesis that
HLA is far from becoming a mainstream standard for
civilian simulation applications. This also concurs
with the observation made by Boer [14] in his PhD
thesis. One main reason can certainly be seen in the
degree of simulation usage itself. Even though much
progress has been made, simulation is still a niche
technology not applied in day-to-day business in
today's industry.

Take the example of the automotive industry: Simula-
tion has received a major push with the digital factory
initiatives of many OEMs. Still, their efforts are mainly
focused on the introduction of digital planning methods.
Digital planning also involves more simulation than in
earlier times, but it is still tackled with a monolithic
approach: All data is centrally stored in one planning
database. Planning and simulation is bound to the tools
of one software vendor. Interoperability between ven-
dors and their (simulation) tools is not yet an issue
which is on the demand list of the OEMs. Considering
the increasing globalization and networking with sup-
plier structures, it will become an issue rather soon.

Therefore the author has the strong believe that there
is a rather good potential for usage of HLA in civilian
applications. However, it will only become a main-

+++ HLA - High Level Architecture for Modelling and Simulation ++
SN

E 16/2, Septem
ber 2006

13

stream technology if the standard is incorporated into
commercial simulation systems by its vendors. This is
the prerequisite for making it a commodity techno-
logy that can be used like any other plug-and-play
standard today.

4.3 Summary

Looking back at about 10 years of history, HLA can
certainly be regarded a success. It continues to be the
leading simulation interoperability standard and is
constantly being maintained and improved by the
community itself.

HLA's open approach to define interfaces and functio-
nalities of an infrastructure software rather than provi-
ding a black box implementation has allowed soft-
ware vendors to create their own HLA implemen-
tations and become established in the distributed
simulation market.

Although HLA adoption in the non-military sector has
been rather cautious, good work is underway to stan-
dardize user-friendly HLA-usage with COTS simu-
lation packages. The adoption of the HLA standard by
COTS package vendors will be the prerequisite for
continuing HLA's success in this community.

References

[1] T. Schulze, S. Straßburger, U. Klein: Migration
of HLA into Civil Domains: Solutions and
Prototypes for Transportation Applications.
In: SIMULATION, Vol. 73, No. 5, pp. 296-303,
November 1999.

[2] S. Straßburger: Distributed Simulation Based
on the High Level Architecture in Civilian
Application Domains. Ghent: SCS-Europe
BVBA, 2001. ISBN 1-565552180.

[3] M.D. Ryde, S.J.E.Taylor: Issues in Using
COTS Simulation Packages for the Interopera-
tion of Models. In: Proceedings of the 2003
Winter Simulation Conference, eds. S. Chick,
P. J. Sánchez, D. Ferrin, D. J. Morrice, pp. 772-
777. Dec. 7-10, 2003. New Orleans, USA.

[4] S. Taylor, B. Gan, S. Straßburger, A. Verbraeck:
HLA-CSPIF Panel on Commercial Off-the-Shelf
Distributed Simulation. In: Proceedings of the
2003 Winter Simulation Conference, eds.
S. Chick, P. J. Sánchez, D. Ferrin, D. J. Morrice,
pp. 881-887. December 7-10, 2003.
New Orleans, USA.

[5] M. Rabe, F.-W. Jaekel: Non Military use of HLA
within Distributed Manufacturing Scenarios. In:
Proceedings Simulation und Visualisierung '01,
(Eds.) T. Schulze, V. Hinz, S. Schlechtweg.
Magdeburg, 22.03-23.03.

[6] S. Straßburger, G. Schmidgall, S. Haasis:
Distributed Manufacturing Simulation as an

Enabling Technology for the Digital Factory.
In: Journal of Advanced Manufacturing Systems
(JAMS). Vol. 2, No. 1 (2003) 111-126.

[7] Pitch Technologies AB: Differences between
HLA 1.3 and HLA 1516. Available online at
WWW.PITCH.SE/hla/abouthla1516.asp

[8] DoD Interpretations of the IEEE 1516-2000
series of standards, IEEE Std 1516-2000, IEEE
Std 1516.1-2000, and IEEE Std 1516.2-2000.
HTTPS://WWW.DMSO.MIL/public/library/projects/

hla/rti/DoD_interps_1516_Release_2.doc

[9] J. Dahmann: HLA Tutorial.
1997 Spring Simulation Interoperability
Workshop, Mar. 3-7, 1997, Orlando.

[10] R. M. Fujimoto: Parallel and Distributed
Simulation Systems, Wiley Interscience, 2000.

[11] IEEE 1516-2000: IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA) - Framework and Rules.

[12] IEEE 1516.1-2000: IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA) Federate Interface Specification.

[13] IEEE 1516.2-2000: IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA) - Object Model Template (OMT)

[14] C. A. Boer: Distributed Simulation in Industry.
Rotterdam: Erasmus Research Institute of
Management, 2005. ISBN 90-5892-093-3.

[15] S. Straßburger, T. Schulze, U. Klein,
J.O. Henriksen: Internet-based Simulation using
off-the-shelf Simulation Tools and HLA.
In: Proceedings of the 1998 Winter Simulation
Conference, eds. D.J. Medeiros and E. Watson,
1669-1676. SCS, Washington, D.C.

[16] S. Straßburger, A. Hamm, G. Schmidgall,
S. Haasis: Using HLA Ownership Management
in Distributed Material Flow Simulations. In:
Proceedings of the 2002 European Simulation
Interoperability Work-shop. June 2002. London,

[17] SISO-Homepage of the CSPI-PDG. Available
onlineat WWW.SISOSTDS.ORG/index.php?
tg=articles&idx=More&article=43&topics=21

[18] BOMs Homepage. Available online at
WWW.BOMS.INFO.

[19] T. Usländer, R. Herzog, K. Pixius, H.-P. Menzler:
A CORBA infrastructure plugged into a German
pSISA architecture. Simulation Interoperability
Workshop, Fall 2000.

[20] HLA-Kompetenzzentrum Magdeburg. Available
online at WWW.KOMPETENZZENTRUM-HLA.DE

Corresponding author: Steffen Straßburger
Fraunhofer Institute for Factory Operation and Automation,
Sandtorstrasse 22, 39106 Magdeburg, Germany
steffen.strassburger@iff.fraunhofer.de

Received: April 27,2006
Accepted: May 19, 2006

++ HLA - High Level Architecture for Modelling and Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

14

SN
E 16/2, Septem

ber 2006

15

+++ Lookahead Computation in G-DEVS/HLA ++

Introduction

On the one hand, G-DEVS [7] lies in its ability to
develop uniform discrete event executable specifica-
tions for hybrid dynamic systems with a scientifically
controlled degree of accuracy. Hence, models of con-
tinuous and discrete components can be represented
with the same formalism using only a continuous time
representation.
On the other hand, HLA [16] allows integrating dis-
tributed simulations, located on several computers
with different operating systems, into a global simula-
tion. HLA-compliant distributed simulations inter-
communicate by exchanging messages eventually
synchronized.
A first DEVS/HLA compliant environment was pro-
posed by Zeigler et al. in [20, 21]. In this environment,
distributed DEVS simulations intercommunicate
through the interface (RTI) specified by HLA. In [14],
Lake et al. have proposed a DEVS/HLA environment
improvement by using the HLA lookahead. In [18],
we have proposed a DEVS/HLA environment using
the HLA lookahead without moving the management
of the coupling relations from the RTI level to the
federate level as in [14].

The focus of this article is to improve the DEVS/HLA
environment proposed in [18]. For that purpose, in a
first part, we compute a lookahead depending on the
current state of DEVS models with lifetime function
depending on only one state variable. It allows incre-
asing the value of the HLA lookahead.
Then, we propose going further in the improvement of
the HLA lookahead computation. This computation
tackles DEVS/G-DEVS models for which state lifeti-
mes are functions of more than one state variable. This
lookahead computation is based on the shortest and
longest path search algorithms in a graph.

This improvement permits to compute non-zero HLA
lookahead values from models with complex lifetime
functions. This result is significant because the use of
greatest values for the lookahead improves the per-
formances of distributed simulation according to lite-
rature on distributed discrete event simulation [5].
This article is organized as follows. Sectioni1 gives a
brief recall on DEVS/G-DEVS formalisms and HLA
standard. Sectioni2 recalls previous DEVS/HLA map-
ping. Sectioni3 exposes the approach proposed for
improving the lookahead computation of the DEVS/
G-DEVS HLA environment. Finally, we conclude by
giving some simulation results that illustrate the per-
formances of the proposed algorithm.

1 Recall

1.1 Generalized Discrete Event System

Specification (G-DEVS)

Traditional discrete event abstraction (e.g. DEVS)
approximates observed input-output signals as piece-
wise constant trajectories. G-DEVS defines abstrac-
tions of signals with piecewise polynomial trajectories
([7]). Thus, G-DEVS defines coefficient-event as a
list of values representing the polynomial coefficients
that approximate the input-output trajectory. There-
fore, a DEVS model is a zero order G-DEVS model
(the input-output trajectories are piecewise constants).
Formally, G-DEVS represents a dynamic system
(DESN) as an n order discrete event model expressed

as a structure:

DESN = < XM, YM, S, δint , δext , λ, D, Coef >

The following mappings are required:

XM = An+1, where A is a subset of integers or real
numbers that represents external input events

YM = An+1, represents output events
S = Q × (An+1), is the set of sequential model states

Lookahead Computation in G-DEVS/HLA Environment

Gregory Zacharewicz, Claudia Frydman, Norbert Giambiasi
Université Paul Cézanne, Marseille, France

{gregory.zacharewicz; norbert.giambiasi; claudia.frydman}@lsis.org

In this article, we present new methods to evaluate lookahead of DEVS/G-DEVS federates participating in a
HLA federation. We propose first an algorithm to compute the lookahead according to the current state of a
DEVS/G-DEVS model. This solution is designed for models with lifetime function depending on one state
variable. Then, we extend this computation to models with lifetime functions defined with several state vari-
ables. We use the Dijkstra graph theory search to compute the different values of state variables and a mathe-
matical function analysis to determine the lookahead for the model states. Finally, we illustrate with an ex-
ample how this solution extends the range of DEVS/G-DEVS models that can be involved into distributed

simulations and we present some simulation results.

++ Lookahead Computation in G-DEVS/HLA +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

16

There Q is a set of state variables, and An+1 is a subset
of state variables that stores last input coefficient
event.
For all total state (q, (an, an-1, ... , a0), e), with e being

elapsed time in S, 0 # e # D(S), and a continuous
polynomial input segment w : < t1, t2 > 6 x, the follo-
wing functions are defined.

The internal transition function: that defines the
autonomous state changes for the transient states, (i.e.
states for which lifetime is a finite value):

δint (S) = δint (q, (an, an-1, ... , a0)) =

Strajq,x (t1 + D (q, (an, an-1, ... , a0)), x)

with x = anitn + an-1itn-1 + ... + a1it+ a0, and Straj is

the model state trajectory with

w q 0 Q and w w : <t1, t2> 6 x,
Strajq,x : <t1, t2> 6 Q

The external transition function: that defines the
state changes caused by external events:

δext (S, e, XM) =

δext (q, (an, an-1, ... , a0), e, (a’n, a’n-1, ... , a’0)) =

Strajq,x ((t1 + e), x’)

with Coefi(x) = (an, an-1, ... , a0) and

Coefi(x’) = (a’n, a’n-1, ... , a’0)

Coefi: function to associates n-coefficient of all con-

tinuous polynomial function segments w over a time
interval < ti, tj >, to the (n+1) constants values

(an, an-1, ... , a0) such as:

w(t) = anitn + an-1itn-1 + ... + a1it + a0

Coefi-1: the inverse function of Coef is applied to

transform an output event in piecewise continuous
polynomial trajectory:

Coefi-1(an, an-1, ... , a0) = anitn + an-1itn-1 + ... + a1it+ a0

The output function: triggered by autonomous state
changes, it produces output events:

λ(S) = λ (q, (an, an-1, ... , a0)) = (a’n, a’n-1, ... , a’0)

The function defining the lifetime of states: that
represents the maximum length or lifetime of a state,
with Otraj is the model output trajectory:

D(S) = D (q, (an, an-1, ... , a0)) =

min { e | Coef (Otrajq,x (t1)) < >

+Coef (Otrajq,x ((t1 + e)}

Otrajq,w : < t1, t2 > 6 Y

1.2 DEVS / G-DEVS Coupled Model

Zeigler has introduced, in [23], the concept of cou-
pled model. Every basic model of a coupled model
interacts with the other models to produce a global
behaviour. The basic models are, either atomic mod-
els, or coupled models stored in a library. The model
coupling is done using a hierarchical approach.

A discrete event coupled model (DEVS or G-DEVS)
is defined by the following structure:

MC = < X, Y, D, {Md | d 0 D}, EIC, EOC, IC, Select>

X: set of external events,
Y: set of output events,
D: set of components names,
Md: DEVS/G-DEVS models,
EIC: External Input Coupling relations,
EOC: External Output Coupling relations,
IC: Internal Coupling relations,
Select:defines priorities between simultaneous

events intended for different components.

Note that to allow the coupling of different degree
models ports, Giambiasi et al. have defined in [7], a
coupling model component to transform the polyno-
mial order of events exchanged.

1.3 DEVS / G-DEVS Simulator

The concept of abstract simulator has been proposed
in [23] to define the simulation semantics of the for-
malism. The architecture of the simulator is derived
from the hierarchical model structure.
The processors involved in a hierarchical simulation
are Simulators, which insures the simulation of the
atomic models, Coordinators, which insures the rou-
ting of messages between coupled models, and the
Root Coordinator, which insures the global manage-
ment of the simulation (e.g. Figurei1.a, without con-
sidering crosses out).
The simulation runs by exchanging specific mes-
sages (corresponding to different kind of events) be-
tween the different processors.

1.4 The High Level Architecture (HLA)

The High Level Architecture (HLA) is a software
architecture specification for global simulations that
can include a variety of simulation programs imple-
mented on distant computers and/or to reuse existing
simulations by interconnecting them ([6]).

Dr. Straßburger presents in this journal an overview of
this specification ([16]).

SN
E 16/2, Septem

ber 2006

17

+++ Lookahead Computation in G-DEVS/HLA ++

Implementation components

An HLA federation simulation is composed of fed-
erates and a Runtime Infrastructure (RTI) ([11]).
A federate is a HLA-compliant program, the code of
that federate keeps its original features but must be
extended by other functions to communicate with
other members of the federation. These functions,
contained in the HLA-specified class code of Feder-
ateAmbassador, make interpretable by a local proc-
ess the information received resulting from the federa-
tion. Therefore, the federate program code must in-
herit of FederateAmbassador to complete abstract
methods defined in this class used to receive informa-
tion from the RTI.

The RTI supplies services required by a simulation, it
routes messages exchanged between federates. It is
composed of two parts.

The Local RTI Components code (LRC, Figurei1b)
supplies external features to the federate for using RTI
call back services such as the handle of objects and the
time management. The implementation is the class
RTIAmbassador, this class is used to transform the
data coming from the federate in an intelligible format
for the federation. The federate program calls the
functions of RTIAmbassador to send data to the fede-
ration or to ask information to the RTI. Each LRC
contains two queues, a FIFO queue and a time stamp
queue to store data before delivering to the federate.

Finally, the Central RTI Component (CRC, Figurei1b)
manages the federation notably by using the informa-
tion supplied by the FOM [16] to define Objects and
Interactions classes participating in the federation.
Object class contains object-oriented data shared in the
federation that persists during the run time, Interaction
class data are just sent and received.

A federate can, through the services proposed by the
RTI, ‘Publish’ and ‘Subscribe’ to a class of shared data.
‘Publish’ allows to diffuse the creation of object instan-
ces and the update of the attributes of these instances.
‘Subscribe’ is the intention of a federate to reflect attri-
butes of certain classes published by other federates.

HLA time management

In order to respect the temporal causality relations in
the simulation stated in [15], HLA [4,i5] proposes clas-
sical conservative [1,i2] or optimistic [12] synchroniza-
tion mechanisms. We focus in this article on conserva-
tive synchronisation and event driven mechanism.

We recall here the time management notions from
[9,i10,i11], implemented in the 1516 compliant RTI
implementation, that will be exploited in the follo-
wing of this article:

Lookahead: Delay given by influencers federates to
the RTI. They certify to the RTI not to emit message
until their actual time plus their lookahead.

GALT (Greatest Available Logical Time): Time
stamp, computed by the RTI, until influenced feder-
ates will not receive information from the federation
(i.e. minimum lookahead of its influencers federates).

NMR NextMessageRequest(t) (NMR(t)): Federate
function to ask for grant to the RTI, to deal an event
time stamped t. If the RTI callbacks the federate with
TimeAdvanceGrant(t), this federate is sure to have
received all events at ti’ # t and can emit events time
stamped ti” > t.
NMRA NextMessageRequestAvailable(t) (NMRA(t)):
differs from NMR(t) in the call-back function. Time-
AdvanceGrant(t) answer to NMRA(t), ensures the
federate to have received all events at ti’ < t and allows
it to emit events at t # ti”. In return, the federate is not
sure to have received all events time stamped t.
LITS (Least Incoming Time Stamp): Federate LITS is
a lower bound until which the federate will receive no
message, this value is calculated from its GALT and
the messages in transit not received yet by the federate
(i.e. messages stored in the LRC queue).

2. Previous DEVS/HLA Mapping

2.1 Components Mapping

Zeigler et al., in [20,i21,i22], present a first integra-
tion of DEVS Coordinators in a HLA-compliant
architecture. They map local coupled models in HLA
federates whose coordinators of higher level will have
responsibility to communicate with a Time Manager
federate. TM routes messages between distributed
coordinators. This federation of coordinators defines a
global distributed coupled model.

2.2 Integrating Algorithms

As recalled in the previous section, deterministic
distributed simulations require synchronization
mechanisms in order to treat events in respect to cau-
sality. In consequence, DEVS/HLA federates must
include integrating algorithms to communicate with
the RTI (i.e. in order to handle received messages
from the federation and to emit messages in a HLA
format).

++ Lookahead Computation in G-DEVS/HLA +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

18

Zeigler et al. have proposed in [22] a first integrating
algorithm of DEVS models into a HLA-compliant
environment. To guarantee the global synchronization
of Local Coordinators, this approach exploits conser-
vative algorithm of [1,2] mechanism available in HLA
[11]. In [14], Lake et al. have given a second approach
for mapping DEVS into HLA that resolves deadlock
problems encountered in the first solution. To this end,
this approach notably uses the NMRA(t) service pro-
posed by HLA instead of NMR(t). This two solutions
use a zero or negligible value of HLA lookahead for
every federate ([4]).
Reference [14] also introduced another approach that
uses a not negligible lookahead by globally broadca-
sting event messages among federates and giving to
each federate a global view of DEVS coupling relations.
So, the federates decide to treat or not an event regar-
ding to their history of received events and to their
knowledge of coupling relations. This DEVS/ HLA
environment uses a non-zero constant for the lookahead.
However, some responsibilities of the RTI are transfer-
red to the federates, what bypasses some RTI functions.

3 New G-DEVS/HLA Mapping

3.1 Components Mapping

We have proposed, in [18], an environment for crea-
ting DEVS/G-DEVS models HLA compliant. This
environment proposes two-step for distributing
models (and simulators associated to).
In the first step, the GDEVS coupled model is flat-
tened. The hierarchical structure of a model is a user
facility, which is not necessary adapted to a simulation
purpose. This new simulation structure decreases the
algorithm complexity and so increases simulation per-
formance regarding to the hierarchical one as stated

by Kim et al. and Glinsky et al. in [8,i13]. The flatte-
ning of the structure induces eliminating the crossed
out Coordinators on Figurei1a.
In the second step, the flattened G-DEVS simulation
structure is split into coupled model by federate (Figu-
rei1b) in order to build an HLA federation (i.e. a distri-
buted G-DEVS coupled model). The environment con-
forms to [22] mapping of Local Coordinator and Simu-
lators into HLA federates, but does not use the Time
Manager federate. It maps directly the Root Coordina-
tor into the RTI. The reason of this mapping is the spe-
cification of interface (RTI) proposes services that
enclose those defined in the DEVS Root Coordinator.
Thus, the global distributed model (i.e. the federation)
is constituted of federates intercommunicating.
The G-DEVS models federates intercommunicate by
publishing/subscribing to HLA interactions that map
the coupling relations of the global distributed cou-
pled model. This information is routed between fede-
rates by the RTI in respect to time management and
FOM description.

3.2 G-DEVS/HLA Integrating Algorithms

From the first algorithm of [14], we have proposed in
[18] a solution integrating the use of the HLA looka-
head. This solution can be applied to G-DEVS or
DEVS coupled model. It considers a local G-DEVS
coupled model integrated in a HLA federate. This fed-
erate communicates with other G-DEVS models wit-
hin the federation. We set the federate lookahead as
follows, where S is the set of model states:

Lookahead = Min { D(s) / s 0 S (1) }

We assume to use G-DEVS models with D(S) > 0 to
define a non-zero lookahead.

Moreover, we
state that, in the
case of simulta-
neous events,
we choose to
treat first the
internal event,
then, after
having emitted
an output event
and done a state
change, we pro-
cess simultane-
ous external
events using a
confluent func-
tion.

 Root

Coordinator

Coordinator

B

Coordinator

D

Coordinator

C

Coordinator

A

Simulator

B1

Simulator

D1

Simulator

C1

Simulator

D2

Root

Coordinator

Coordinator

B

Coordinator

D

Coordinator

C

Coordinator

A

Simulator

B1

Simulator

D1

Simulator

C1

Simulator

D2

a)

Interconnection Network

b)

Central RTI

Component

Simulator

B1

Simulator

C1

Simulator

D2

Simulator

D1

Computer 1

Computer 2 Computer 3

Local

Coordinator

AB

Local

Coordinator

ACD

Local RTI

Component

Local RTI

Component

Federate 1 Federate 2

Figure 1:. Components mapping for GDEVS / HLA.

SN
E 16/2, Septem

ber 2006

19

+++ Lookahead Computation in G-DEVS/HLA ++

We recall from [18], in the Figurei2 pseudo-code, the
federate algorithm to communicate with the RTI. The
initial settings define that the actual logical time of
this federate is Tact and it possesses a next local
event planned in its local event list at TnextLocal. It
uses the queryLITS() RTI service defined in the HLA
standard. Using this service, a federate can preserve a
non-zero lookahead value by treating local events
with timestamps earlier than LITS (that evolves

depending on influencers federates data delivering
behaviour and processing speed). In consequence, a
non-zero lookahead federate frees of constraint
federates under its influence for a period equal to
the lookahead. Thus, this situation increases the
parallelism of the global simulation.
It should be noted that our pseudo-code is designed
for the 1516 version of HLA specification and the
1516 compliant RTI implementation.

Figure 2. Federate algorithm.

Do queryLITS()

If (TNextLocal ? LITS)
ComputeOutput() // associated to next local internal event timestamped TNextLocal
SendInteraction(TnextLocal) // send output without reducing federate Lookahead
NMRA(TNextLocal) //RTI 1516 NextMessageRequestAvailable(TNextLocal) and wait for RTI answer

Else // if (TNextLocal > LITS)
NMRA(TnextLocal - Lookahead)
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant (TNextLocal - Lookahead))

queryLITS()
If ((TNextLocal) > LITS)

ModifyLookahead(zero)
Else // If ((TNextLocal) # LITS)

ComputeOutput() // associated to next local internal event timestamped TNextLocal
SendInteraction(TnextLocal) // send output without reducing federate Lookahead

NMRA(TNextLocal) // then wait for RTI answer

Else If (ReceiveInteraction(T’? (TnextLocal - Lookahead)) & TimeAdvanceGrant(T’))
Do

NMRA(T’+ε) // guaranty to have received simultaneous event timestamped T’.
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant(T’+ε))

ComputeExternalTransition() // associated to external events timestamped T’
Break to beginning // with new TnextLocal.

Else If ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’))
AddtoSimultaneousMessageList()

While (TimeAdvanceGrant(T’) < T’+ε)
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant(TNextLocal))

If (output not already sends with positive lookahead)
ComputeOutput() // associated to next local internal event timestamped TNextLocal
SendInteraction(TNextLocal) // send output with zero federate Lookahead

ComputeInternalTransition() // associated to internal event timestamped TNextLocal
Do

NMRA(TNextLocal+ε) // guaranty to have received simultaneous event timestamped TNextLocal.
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant(TNextLocal+ε))

ComputeExternalTransition() // associated to eventual external event(s) timestamped T
ModifyLookahead(min of D(S))
Break to beginning

Else if ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’))
AddtoSimultaneousMessageList()

While (TimeAdvanceGrant(TNextLocal) < TNextLocal +ε)
Else If ReceiveInteraction(T<TNextLocal) & TimeAdvanceGrant(T)

Do
NMRA(T+ε) // guaranty to have received simultaneous event timestamped T.
WaitUntil(RTI responds callback)
If (TimeAdvanceGrant(T+ε))

ComputeExternalTransition() // associated to external event(s) timestamped T
Break to beginning // with new TnextLocal.

Else if ((ReceiveInteraction(T’) & TimeAdvanceGrant(T’))
AddtoSimultaneousMessageList()

While (TimeAdvanceGrant(T) < T +ε)

While (Simulation not end)

++ Lookahead Computation in G-DEVS/HLA +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

20

3.3 First G-DEVS/HLA Lookahead Computation

Improvement

In the two last integrating algorithms [14,i18] pres-
ented in the above section, the lookahead is set to the
minimum of all the states lifetime D(s) of the model.
Indeed, in DEVS/G-DEVS, output events are produ-
ced by output function λ(s) associated to internal tran-
sitions δint that occur when a state lifetime D(s) is

elapsed. Therefore, these solutions always consider
the worst case. In concrete term, the event to be ear-
liest emitted will not have a time stamp lower than the
minimum states lifetime as defined before, but this so-
lution does not take into account the behaviour of the
model (i.e. its current state).

We have proposed in [19] a first improvement in the
lookahead computation in the case of G-DEVS
models with only one state variable, named ‘phase’,
and a constant lifetime function defined for each sym-
bolic value of the phase. Lookaheads relative to the
current state (of the model simulated) are computed
by considering the reachable state list by external tran-
sitions δext for each state.

The lookahead relative to the phase is set to the mini-
mum lifetime of the current state reachable state list,
what gives a relative value superior (or equal in worst
case) to the solution of the previous section that was
using a unique lookahead value during the simulation.

In more details, for a G-DEVS model, the next output
event to be emitted is associated to an upcoming inter-
nal transition. As a result, we have to find the sooner
next internal transition that could be executed from the
current state of the model. We propose to use a graph
search to explore and to determine for each state all
reachable states by a sequence of external transitions.

For that purpose, we defined an algorithm that explo-
res, from a considered state, the graph of reachable
states in order to compute a state relative lookahead.
In Figurei3, we present a pseudo-code algorithm of
this solution that is based on oriented graphs classical
depth-first search algorithm.
We use the list of adjacencies of a considered node of
the graph to obtain the Succeding_States_List. This
algorithm computes the relative lookahead for an
Initial_State, which is equal to Min_D at the end of
the graph exploration (i.e. Min_D is the minimal D(S)
of reachable states).

Let us focus on Figurei4 that represents a simple
DEVS atomic model (i.e. a G-DEVS model of zero
order) with the graphical representation of [17]. The
discrete state of the models considered in this subsec-
tion is defined only by the phase state variable (with
values represented by circles). For that reason, a life-
time value can be associated to each phase value
(referenced by numbers inside circles). Solid arcs
represent external transitions δext ; for instance, mark

com?o1 on an arc of this type describes that the model
state will transit by receiving an input event of o1

value on the input port com. Dotted arcs represent
internal transitions δint ; if it elapses lifetime length in

the source phase of this type of arc, mark out!set

shows, for instance, that the model state will transit
and emit an output event of set value on output port
out. Triangles represent input and output ports.

A

8

C

10

D

9
E

1

F

8

H

5
I

8

com?o1

COMMANDE

“com”

“stop”

“out”

com?o2

com?o3 stop?1

com?o1
com?o1

stop?1

com?o1

com?o1

out!set

out!set out!setout!set

out!set

J

6

G

7

B

10

depth_First_Search (graph, Initial_State)
x // considered state
MinD // minimum lifetime function D(s) value
Succeding_States_List // List of reachable states

// from a considered state by an External Trans.
x <- Initial State
Min_D <- D(x)
Succeding_States_List <- Get_Succeding_States(graph,x)
Do

If (Existing_not_explored_State(Succeding_States_List))
x <- First_State_not_Explored(Succeding_States_List)
Succeding_States_List <- Get_Succeding_States(graph,x)
Mark_Explored(x)
MinD <- min(D(x), Min_D)

Else // x is a leaf or next states already explored
// Go up to 1st preced.state with not-explored child
While (x=! Initila_State

!(Existing_Not_Explored_State(Succeding_States_List)))
Do
x <- Prededing_State(x)
Succeding_States_List <-

Get_Succeding_States(graph,x)
EndWhile

If (Existing_Not_Explored_State(Succeding_States_List))
x <- First_State_Not_Explored(Succeding_States_List)
Succeding_States_List <- Get_Succeding_States(graph,x)

Mark_Explored(x)
MinD <- min(D(x), Min_D)

EndIf
EndIf

While (x=! Initial_State &&
!(Existing_Not_Explored_State(Succeding_States_List)))

Figure 3: G-DEVS model current state relative lookahead. Figure 4: DEVS model current state relative lookahead

SN
E 16/2, Septem

ber 2006

21

+++ Lookahead Computation in G-DEVS/HLA ++

If we consider an absolute lookahead not depending
on the current state, the lookahead of the Figureb4
example is equal to one time unit. If B state is the cur-
rent state of the example, considering the current state
relative lookahead, the lookahead can be increased to
five times units (Figureb4 minimum lifetime of not
shadowed states). Moreover, the computation of all
lookahead values is done before run time and so does
not affect simulation performance.

The restriction of the computation presented in this
subsection comes from the fact that it can only be app-
lied to models with D(S) functions depending on only
one state variable called the phase. Because DEVS/G-
DEVS formalism can express more complex models,
we propose in the next subsection to generalise this
computation for models with D(S) function depending
on several state variables.

3.4 Second G-DEVS/HLA Lookahead

Computation Improvement

In the following, we define an extension of the com-
putation of the lookahead in order to consider G-
DEVS models with state defined by

S = Q × (An+1) with

Q (phase, sigma, Bn) where sigma is the lifetime
function D(S) of the current state, phase is a state vari-
able with symbolic values and Bn (b0, ... , bn) is a (n)-

tuple set of discrete state variables.

An+1: state variables (a0,..., an+1) stores, the (n+1)-tuple

polynomial coefficients of the last external event occur-
red with A subset of real numbers or integers ([7]).

The phase defines explicit subset of state set, which
allows representing graphically the DEVS/G-DEVS
models as stated in [17].

The Bn n-tuple finite set of integer valued state varia-
bles completes the definition of the considered G-
DEVS model state.

The values of the state variables are modified by the
δext and δint transition functions. Note that we do not

consider the elapsed time in the current state to change
the values of the next state.

Moreover, in the G-DEVS models considered, each
lifetime is a mathematical function of D(phase, Bn), it
does not depend on An+1 (e.g. Figureb5a).

Path search in G-DEVS models

The lookahead is the minimum delay to emit an output
event, which corresponds to the earliest next λ(s)
among the reachable phase values by a sequence of δext.

Path search algorithms seem to be suited to analyze
the variation of state variables involved as parameters
of D(s), because the considered G-DEVS models can
be represented by nodes/arcs. The only mismatch
comes from classical graph path search al-gorithms
only consider one variable (i.e. that is the path weight
between two nodes), but G-DEVS models graphs can
possess more than one state variable. In the conside-
red model, there are n state variables B.
A key to this mismatch is to decompose a considered
G-DEVS model (e.g. Figureb5a) into as many sub-
models as the model contains state variables B. From
each submodel with S = ((phase, sigma, B), An+1), we
create an oriented graph by representing the phase
values of the G-DEVS model as nodes and the δext as

edges (e.g. Figures 5 b, c, d).
The edges of a G-DEVS sub-model are weighted by the
part of the δext function that handles the considered B
state variable. Therefore, it implies that the state varia-
bles of Bn are independent in the expression of δext (i.e.

each B variable must only be dependent on constant
values or on itself in the δext functions). We can apply

on the obtained oriented graphs a path search algorithm
to track the variations of state variable B.

Dijkstra path search

Considering an oriented graph (obtained from a G-
DEVS sub-model) and the phase value phasei, we

define the following function, which computes the
shortest path (in terms of a considered bj of Bn) to

reach each other phasek by a sequence of δext :

ShortestPath(phasei, bj, phasek) = min bj in phasek
/ considering an initial value of bj in phasei

and k 0 reachable phase value list of phasei
For example in Figureb5b, the shortest path from
phase A to the others phase values, considering state
variable b1, is 10 for reaching phase B, 2 for C, 10 for

D and not defined for E because it is not linked from
A by external transition.
To implement the ShortestPath function, we applied
the Dijkstra Algorithm ([3]) that fulfils requirements
of the function. The limitation is that this algorithm is
not suited for graphs that contain circuits with edges
of negative weight; indeed the looping of such circu-
its decreases iteratively the weight of the path. As a re-
sult, the considered G-DEVS models must contain
only B variables defined on R+ and δext functions that

only increment the state variables of Bn. We notice
that others algorithms (e.g. Warshall and Floyd) allow
the use of negative weight edges but the studied
graphs still must no contain negative weight circuit.

++ Lookahead Computation in G-DEVS/HLA +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

22

We use the modified Dijkstra Algorithm (by chang-
ing the values searched from Min to Max) to find the
longest path from a considered phase value to all oth-
ers. This search computes the state variable B maxi-
mal values for each reachable phase value. It implies
a restriction on graphs type; it can be applied only to
acyclic graphs (i.e. without circuits) because finding
the longest path in a cyclic graph has been shown to
be an NP-hard problem. Notice that cyclic graphs can
be considered only if all state lifetimes D(s) contain
no decreasing part since we do not search for the
maximum of the state variables.

State lifetime D(s) analysis

Using min/Max values of state variables of Bn (obtai-
ned from shortest/longest path computation), we
exploit mathematical backgrounds to study the varia-
tions of state lifetime D(s). We consider D(s) as real-
valued functions of several variables. The functions
must be continuous, defined and derivable in all
points of the state variables values range in order to
determine their minimal value regarding to min/Max
values of the state variables of Bn. To respect these
definitions, we bound the study to linear state lifeti-
mes D(s) defined by independents state variables (i.e.
a linear function of several variables b1, b2, ... , bn) is

described in the following:

f (b1, b2, ... , bn) = α0 + α1b1+ ... + αnbn
with α0 , α1, ... , αn constant real values

Taking into account the restrictions on state lifetime
D(s), we can compute a minimum value of state life-
time of a reachable phase value from a considered one
regarding to min/Max values of the state variables.
More formally, for a phase value phasek and the state

variables b1, b2, ... , bn, the state lifetime is defined by

the following formula:

D ((phasek, sigma, Bn), An+1) = α0 + α1b1+ ... + αnbn

if αi < 0 consider maximum value of bi, i = 0, ... , n
if αi # 0 consider minimum value of bi, i = 0, ... , n

By repeating this computation for each reachable pha-
sek from a considered phasei, we calculate the looka-
head of the considered phase value equal to the mini-
mum of all the reachable phase value state lifetime
D(s) (we do not consider sigma and An+1) by:

Lookahaed (phasei) = min D(phasek, min/Max (Bn))
for all k from reachable phase value list of phasei

If some G-DEVS models federates in a G-DEVS cou-
pled model federation do not respect the restriction on
state lifetime D(s) and on the state variables variations
or if state lifetime D(s) computation concludes to a
negative value result, then no minimum of state life-

time D(s) can be
computed. We set, in
that case, the looka-
head of these G-
DEVS model feder-
ates equal to a mini-
mum value ε negligi-
ble regarding to va-
lues taken by state
lifetime D(s) . The-
reby, the simulation
is constrained and
slowed (lookahead).

Lookahead compu-

tation example

Figureb5a-example is
an order 1 G-DEVS
model. We consider
an initial state with
phaseb=A and b1=b2

= b3= a0 = a1= 0.

We focus on the com-
putation of the look-
ahead of phase A.

“out”“in”

out!0,1

phase, b1, b2, b3, a0, a1

B
D(S)= b2+b3

C
D(S)= 2b1+b2

D

D(S)=
3b1+b2-2b3

E
D(S)= 10

in?2,2
a0=2, a1=2
b1=b1+10
b2=b2+2
b3=b3+2

out!4,5

out!0,7

out!1,0

out!1,4
in?1,2
a0=1, a1=2
b1=b1+3
b2=b2+1
b3=b3+6

in?2,1
a0=2, a1=1
b1=b1+8
b2=b2+4
b3=b3+1

in?2,1
a0=2, a1=1
b1=b1+2
b2=b2+2
b3=b3+1

in?1,1
a0=1, a1=1
b1=b1+1
b2=2b2

GDEVS ATOMIC MODEL

A
D(S)=

b1+b2+5

phase, b2

B C

D

E

b2=b2+2

b2=b2+1 b2=b2+4

b2=b2+2

b2=2b2

A

b)

c) d)

phase, b1

B C

D

E

b1=b1+10

b1=b1+3 b1=b1+8

b1=b1+2

b1=b1+1

A

phase, b3

B C

D

E

b3=b3+2

b3=b3+6 b3=b3+1

b3=b3+1

b3=b3

A

Figure 5: Lookahead computing in G-DEVS model with complex lifetime function.

a)

SN
E 16/2, Septem

ber 2006

23

+++ Lookahead Computation in G-DEVS/HLA ++

As a result, we determine the reachable phase values
from A by a sequence of external transitions that are
B, C, and D. The state lifetime D(s) values of these
phase values are dependent on the external transition
passed from A to attain the considered phase value.
For instance, state lifetime D(s) of phase D is equal to
3b1+b2-2b3. It implies to consider the minimum value

of b1 and b2 and the maximum value of b3. Djikstra

algorithms find out the extreme values of the state
variables for each phase value.
We focus first on the submodel represented in Figu-
reb5b that only considers the phase and b1. From the

initial state, we compute that b1 minimum value is 10

time units in phase B, 2 for C, 10 for D and not defined
for E. By repeating the same process, we compute b2

minimum, values in Figureb5c. The minimum of b2 is 2

for B, 2 for C, 3 for D and not defined for E.
In Figureb5d: b3 minimum is 2 for B, 1 for C, 2 for D and

not defined for E. Because the D(s) function of phase D
contains a subtraction, it is necessary to compute b3

maximum value; in Figureb5d that is equal to 8 for D.
Using these values, we compute the minimum values of
D(s) functions for each reachable phase value from A:

min D(A, min/Max (Bn)) = b1 + b2 + 5 = 0+0+5 = 5

min D(B, min/Max (Bn)) = b2 + b3 = 2+2 = 4

min D(C, min/Max (Bn)) = 2b1 + b2 = 4+2 = 6

min D(D, min/Max (Bn)) = 3b1+b2-2b3= 30+3-16=17

The lookahead of phase A is equal to the minimum D(s)
of all reachable phase values, thus set to 4 time units.

Using the same approach, we can compute the HLA
lookahead for all phase values of the model. The loo-
kahead is employed in the communication algorithm
defined in [18] and recalled in Figure 2.
The limitation of this solution comes from its non-
generic capabilities to handle all DEVS formalised
models. In more details, this improvement does not
allow to extend the lookahead computation to all kinds
of DEVS/G-DEVS models; e.g. models with non-
explicit phase, state variables defined on R and nonli-
near D(s) functions are not considered in this study.

4 Simulation results

We have implemented the algorithm of Figureb2 on
two distributed Pentium 4-based computers with 2.4
GHz, 256 Mb RAM, Windows XP OS, interconnected
by a 10 Mbps LAN. We ran G-DEVS coupled models
federations, of 2, 4, 6 and 8 G-DEVS federates distri-
buted on the two computers, in order to measure the
influence of the lookahead value on the execution
time. In the tests, each federate contained a G-DEVS
atomic model and published/subscribed to coupling
HLA interactions to define the federation as a ‘closed-
chain’ of coupled model federates. The code was de-
veloped in Java and the RTI (running on a third simi-
lar computer of the LAN) was the pRTI1516 of Pitch.

Figureb6 shows that G-DEVS federation execution is
speeded up using a maximum lookahead (computed
from the lifetime of the G-DEVS models phase as
presented in 3.3 and 3.4). This assertion is done regar-
ding the run time of the same federates models with
half-reduced lookahead (representing the first so-
lution proposed in 3.2 with a unique lookahead) and
with negligible (min) lookahead (representing the pre-
vious solutions recalled in 2.2).
The experiment also deduces that the speedup is
nearly linear in number of federates. Thus, federates
with a negligible lookahead value always produce an
important overhead regarding federates with a maxi-
mal lookahead. This overhead increases with the fed-
eration size and appears clearly in Figureb6 to slow
significantly the simulation as stated theoretically.

5 Future work

The lookahead computation algorithm is still under
the scope of our studies. We are working on the
improvement of this computation, particularly in the
case of computing a longest path. Because computing
the longest path is restrictive on the class of G-DEVS
models that can be handled, we try to compute it using
algorithms of estimate for the longest path proposed in
the literature.
We are also studying other kind of state lifetime D(s)
functions to be considered (e.g. real valued of several
variables interaction functions, distance functions,
constrained functions).

Conclusions

In this article, we have presented a new HLA look-
ahead computing algorithm for distributed G-DEVS/
DEVS models that uses the Dijkstra path search in a
graph.

0

10

20

30

40

50

60

70

80

90

100

110

2 4 6 8

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

)

Lookahead min

1/2 Lookahead

Lookahead Max

Figure 6. Execution time versus Lookahead value

++ Lookahead Computation in G-DEVS/HLA +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

24

It considers G-DEVS models with explicit phase and
D(s) depending on several state variables instead of
previous solutions that were considering DEVS models
with D(s) depending only on one state variable. In
addition, a benchmark experiment has been performed
to confirm the speedup of the G-DEVS federation exe-
cution due to the new lookahead computation.
Finally, this improvement extends the class of G-
DEVS models that can be involved in a G-DEVS fed-
eration. These models can be, more generally, cou-
pled with heterogeneous HLA-compliant programs
that respect, of their sides, the distributed time man-
agement constraints and the event exchanged format.

References

[1] R. E. Bryant: Simulation of packet communica-
tion architecture computer systems. Technical
Report MIT/LCS/TR-188, MIT, 1977.

[2] K. M. Chandy, J. Misra: Distributed simulation:
A case study in design and verification of
distributed programs. IEEE Transactions on
Software Engineering, 5(5):440-452.

[3] E.W. Dijkstra: A note on two problems in
connexion with graphs. Numerische Mathematik,
1:269-271, 1959.

[4] R. M. Fujimoto: Zero lookahead and repeatabi-
lity in the high level architecture. In Spring
Simulation Interoperability Workshop (SIW),
number 97S-SIW-046, Orlando, FL, 1997.

[5] R. M. Fujimoto: Time management in the high
level architecture. Simulation, 71(6):388-400.

[6] R. M. Fujimoto: Parallel discrete event simula-
tion. Wiley Interscience, New York, 2000.

[7] N. Giambiasi, B. Escude, S. Ghosh: G-DEVS
A Generalized Discrete Event Specification for
Accurate Modeling of Dynamic Systems.
Transactions of the Society for Computer
Simulation International, 17(3):120-134, 2000.

[8] E. Glinsky, G. A. Wainer: DEVStone: a Bench-
marking Technique for Studying Performance of
DEVS Modeling and Simulation Environments.
DS-RT 2005: 265-272, Montreal CA, 2005.

[9] IEEE std 1516-2000: IEEE Standard for
Modeling and Simulation (M&S) - High Level
Architecture (HLA) - Framework and Rules.
IEEE, NY, NY, USA, 2001.

[10] IEEE std 1516.1-2000. IEEE Standard for
Modeling and Simulation (M&S) High Level
Architecture (HLA) - Object Model Template
(OMT) Specification. IEEE, NY, NY, USA, 2001.

[11] IEEE std 1516.2-2000. IEEE Standard for Model-
ing and Simulation (M&S) High Level
Architecture (HLA) - Federate Interface
Specification. IEEE, NY, NY, USA, 2001.

[12] D.R.Jefferson: Virtual Time. ACM Trans.
Prog. Lang. and Syst. 7(3):404-425, 1985.

[13] K. Kim, W. Kang, B. Sagong, H. Seo: Efficient
Distributed Simulation of Hierarchical DEVS

Models: Transforming Model Structure into a
Non-Hierarchical One.
33rd ASS, 2000 Washington, D.C. p. 227, 2000.

[14] T. Lake, B.P. Zeigler, H.S. Sarjoughian,
J. Nutaro: DEVS Simulation and HLA Lookhead.
In Simulation Interoperability Workshop (SIW),
number 00S-SIW-160, Orlando, FL, 2000.

[15] L. Lamport: Time, clocks and the ordering of
events in a distributed system. Communication
of the ACM, 21(7):558-565, July 1978.

[16] S. Straßburger: Overview about the High Level
Architecture for Modelling and Simulation and
Recent Developments". SNE 16/2, Special Issue
Parallel and Distributed Simulation Methods
and Environments, September 2006, pp 5-14.

[17] H. S. Song, T.G. Kim: The DEVS framework
for discrete event systems control. In 5th Conf.
on AI, Simulation and Planning in High Autono
mous Systems:228-234, Gainesville, USA, 1994.

[18] G. Zacharewicz, N. Giambiasi and C. Frydman:
Improving the DEVS/HLA Environment. In
DEVS Integrative M&S Symposium, DEVS'05,
2005 SCS Spring Simulation Multiconf. Spring-
Sim'05, San Diego, CA, USA, April 3-7 2005.

[19] G. Zacharewicz, N. Giambiasi and C. Frydman:
A New Algorithm for the HLA Lookahead
Computing in the DEVS/HLA Environment.
In SISO European Simulation Interoperability
Workshop (EUROSIW), number 05E-SIW-028,
Toulouse, France, 2005.

[20] B. P. Zeigler, J.S. Lee: Theory of quantized
systems: formal basis for DEVS/HLA distributed
simulation environment. SPIE, 3369 (Enabling
Technology for Simulation Science II):49-58,
A.F. Sisti Ed, 1998

[21] B. P. Zeigler B.P., G. Ball, and al.: The DEVS/
HLA Distributed Simulation Environment And Its
Support for Predictive Filtering. Technical
Report Dept., DARPA Contract
N6133997K-0007, UA, Tucson, AZ, 1998.

[22] B. P. Zeigler, G. Ball, H.J. Cho and J.S. Lee:
Implementation of the DEVS formalism over the
HLA/RTI: Problems and solutions.
In Simulation Interoperation Workshop (SIW),
number 99SSIW-065, Orlando, FL, 1999.

[23] B. P. Zeigler, H. Praehofer, T.G. Kim: Theory
of Modeling and Simulation. 2nd Edition,
Academic Press, New York, NY, 2000.

Corresponding author: Gregory Zacharewicz,
gregory.zacharewicz@lsis.org
Gregory Zacharewicz, Claudia Frydman, Norbert Giambias
LSIS, Université Paul Cézanne, Marseille, France
UMR CNRS 6168 Université Paul Cézanne
Marseille, France
{norbert.giambiasi; claudia.frydman}@lsis.org

Received: March 4, 2006
Revised: June 8, 2006
Accepted: July 6, 2006

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

25

Introduction

The widespread use of M&S is leading to execution of
larger and more complex systems. One way of hand-
ling this complexity is to devote more memory and
processor cycles through the use of multiple resources
[1]. Parallel discrete event simulation (PDES) studies
the execution of discrete event models in parallel or
distributed computers [1]. The main concern of this
community was to reduce execution time of applica-
tions by using multiple processors, and a large number
of synchronization algorithms were developed [1].
Most of these algorithms are based on Chandy-Misra-
Bryant [2,i3] and Time Warp [4], which introduced
fundamental ideas that are still used.
Another way to attack these problems considered
using the DEVS formalism [5] as the modelling fra-
mework for PDES [6,i7,i8,i9]. DEVS is a sound for-
mal framework based on generic dynamic systems
concepts that supports provably correct, efficient,
event-based simulation. DEVS enables the construc-
tion of models in a hierarchical, modular fashion, allo-
wing component reuse and reducing development and
testing time.

Cell-DEVS [10] combines cellular automata [11] with
DEVS theory, improving timing definition. Individual
cells are defined as DEVS models and coupled to
form complete cell spaces. CD++ [12] is an M&S
tool that implements DEVS and Cell-DEVS theory. A
hierarchical, conservative parallel simulation mecha-
nism has been implemented in CD++, showed impro-
ved results for both DEVS and Cell-DEVS [8]. Howe-
ver, its degree of parallelism and speedups are boun-
ded. Here, we introduce a new technique for optimi-
stic simulation of large, complex DEVS and Cell-
DEVS models in CD++. The technique combines the
Time Warp synchronization mechanism and the DEVS

abstract simulators. We introduce two new classes of
DEVS processors that carry out the simulation effi-
ciently across multiple processors. In our approach,
the hierarchy of the simulation objects is flattened to
reduce communication overheads, using a flat simula-
tion approach that eliminates the need for intermedi-
ate coordinators [7,i13]. Consequently, it reduces the
overhead of message passing, improving the overall
performance of the simulation.

1 DEVS and Cell-DEVS

The DEVS formalism [5] provides a framework for
the definition of hierarchical modular models, allo-
wing for model reuse and development time reduc-
tion. A DEVS model is described as a composite of
models, each of them being behavioural (atomic) or
structural (coupled). P-DEVS [6] provides a flexible
way of dealing with simultaneous events. An atomic
DEVS model is defined as:

M = < XM, YM, S, δext, δint, δcon, λ, ta >

At any given time, an atomic model is in state s during
a period defined by ta(s). When that time expires, an
internal transition takes place; the system outputs the
value λ(s) and then it changes to the state specified by
δint(s). If one or more external events (XM) occur

before ta(s), the new state is given by the external
transition function, δext(s ,e, XM), which uses a bag of

events to allow multiple events to be processed simul-
taneously. If external and internal transitions are in
conflict (an external event is received at this time), the
new state is given by δcon(s).

Coupled models are defined as a set of basic compo-
nents (atomic or coupled) interconnected through the
model's interfaces. The model’s coupling defines how
to convert the outputs of a model into inputs for the
others. A coupled model is:

Parallel Simulation Techniques for DEVS/Cell-DEVS Models
and the CD++ Toolkit

Gabriel Wainer, Ezequiel Glinsky, Carleton University, Ottawa, Canada
WWW.SCE.CARLETON.CA/faculty/wainer

DEVS is a sound formal modelling and simulation (M&S) framework based on generic dynamic system con-
cepts. Cell-DEVS is a formalism for cell-shaped models based on DEVS. This work presents a new simula-
tion technique for execution of DEVS and Cell-DEVS models in parallel/distributed environments. The paral-
lel simulator is based on Time Warp, and developed as a new simulation engine for CD++, an M&S toolkit
that implements DEVS and Cell-DEVS theories. The technique uses a non-hierarchical approach that simpli-
fies the structure of the simulator and reduces the communication overhead. The results obtained

allowed us to achieve considerable speedups.

CM = < X, Y, D, {Md | d 0 D}, EIC, EOC, IC >

X is the set of inputs, Y is the set of outputs, D is a set
of the component names; for each d 0 D, Md is a basic
DEVS model; the external input couplings set (EIC)
defines how to connect external inputs to components;
the external output couplings set (EOC) defines how
to connect component to external outputs; and the
internal couplings set (IC) defines how to interconnect
components.
Cell-DEVS [10] allows the specification of executa-
ble cell spaces with explicit timing delays, which
allows easy definition of complex behaviour in physi-
cal systems. A parallel Cell-DEVS atomic model [14]
can be defined as:

TDC = < Xb, Yb, S, N, d, τ, τcon, δint, δext, δcon, λ, D >

Each cell uses a set of N inputs to compute the next
state. These values are received through a well-defined
interface (Xb and Yb), activating a local function (τ, τcon),

which uses the cell's inputs and present state (S). d defi-
nes the kind of delay and D is the state’s duration func-
tion. The model advances through the activation of δint,

δext, δcon, λ, and D, as in other DEVS models.

After the behaviour for a cell is defined, the complete
cell space will be constructed by building a coupled
Cell-DEVS model:

GCC = < Xlist, Ylist, X, Y, n, {t1, ..., tn}, N, C, B, Z >

The cell space is a coupled model composed of an n-
sized array of t1H ... H tn atomic cells (C). Each of them
is connected to the cells defined by the neighbourhood
(N). As the cell space is finite, the border (B) can have
different behaviour than the rest of the space. X is the
set of input events and Y is the set of output events.
Xlist and Ylist are the lists of input and output couplings.

Finally, the Z function defines the internal and exter-
nal coupling of cells in the model. CD++ [12] imple-
ments DEVS and Cell-DEVS formalisms. Atomic
models can be defined in C++ or an interpreted gra-
phical notation, while coupled and Cell-DEVS models
are defined using a built-in specification language.

2 Optimistic PDES of DEVS Models

As mentioned earlier, we want to combine advanced
DEVS simulators with PDES. In PDES, the simula-
tion is subdivided in smaller parts running on different
nodes. Each subpart is a sequential simulation, usually
referred to as a Logical Process (LP), which groups
one or more objects running in a node [1]. Simulation
objects communicate through timestamped messages.

Objects located on different LPs have to traverse the
boundaries of the LPs to interact with each other. Syn-
chronization is key in these cases, as the difference in
execution speeds can mix events with different time-
stamps, causing causality problems (i.e., an event in
the past affects the present). Conservative synchroni-
zation algorithms avoid violating causality constraints
at all times [2,i3]. Although many conservative algo-
rithms are currently found in real-world applications,
they have two main disadvantages ([1]): it is not pos-
sible to take full advantage of the concurrency in the
application, and the simulator has to be specifically
designed to exploit concurrency, leading to a complex,
tedious design process.
Optimistic synchronization, instead in [4], allows
some causality errors to occur, but provides a detec-
tion/ recovery mechanism. Optimistic algorithms ena-
ble greater degree of parallelism, and they do not rely
on application-specific data.

2.1 The CD++ simulator

CD++ was built as a class hierarchy in C++, where
each class corresponds to a simulation entity using the
basic concepts defined in [5]. There are two basic
abstract classes: Model and Processor. The former is
used to represent the behaviour of the atomic and cou-
pled models, while the latter implements the simula-
tion mechanisms. Simulators manage the atomic
models. Coordinators manage coupled models. The
Root Coordinator manages global aspects. CD++ was
redesigned to provide parallel execution of DEVS and
Cell-DEVS [8]. The parallel version of CD++ was
built on top of Warped [15], a simulation kernel that
provides an implementation of Time Warp with diffe-
rent optimizations. Warped uses the MPI message pas-
sing standard for communication [16]. Although
Parallel CD++ showed speedups in the execution of
both DEVS and Cell-DEVS models, a single Root
Coordinator still acts as a global scheduler for every
node in the simulation.

Another problem is that most DEVS simulators are
hierarchical, creating a one-to-one correspondence
between model components and simulation objects.
Since the simulation advances by exchanging messa-
ges between simulation objects, communication costs
can be considerable. Flat simulation mechanisms,
instead, try to reduce this overhead by simplifying the
underlying simulator structure, while keeping the
model definition and preserving the separation bet-
ween model and simulator.
Flat simulation approaches have been implemented in
distributed [7] and stand-alone [13] environments.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

26

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

There are two basic abstract classes in CD++: Model and
Processor. The former is used to represent the behavior
of the atomic and coupled models, while the latter imple-
ments the simulation mechanisms. Simulators manage
the atomic models. Coordinators manage coupled
models. The Root Coordinator manages global aspects
(starting/stopping the simulation, communication with
environment). This reflects the clear distinction between
model and simulator. We took advantage of this separa-
tion of concerns by focusing on the processors’ class
hierarchy only. All classes inheriting from model remain
unchanged from those defined in earlier versions of the
tool, allowing direct reuse of existing models.

Two new classes are introduced [17]: Flat Coordina-
tor (FC) and Node Coordinator (NC). Additionally,
we modified the Simulator and Root Coordinator
classes (Figureb1). The algorithms we defined are
based on those in [6] and [14]. The Root Coordinator
only handles I/O operations, and starts/stops the simu-
lation. The NC is in charge of synchronization and
time management for the LP. The FC is responsible
for receiving, translating, and sending messages bet-
ween its descendants, using a flat data structure with
coupling information for every component.

In order to run the model on a distributed environ-
ment, we need to indicate the nodes that will partici-
pate in the simulation, and how they are allocated to
each processor. Figureb2 shows an example where two
atomic models run on Processor 0, three atomic
models run on Processor 1, and the remaining two
models on Processor 2. Node coordinators handle
inter-processor communication.

During the creation and registration of each
Simulator object, they are associated to the cor-
responding LP. NCs can communicate with each
other using inter-LP messaging. The Root Coor-
dinator executes on one LP, and it forwards mes-
sages from the environment to the correspon-
ding NC. On the other hand, when a NC proces-

ses an output that must be sent back to the envi
ronment, it is sent to the Root Coordinator.

2.2 Abstract simulators in CD++

We will describe the simulation mechanism by pre-
senting the behaviour of each Processor. The simula-
tion is message-driven. Different messages can be
exchanged among processors: init (initialization), q
(external input), y (output), @ (collect), * (internal
transition), and done.

Simulator

A Simulator is created for each atomic component or
cell. It is responsible of executing the functions of the
associated model, as follows.

When the initialization message is received, variables
are initialized (linesi2 andi3) and the simulator
informs its parent the time of the next scheduled inter-
nal transition (line 5).

When a simulator receives a collect message (@,t),
it generates an output, which is sent to the parent flat
coordinator (lines 3-5).
When an external message (q, t) is received, it is sto-
red in the bag of external events (linei12). These mes-
sages will be used later, when the external transition is
triggered.

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

27

Processor

Simulator RootCoordinator NodeCoordinator FlatCoordinator

0:atomic_4
atomic_5

1:atomic_1
atomic_2 atomic_3

2:atomic_6
atomic_7

Flat Coordinator #0

Simulator #4

Node Coordinator #0

Root Coordinator

Simulator #5

Flat Coordinator #1

Simulator #1

Node Coordinator #1

Simulator #3 Simulator #2

Flat Coordinator #2

Simulator #6

Node Coordinator #2

Simulator #7

Processor 0 Processor 1 Processor 2

Figure 2. Model partition file for CD++.

Figure 1: New Processor class hierarchy [17]

1 when (init, 0) message is received
2 initialize model’s variables
3 tL = 0
4 t = ta (s)
5 send (done,t) to parent flat coord.
6 end when

An internal message (*,t) triggers the execution of
a transition function. The simulator executes one of
the three transition functions based on t (elapsed time
since the last transition), tN (time of the next schedu-

led transition), and the contents of bag of external
events, as showed in the following code fragment. If
t<tN (lines 2-6) and the bag of external events con-

tains at least one element, the external transition is
executed. If t=tN (lines 7-9), it is time for the internal

transition. However, if the bag is not empty and t=tN
(lines 10-13) the confluent transition has to be execu-
ted. In every case, after executing the corresponding
transition, a done message is sent to the parent flat
coordinator, indicating the next scheduled transition
time (lines 17-19).

Flat coordinator

A flat coordinator has one or more simulator children
(in charge of the atomic components), and one parent
node coordinator. The flat coordinator uses model
coupling information to translate output events into
input events. Additionally, it synchronizes models that
are imminent in this logical process using a structure
called synchronize set.

When the initialization message is received, the flat
coordinator forwards it to all its children to complete
the initialization phase (lines 3-5). Using the done
messages received from them, the minimum time of
next change is computed and communicated to the
parent node coordinator (lines 6-8).

When a collect message (@,t) is received, it is sent
to all dependant simulators with minimum t (lines 3-
7). Once all the responses are received (line 8), a done
message is sent to the parent node coordinator. Simu-
lators that have been scheduled for a transition are
cached in the synchronize set.

If the destination of the output (y,t) message is the
environment, the message is sent to the parent node
coordinator (lines 2-3; above).
If not, all influencees of the message are computed
using the function zij, and one or more (q,t) mes-

sages are sent accordingly (lines 5-13).

SN
E

16
/2

,
Se

pt
em

be
r

20
06

28

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

1 when a (@, t) message is received
2 if t = tN then
3 y = λ(s)
4 send (y,t) to parent flat coord.
5 send (done,t) to parent flat coord.
6 else
7 raise error
8 end if
9 end when
10 /***********************************/
11 when a (q, t) message is received
12 add event q to the bag
13 end when

1 when a (*, t) message is received
 2 case tL ≤ t < tN
 3 e = t - tL
 4 s = δext (s, e, bag)
 5 empty bag
 6 end case
 7 case t = tN and bag is empty
 8 s = δint (s)
 9 end case
10 case t = tN and bag is not empty
11 s = δcon (s, bag)
12 empty bag
13 end case
14 case t > tN or t < tL
15 raise error
16 end case
17 tL = t
18 tN = tL + ta (s)
19 send (done, tN) to parent flat coord.
20 end when

1 when (init, 0) message is received from
 parent node coordinator
2 tL = 0
3 for each child simulator si
4 send (init, 0) to child si
5 end for each
6 wait until all done messages receiv.
7 tN = minimum tN of all components
8 send (done, tN) to parent node coord.
9 end when

 1 when a (@, t) message is received from
 parent node coordinator
 2 if t = tN then
3 tL = t
 4 for each imminent child si with min. tN
 5 send (@, t) to child si
6 cache i in the synchronize set
 7 end for each
 8 wait all done messages received
 9 send (done, t) to parent node coord.
10 else
11 raise error
12 end if
13 end when

 1 when (y,t) message received from child i
 2 if destination of y is the environment
 3 send (y, t) to parent node coordinator
 4 else
 5 for each influencee j of child i
 6 q = zi,j (y)
 7 if (j is a local processor) then
 8 send (q, t) to child j
 9 cache j in the synchronize set
10 else
11 send (q,t) to parent node coord.
12 end if
13 end for each
14 end if
15 end when

For destination processors on the same LP, messages
are sent directly to the simulator (lines 8-9). Messages
for remote simulators are sent to the parent node coor-
dinator (line 11), which will forward them to the cor-
responding LPs. Local components with scheduled
transitions are cached in the synchronize set.

When an external message (q,t) is received in a flat
coordinator, it is stored in a bag of events.

Upon receiving an internal message (*,t), the flat
coordinator sends the external messages stored in the
bag to the corresponding components (lines 3 to 8 in
the following fragment). All the receivers of these
messages are added to the synchronize set. Then, an
internal message is sent to all components in the syn-
chronize set. After all done messages are received
back from these components, the time of the next
event is calculated and a done message is sent to the
node coordinator (lines 13-17).

Node coordinator

One node coordinator is located on each LP, and it has
one flat coordinator child. Node coordinators drive inter-
LP communication, and advance the simulation time in
the local LP based on the information received from the
root coordinator and from its dependant flat coordinator.

The algorithms describing its behaviour are described
next.
The initialization message, sent by the root coordina-
tor, triggers the simulation in each LP. An initializa-
tion message (init,0) is sent to the flat coordinator
(line 2), which will forward it to every simulator.

The first simulation cycle starts after a (done,t)
message is received. The time for the first collect mes-
sage is determined by the minimum between the first
element in queue of external events and the time of
next change reported by the flat coordinator (lines
3-5). next-message-type is used to determine
which type of message has to be sent. If the message
to be sent is a collect (lines 6-17), the process is ana-
logous to the initialization phase: minimum time t is
computed, events with time t are sent (if any), the col-
lect message is sent (linei16) and the next message
type is set to internal (line 17).
When an internal (*,t) message has to be sent to
finish the current simulation cycle, the type of the next
message is set to collect (line 4).

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

29

 1 when (*,t) message is received from
 parent node coordinator
 2 if tL ≤ t ≤ tN then
 3 for each q ∈ bag
 4 for each local receiver sj of q
 5 send (q, t) to sj
 6 cache j in the synchronize set
7 end for each
 8 end for each
 9 empty bag
10 for each i ∈ synchronize set
11 send (*, t) to i
12 end for each
13 wait all done messages received
14 tL = t
15 tN = minimum tN of all components
16 clear the synchronize set
17 send (done,tN)to parent node coord.
18 else
19 raise an error
20 end if
21 end when

 1 when a (init, 0) message is received
 from root coordinator
 2 send (init, 0) to child flat coord.
 3 wait for done message to be received
 from flat coordinator
 4 sort queue of events by arrival time
 5 t = min (tN of flat coordinator,
 time of first event in queue)
 6 if t = tN of queue then
 7 for each q in queue with time t
 8 send (q, t)to flat coordinator
 9 end for each
10 end if
11 send (@, t) to child flat coordinator
12 next-message-type = *
13 end when

 1 when a (done, t) message is received
 from child flat coordinator
 2 if next-message-type = * then
 3 send (*, t) to child flat coord.
 4 next-message-type = @
 5 else
 6 t= min (tN of flat coordinator,
 time of first event in queue)
 7 if t > stop simulation time then
 8 stop simulation in this LP
 9 else
10 if t=tN of first event in queue then
11 for each q in queue with time t
12 send (q, t) to flat coord.
13 end for each
14 end if
15 end if
16 send (@, t) to child flat coord.
17 next-message-type = *
18 end if
19 end when

1 when (q,t) message received from
 parent node coordinator
2 if destination of q msg is local then
3 add event q to the bag
4 else
5 raise error
6 end if
7 end when

An external message (q, t) can be received in a node
coordinator either from another (remote) node coordi-
nator or from its dependant flat coordinator. In the first
case, this event must be sent to the dependant flat coor-
dinator (line 3). This happens when a remote atomic
component sends an output through a port connected to
an atomic component executing in the local LP. As we
have shown earlier, this message is forwarded by the
flat coordinator to the corresponding simulator.

The timestamp t of a message received from a remote
node coordinator might be lower than the current time
in this LP. In such a case, the LP has to recover by per-
forming a rollback. The rollback has to bring that
object back to a state whose time is equal or smaller
than the time of the straggler. In addition, the messa-
ges that were (incorrectly) transmitted from this node
coordinator have to be cancelled (anti-messages have
to be sent to the destination objects). In the second
case, the message must be sent to a remote LP. Thus,
it is necessary to determine which node coordinator is
in charge of that LP, and then to send the message
using inter-process communication (lines 5-6).

When a node coordinator receives an output message
from its child (lines 10-16), a message has to be sent
to the environment. The parameter send-outputs-
from-NC determines whether outputs must be proces-
sed directly by the node coordinator (line 12), or via
the root coordinator (line 14). The first alternative
reduces the number of messages required to process
an output (messages do not have to travel through the
root coordinator) but requires some post-processing if
the outputs of multiple node coordinators have to be
merged. The second alternative centralizes the actual
processing of outputs in the root coordinator; it does
not require any post-processing but the overhead is
larger.

When an external event is received from the root co-
ordinator, the event is stored in timestamp order. The
destination simulator for that event will eventually
receive it when that time is reached by the LP.

Root coordinator

The root coordinator is responsible for starting the
simulation, dealing with external events, and sending
outputs back to the environment. It starts the simula-
tion by sending initialization messages to every node
coordinator, located on the different logical processes
that form the simulation.

External events are received from the environment in
the root coordinator, which sends an external event to
node coordinators that have one or more atomic
model that should receive that message (lines 3-6 in
the next code fragment).

Output messages received by the root coordinator are
sent back to the environment. This code is never exe-
cuted if the parameter send-outputs-from-NC is
set; otherwise, the root coordinator consolidates the
processing of output messages.

Figurei3 summarizes the flow of messages using the
previous algorithms. The root coordinator is in charge
of starting the simulation process by sending initiali-
zation messages. When an output is sent from an ato-
mic component to another, we can identify two diffe-
rent cases: Simulators execute on the same or on dif-
ferent LPs. In the first case, the FC on that LP takes
care of the situation. In the second case, a Simulator
on LPi has to send an output to a Simulator on LPj.

FCi identifies that the destination Simulator is not its

descendant.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

30

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

 1 when a (q, t) message is received
 2 if destination q is local
 3 send (q, t) to child flat coord.
 4 else
 5 dest_nc=node coordinator running
 atomic model that must receive q
 6 send (q,t) to node coord. dest_nc
 7 end if
 8 end when
 9 /***********************************/
10 when (y,t) message is received from
 child flat coordinator
11 if send-outputs-from-NC
12 send output (y, t) to environment
13 else
14 send output (y,t) to parent root coord.
15 end if
16 end when

1 when a (q, t) message is received from
 parent root coordinator
2 add q to the sorted queue of events
3 end when

1 for each child node coordinator nc i

2 send (init, 0) to nc i

3 end for each

1 when (q,t) is received from environment
2 tL = t
3 for each child node coord. nci sharing
4 LP with destination atomic model of q
5 send (q, t) to nc i

6 end for each
7 end when
8 when a (y, t) is received from child NC
9 tL = t
10 send (y, t) to environment
11 end when

Thus, it forwards the message to its parent NCi, which

identifies the corresponding LPj and forwards the
message. Inter-LP communication can lead to viola-
tions to the local causality constraint; in that case, a
rollback is triggered.

2.3 Rollbacks in CD++

We will show the execution behaviour of the simulator
presented in the previous section by showing how to exe-
cute a 10 H10 Cell-DEVS model divided in two LPs.
Figure 4 shows the initialization phase. The first simula-
tion cycle is started by the Root Coordinator, which sends
an initialization message to the NCs in LP0 and LP1 (1
and 2). When (init,0) is received in a NC, it is forwar-
ded to the FC (1.1 and 2.1). Then, the FCs forward the
messages to their Simulators (1.2-1.51, and 2.2-2.51),
triggering an initialization function.

After computing the time for the next change (using the
ta(s) function), every simulator sends a done message to
its parent FC reporting its time of next change. For exam-
ple, S1 indicates that there is an internal transition func-

tion to be executed at time 100 (message 1.52), whereas
S2 reports no scheduled internal transition (message

1.53, which contains infinity, and represents that the
model is in a passive state). After receiving all done mes-
sages, the FC sends a done message to its parent NC
(messages 1.103 and 2.103) with the minimum time of
its components (in this case, 100 for both LPs).

Then, the NC checks for external messages to be sent,
and it sends the first collect message to collect the out-
puts of the imminent components. Figureb5 shows how
NCs send the first message to their FCs (1.1 and 2.1),
which forward a collect message to imminent descen-
dants (Simulators with next change = 100). For exam-
ple, in LP0 it is sent to S1 (1.2) but not to S2.

When receiving a collect message, Simulators execute
their output functions and send the result/done messages
to its parent (1.20 and 2.18). FC translates output mes-
sages and sends external messages to the corresponding
local influencees or to the local NC. FC sends a done
message to the NC completing the collect phase.

At this point, the NC is ready to send an internal mes-
sage (*) to start the next phase. The cycle is similar to
the collect phase: the FC forwards the internal message
only to Simulators that have a scheduled transition for
the current simulation time (100). Simulators execute
the internal, external, or confluent transition function
according to the current time, the time of next change
and the state of the bag of events. Done messages are
sent to inform the time for the next transition.

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

31

Flat Coordinator

Simulator

Node Coordinator

Root Coordinator

Simulator

Processor i

init, q y

init, *, @, q q, y, done

init, *, @, q y, done

Node Coordinator

Processor j

q

...

Environment

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1: (init,0)

1.103: (done, 100)

1.52: (done,100)

2: (init,0)

1.1: (init,0)

S2 S3 ... S50

1.2: (init,0) 1.3: (init,0) 1.4: (init,0)

1.53: (done,inf) 1.102: (done,100) ...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.103: (done, 100)

2.52: (done,inf)

2.1: (init,0)

S52 S53 ... S100

2.2: (init,0) 2.3: (init,0) 2.4: (init,0)

2.53: (done,100) 2.102 (done,100) ...

... ...

Figure 3: Message flow: distributed simulation.

Figure 4: Initialization phase in sample Cell-DEVS model.

NCs are in charge of inter-LP communication. If the
message has a timestamp greater than the local time in
the destination, simulation continues. However, if there
is a violation to causality, a rollback has to be executed.
Figureb6 shows the scenario for a straggler message in
processor P0. The local times are t0=280, and t1=210.

In P0, the NC sent an internal message, which FC for-

warded to S1 (1 and 1.1). In P1, NC sent a collect

message (2), which after being forwarded (2.1 to
2.14) resulted in an output from S52 (2.15) that has to

be sent to S1. This message is forwarded as an external

message, q, from the FC (2.16) to the NC. Then, the
NC in P1 forwards it to the NC in P0 (2.17). The time-

stamp of the message, 210, is smaller than the time at
the local processor (280), triggering a rollback in P0.

Figureb7a shows the state of the NC’s input, state, and
output queues at the moment of receiving a straggler
with t=210. Figureb7b depicts the NC’s queues after the
rollback was completed: then, the NC can return to pro-
cess events, starting by the one that caused the rollback.

We defined the previous algorithms using different
services provided by Warped. Figure 8 shows the new
class diagram of the DEVS processors along with
some of methods that implement the algorithms pre-
viously described. Processor is an abstract class that is
derived from TimeWarp class. Processor provides
basic functionality and data that are common to all
DEVS processors in the application. It defines the
methods initialize, executeProcess and finalize as well
as other methods and variables.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

32

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

1.20: (y,100)

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1.1: (@,100)

S2 S34 ... S50

1.2: (@,100) 1.19: (@,100)

1.37: (y,100)

...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.18: (y,100)

2.1: (@,100)

S52 S76 ... S100

2.2: (@,100) 2.17(@,100)

2.33: (y,100) ...

... ...

...

Figure 5: Collect phase in sample Cell-DEVS model.

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1: (*,280)

S2 S34 ... S50

1.1: (*,280)

t0 = 280

...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.1: (@,210)

2: (@,210)

S52 S76 ... S100

2.2: (@,210) 2.14(@,210)

2.15: (y,210) ...

... ...

...

t1 = 210

2.16: (q,210)

2.17: (q,210)

Figure 6: Straggler message received during the simulation of a Cell-DEVS model.

In general, processor in-
cludes the definition of:
- send methods for each
type of message. These
methods use, in turn, sen-
dEvent in TimeWarp.
- Time management
methods (e.g., time-
Next(), timeLast(), time-
Next(VTime), timeLast-
(VTime)), to report and
update the time of the next
scheduled change, the
time of last change, etc.
- Initialize, finalize, and
some debugging methods.
- ExecuteProcess(), which
defines the behaviour of
any DEVS processor.
- rollbackCheck(), which
is called in the receive
method, and checks for
straggler messages.
- Basic variables, such as
the model associated to
this processor, its parent,
id and descriptors.

nodeCoordinator keeps
track of the number of
done messages it has
received (using done-
Count()). Finally, it deter-
mines and updates the
time of next change (using
nextChange(VTime)), and
sends this value to its
parent NC (using send
(doneMsg,dest)).

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

33

 Processor

Simulator RootCoordinator NodeCoordinator FlatCoordinator

TimeWarp

TimeWarp()
~TimeWarp()
initialize()
finalize()
executeProcess()
saveState()
rollback(VTime)
rollbackFileQueues()
calculateMin()
inputGcollect(VTime)
stateGcollect(VTime)
outputGcollect(VTime)
sendEvent()
getEvent()
...

Processor()
~Processor()
executeProcess()
nextChange()
nextChange(VTime)
lastChange()
lastChange(VTime)
model()
receive(initMsg)
receive(doneMsg)
receive(collectMsg)
receive(externalMsg)
receive(internalMsg)
...
send(initMsg, dest)
send(doneMsg, dest)
send(internalMsg, dest)
...
writelog()
rollbackCheck()

initialize()
receive(initMsg)
receive(internalMsg)
receive(externalMsg)
receive(collectMsg)

initialize()
rootInitialize()
receive(outputMessage)
events()
addExternalEvent(Vtime
,port,value)
...

initialize()
addLocalDependants()
receive(initMsg)
receive(doneMsg)
receive(internalMsg)
receive(collectMsg)
receive(externalMsg)
receive(outputMsg)
calculateNextChange()
synchronizeList()
events()
...

initialize()
stopTime(VTime)
events()
getParentNC()
receive(initMsg)
receive(doneMsg)
receive(externalMsg)
receive(outputMsg)
sendOutsFromNC()
...

190
Input queue

tN = 240
tL = 170
...

State queue

(@,190)
Output queue

processed event

unprocessed event

240

tN = 280
tL = 190
...

(@,240)

280

tN = ?
tL = 240
...

(*,280)

330

210

190
Input queue

tN = 240
tL = 170
...

State queue

(@,190)
Output queue

processed event

unprocessed event

240

tN = 240
tL = 190
...

280 330210

Figure 7: (a - top) Reception of a straggler message in a NC,
(b - bottom) State of the NC after the rollback.

Figure 8: Class diagram for the new DEVS processors.

executeProcess is common to every DEVS processor,
and therefore it is not redefined by any of its subclas-
ses. processor.executeProcess() is in charge of getting
the first event in the queue of events (using getEvent),
logging the necessary information, and calling the cor-
responding receive method based on the message type.

The receive methods on each processor implement the
algorithms presented earlier. For example,
receive(initMessage) in a FC sends initialization mes-
sages to all of its descendants (using the send(initMes-
sage,dest)). Second, it has to wait until all done mes-
sages are received from its dependant Simulators.

The receive (initMessage) method on Simulator, in
contrast, initializes the model variables, computes the
time for the next transition (using time advance func-
tion, ta) and sends a done message to its parent.

3 Simulation Experiments

We carried out different performance tests to analyze
the results obtained with the new algorithms. To pro-
vide uniform means for the overhead, we used the
DEVStone benchmark, a synthetic model generator
that automatically creates models [18]. DEVStone uses
three different types of models with variations in their
internal and external structure: LI models, with a low
level of interconnections for each coupled model; HI
models with a high level of input couplings, HO models
with high level of coupling and numerous outputs.
Table 1 shows the parameters we used for different
tests. Each model is executed using a different number
of levels in the modeling hierarchy (Depth), and diffe-
rent number of submodels on each level (Width).
Likewise, different execution times are used for the
transition functions, using the DEVStone benchmark.

The following figures show some of the overhead
results obtained for these different execution times.
The experiments were executed in a single processor,
allowing us to measure the pure overhead incurred by
our simulator.

Figure 9: Execution times for LI models.

Figure 10: Overhead for LI models

In Figureb9 and Figureb10, we present the total execu-
tion time and the overhead for models A-D. We can
see that the stand-alone engine outperforms the opti-
mistic one, because the optimistic simulator is more
complex. In this case, we need extra synchronization,
saving states, input, and output queues, etc. Although
the overhead associated with those tasks can be con-
siderable, the optimistic simulator still outperformed
the conservative simulator for models B, C, and D.
This is a consequence of the reduction in communica-
tion overhead incurred by the flat simulator. In model
A, the hierarchical conservative engine performs better
than the flat, optimistic engine as a consequence of the
structure (3x10) of model A. In this case, the reduction
in messages exchanged is not that important.
Figureb11 illustrates the results for HI models, which
are similar to those obtained for LI.

Figure 11: Overhead for HI models

We executed several Cell-DEVS models using diffe-
rent cell spaces on one and four processors. As we can
see in Figureb12, the execution time for the model
running on one processor varies from 30.7 to 90.8
seconds. When running the model in parallel on 4 pro-
cessors, the execution time is smaller (between 18.1
and 47.5 seconds); in some cases, the optimistic simu-
lator allows to reduce the execution time in ~50%.
Here, the speedup has been affected by the communi-
cation costs, as the tests were executed over a relati-
vely slow network, a 10 Mbit/s hub.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

34

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

A B C D

O
v
e
rh

e
a
d Stand-alone CD++

Conservative mechanism

Optimistic mechanism

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

A B C D

T
im

e
 (

m
s

) Stand-alone CD++

Conservative mechanism

Optimistic mechanism

Theoretical

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

E F G H

O
v
e
rh

e
a
d Stand-alone CD++

Conservative mechanism

Optimistic mechanism

 Type Depth Width δint δext
A LI 3 10 50 ms 50 ms

B LI 10 3 50 ms 50 ms
C LI 5 5 50 ms 50 ms
D LI 10 10 50 ms 50 ms
E HI 3 6 50 ms 50 ms
F HI 6 3 50 ms 50 ms
G HI 5 5 50 ms 50 ms
H HI 6 6 50 ms 50 ms

Table 1: Simulation parameters.

Figure 12: Execution times (1 vs. 4 processors).

We are interested in analyzing the performance of our
simulator for larger Cell-DEVS. Figure 13 shows the
execution times for different configurations for a cell
space of 50x50, using different initial values (life A-
D). The execution times significantly reduce on 8 pro-
cessors. When a 50x50 model is executed on a single
processor, only one LP is created. Hence, a single
instance of a FC is in charge of the 2500 Simulators,
and a single NC is in charge of scheduling tasks for
the entire model. In contrast, the distribution on 8 pro-
cessors allows a smaller structure associated with
each LP (312 Simulators).

Figure 13: Execution times (50x50 model).

The test uses a sample Cell-DEVS model to study the
performance of a firefly model, in which most of the
cells change frequently, producing increased proces-
sor load. We execute models with 400 and 900 cells,
with two initial configurations (modelsi1 toi4). The
optimistic simulator running on a single processor
achieves almost the same performance as the conser-
vative simulator running on 4 processors, which
shows the increased communication costs.

Figure 14 shows that the optimistic simulator allows sig-
nificant speedups: 2.91 for 20x20 models, 3.17 for 30x30
models. The speedup factor obtained by executing the
simulation on 4 processors using the optimistic approach
instead of the equivalent partitioning for the conservative
approach is 2.45 for 20x20 and 30x30 models.

4 Conclusions

We have introduced a new flat simulation technique
for DEVS and Cell-DEVS based on Time Warp, a
well-known optimistic synchronization protocol. Our
efforts address the need for efficient, fast execution of
models using parallel and distributed simulation. We
propose an optimistic distributed mechanism that ena-
bles achieving higher degrees of parallelism than pre-
vious efforts, which only allowed exploiting paralle-
lism in a limited way.

Under our new approach, scheduling tasks are distri-
buted on the Logical Processes; each Node Coordina-
tor is in charge of the scheduling tasks for the local
simulation objects. Node Coordinators advance the
simulation optimistically, assuming that there will be
no straggler events. In case of detecting a violation to
the local causality constraint, a rollback mechanism
allows recovering from it.

Using DEVStone, we compared the overhead of our
new technique with the overhead of previous imple-
mentations. Although the overhead associated with
synchronization tasks implemented by our simulator
can be considerable, it still outperformed previous
alternatives for some models in single-processor exe-
cutions. This is a consequence of the flat mechanism
implemented in our engine, which outweighs the
increased overhead associated with its more complex
implementation.
More importantly, we showed that when executing
different types of DEVS models, the overhead of War-
ped/MPI is reasonable small (2.5%-5%). This is a pro-
mising result, as the amount of speedup time achieva-
ble by these simulators is considerable, and having a
constrained overhead in the kernel permits a better uti-
lization of the computing resources.

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

35
0

50

100

150

200

250

300

350

Life A Life B Life C Life D

T
im

e
 (

s
e
c
)

1 processor 8 processors

0

20

40

60

80

100

256 400 625 900

Number of cells

T
im

e
 (
s
e
c
)

1 processor 4 processors

0

20

40

60

80

100

120

140

160

180

200

Model 1

(20x20)

Model 2

(20x20)

Model 3

(30x30)

Model 4

(30x30)

T
im

e
 (

s
e
c
) cons. 1 processor

optim. 1 processor

cons. 4 processors

optim. 4 processors

Figure 14: Execution times using conservative and
optimistic simulators (1-4 processors).

We showed that the execution times for a particular
Cell-DEVS model can be reduced using distributed
simulation. Different model sizes where considered,
ranging from 256 to 2500 cells.

The execution of the model in a distributed environ-
ment allowed achieving better performance than
stand-alone execution. Using distributed environ-
ments, our simulator outperforms other alternatives
and achieves considerable speedups.

References

[1] R. M. Fujimoto: Parallel and Distribution
Simulation Systems. Wiley. 1999.

[2] R. E. Bryant: Simulation of Packet
Communication Architecture Computer
Systems. MIT, Cambridge, MA. USA. 1977.

[3] K. Chandy, J. Misra: Distributed
Simulation: A Case Study in Design and
Verification of Distributed- Programs.
IEEE Transactions on Software
Engineering, pp. 440-452. 1979.

[4] D. R. Jefferson: Virtual time.
ACM Transactions on Programming
Languages and Systems. vol. 7(3),
pp. 404-425. July, 1985.

[5] B. Zeigler, T. Kim, H. Praehofer:
Theory of Modelling and Simulation:
Integrating Discrete Event and Continuous
Complex Dynamic Systems.
Academic Press. 2000.

[6] A. C. Chow, B. P. Zeigler:
DEVS: A parallel, hierarchical, modular
modelling formalism. Proceedings of the
Winter Computer Simulation Conference.
Orlando, FL. USA. 1994.

[7] K. H. Kim, Y. R. Seong, T. G. Kim,
K. H. Park: Distributed Simulation of
Hierarchical DEVS Models: Hierarchical
Scheduling Locally and Time Warp
Globally. Transactions of the Society for
Modelling and Simulation International.
vol. 13(3), pp. 135-154. 1996.

[8] A. Troccoli, G. Wainer: Implementing
Parallel Cell-DEVS. Proceedings of the
Annual Simulation Symposium.
Washington DC, USA. 2003.

[9] B. Zeigler, Y. Moon, D. Kim, G. Ball:
The DEVS Environment for High-
Performance Modelling and Simulation.

IEEE Computational Science and
Engineering. 4 (3), pp. 61 -71. 1997.

[10] G. Wainer, N. Giambiasi. N-Dimensional
Cell-DEVS. In Discrete Events Systems:
Theory and Applications, Kluwer. Vol. 12,
No. 1. January 2002. pp. 135-157.

[11] S. Wolfram: A new kind of science.
Wolfram Media, Inc.

[12] G. Wainer, G. CD++: a toolkit to develop
DEVS models. Software - Practice and
Experience. vol. 32, pp. 1261-1306. 2002.

[13] E. Glinsky, G. Wainer: Performance
analysis of DEVS environments.
Proceedings of AI Simulation and Planning.
Lisbon, Portugal. 2002.

[14] G. Wainer: Improved cellular models with
parallel Cell-DEVS. Transactions of the
SCS. vol 17 (2). June 2000.

[15] D. Martin, T. McBrayer, P. Wilsey:
WARPED: Time Warp Simulation Kernel for
Analysis and Application Development.
Proceedings of the 29th Hawaii
International Conference on System
Sciences. 1996.

[16] J. Dongarra, J. et al. MPI: The Complete
Reference. The MIT Press. 1996.

[17] E. Glinsky, G. Wainer: New Parallel
simulation techniques of DEVS and
Cell-DEVS in CD++. In Proceedings of
the 38th IEEE/SCS Annual Simulation
Symposium. Huntsville, AL. 2006.

[18] E. Glinsky, G. Wainer: DEVSTONE:
a Benchmarking Technique for Studying
Performance of DEVS Modelling and
Simulation Environments.
Procedings of IEEE/DS-RT. Montréal,
QC. 2005.

Corresponding author: Gabriel Wainer,
Dept. of Systems and Computer Engineering,
Carleton University
4456 Mackenzie Building, 1125 Colonel By Drive
Ottawa, ON. K1S 5B6, CANADA.
WWW.SCE.CARLETON.CA/faculty/wainer

Received: June 5, 2006
Revised: July 1, 2006
Accepted: July 15, 2006

SN
E

16
/2

,
Se

pt
em

be
r

20
06

36

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

SN
E 16/2, Septem

ber 2006

37

+++ SCE based Parallel Processing and Applications in Simulation ++

Introduction

Nowadays, Scientific and Technical Computing Envi-
ronments (SCEs) like MATLAB, Scilab or Octave are
well established in numerical computations. Particu-
larly simulation and optimization applications are
well supported by these environments, often by speci-
alized subsystems and toolboxes. Before the introduc-
tion of SCEs, the development of scientific and tech-
nical computations was exclusively compiler based,
so the process of programming, compiling, linking
and testing had to go through several time consuming
iterations. Advantages of SCEs in contrast to compiler
based programming techniques are the way of inter-
active working, integrated numerical and visualization
libraries, extendability and a very high level program-
ming language.
Due to these advantages, rapid software prototyping
was enabled in the field of computational science and
engineering. One major drawback of SCE based pro-
gramming is that interactive programming is based on
an interpreter, so program execution in SCEs is signi-
ficantly slower than program execution of compiled
programs. To weaken this drawback, several possibi-
lities exist, e.g. code optimization, compilation or
parallel processing.

SCE based parallel processing was first investigated by
The MathWorks Inc. in the middle of the 1980's. These
investigations showed disappointing performance
results, published in 1995 ([1]). Beginning in the same
year, first results of other research projects were publis-
hed ([2, 3]), offering better performance. In a period of
more than eleven years until today, several research and
non-research projects concerning SCE based parallel
processing were executed and produced a number of
extensions to several SCEs, mostly MATLAB. In 2004,
the MathWorks Inc. released the Distributed Compu-
ting Toolbox for Matlab ([4]), following the increasing
demand for parallel processing in SCEs.

In an ongoing research project at the University of
Applied Sciences Wismar, SCE based parallel proc-
essing techniques are investigated ([*]). Main motiva-
tions for this research are simulation and optimization
problems, which cause extensive computations.
Essential results of up to now investigations are pres-
ented in this paper. Sectioni1 introduces parallel pro-
cessing, focusing on a basic taxonomy, recent parallel
hardware architectures and programming techniques.
Sectioni2 gives an overview of SCEs, including
history, representatives, characteristics and possibili-
ties of program acceleration. In Sectioni3, SCE based
parallel processing is discussed. In this section, a new
taxonomy on SCE based parallel processing is pres-
ented, followed by the characterization of existing
projects and their assignment to this taxonomy.
From the formerly presented taxonomy, Sectioni4 focu-
ses the Multi-SCE class. In this section, results of Multi-
SCE communication performance analysis are pres-
ented. Furthermore, new Multi-SCE prototypes are intro-
duced and compared with existing Multi-SCE projects
regarding communication performance. In Sectioni5,
characterization schemes for simulation and optimiza-
tion applications with respect to parallel processing are
presented. Aspects of characterization are parallelism
level, granularity and programming model applicability.
In Sectioni6, simulation and optimization applications
are presented, which have been parallelized under usage
of Multi-SCEs. This presentation includes application
characteristics as well as parallel runtime results. In Sec-
tioni7, major facts of preceding sections are summarized.

1 Parallel Architectures and

Programming Models

1.1 Basic Taxonomy

In the field of parallel processing a large number of
taxonomies have been developed. Usually, taxonomy
scopes are limited either to hardware or software.

SCE based Parallel Processing and Applications in Simulation

René Fink, Sven Pawletta, Thorsten Pawletta, Wismar University, Germany
WWW.MB.HS-WISMAR.DE/cea

Berrnhard Lampe, University of Rostock, Germany; bernhard.lampe@uni-rostock.de

In this paper, an overview of SCE based parallel processing is presented, and a new taxonomy for this field is
discussed. More than 30 SCE based parallel processing projects are listed and categorized with respect to the
new taxonomy. For the Multi-SCE class, performance parameters of several packages are presented in terms of
latency and bandwidth. Furthermore, characterization schemes of parallel simulation and optimization applica-
tions are presented as well as performance results and characteristics of selected applications being parallelized

under usage of Multi-SCE packages.

In this article, a common taxonomy for both hardware
and software structures is used. It is based on a conjunc-
tion of a very general interpretation of the well-known
Flynn taxonomy ([5]) and the usual classification of
memory structures into shared and distributed units.
Flynn distinguishes hardware architectures by the
number of instruction streams simultaneously applied
to one or more data streams via processing elements,
leading to the four basic classes SISD, SIMD, MISD
and MIMD. In [6] it is shown that this principle is also
applicable to software structures. For instance, a pro-
cess or thread can be seen as processing element,
where a code sequence is applied as instruction stream
to a data stream. In this sense, Flynn's classes can be
described and interpreted as follows. In the SISD
class, a single instruction stream (SI) is applied to a
single data stream (SD) by one processing element,
resulting in completely sequential processing. The
SISD class contains no parallelism, but shows the deli-
mitation of sequential structures to parallel struc-
tures. In the SIMD class, a single instruction stream is
applied to multiple data streams by multiple process-
ing elements. Since only one instruction stream exists,
processing elements must work synchronously (syn-
chronous parallelism). In the MISD class, multiple in-
struction streams are applied to a single data stream by
multiple processing elements. In the MIMD class, mul-
tiple instructions streams are applied to multiple data
streams using multiple processing elements. Since
there are multiple independent instruction streams, pro-
cessing elements do not have to work synchronously
(asynchronous parallelism).

Parallel processing hardware is usually classified into
shared and distributed memory architecture classes
(SHM and DM). On a more abstract level, these con-
cepts can be used for further refinement of the above
general interpretation of Flynn's taxonomy. In this
sense, the SHM class describes a shared memory
structure, where multiple processing elements have
access to a common memory space. In contrast, the
DM class describes a distributed memory structure
with completely individual memory spaces for each
processing element.

1.2 Hardware Architectures

The classification following Flynn's taxonomy combi-
ned with memory structures is a common theoretical
entrance to characterize parallel hardware architectu-
res. But with respect to real hardware, not all classes
of Flynn's taxonomy are actually relevant today. The
SISD hardware class has no relevance for parallel pro-
cessing since it contains no parallelism at all.

The MISD hardware class is typically considered to
be empty because no hardware structures exist fol-
lowing this processing scheme, though Flynn dis-
agrees with that. The SIMD hardware class was im-
portant for large-scale parallel processing until the
1990's, but disappeared almost completely today in
this area. Thus, MIMD is the only class that is lefto-
ver. Actually, a large variety of MIMD hardware
exists and can be further classified with respect to
memory structures.

Regarding memory structure, real MIMD architec-
tures can be divided into three subclasses: shared,
distributed and hybrid memory. Thereby, the memory
structure strongly influences the scalability and com-
munication performance of an architecture. Generally,
distributed memory architectures are well scalable, but
show low communication performance. On the other
hand, shared memory architectures have limited scala-
bility, but high communication performance. In hybrid
memory architectures, shared memory structures on
lower hierarchy levels are combined with distributed
structures on higher levels. Therefore, hybrid memory
architectures are well scalable and show high commu-
nication performance on lower hierarchy levels.

In a hardware architectures investigation of SNE
Comparison CP1 contributions from 1994 until 2003
([7]), being intended to attain a hardware overview in
small scale parallel processing (especially in simula-
tion domains), three types of hardware have been
identified: Cluster Computers, Symmetric Multipro-
cessors and Transputers. Cluster Computers consist of
independent processors with own physical memory,
connected by a standard interconnect. They can be
categorized as distributed memory MIMD systems.
Symmetric Multiprocessors (SMP) consist of multiple
homogeneous processors accessing a common physi-
cal memory. They can be classified as shared memory
MIMD systems. Transputers consist of multiple pro-
cessors with own physical memory, containing addi-
tional supporting hardware for fast interconnection.
They can be classified as distributed memory MIMD
systems. Transputers were well-established in small-
scale parallel computing during the 1990's, but disap-
peared almost completely today.

In a second hardware architectures investigation of
systems appearing on the recent Top500 list, showing
the 500 most performing parallel computers, also
three types of hardware have been identified (WWW.
TOP500.ORG): Cluster Computers, Constellations and
Massively Parallel Computers.

++ SCE based Parallel Processing and Applications in Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

38

Constellations consist of multiple SMPs, connected
by a standard interconnect. Constellations can be clas-
sified as hybrid memory MIMD systems. Massively
Parallel Computers consist of a very large number of
processors (>1.000) with partly own and common
physical memory, connected by a fast interconnect.
They can be classified as distributed or hybrid me-
mory MIMD systems.

The two investigations of parallel processing hardware
show that recently only MIMD systems have practical
relevance, both in small scale and large scale parallel
processing. Hardware architecture differences regar-
ding the described taxonomy can only be found in
memory structures. Small scale parallel processing is
dominated by distributed and shared memory architec-
tures. In large scale parallel processing distributed and
hybrid memory architectures are dominant. Shared
memory systems are no longer present in the Top500
list because of their limited scalability. One can
assume that hybrid memory architectures will also pre-
vail in small-scale parallel processing in the near
future. The main reason for this assumption is the esta-
blishment of multi core CPUs as commodity off-the-
shelf (COTS) components, enabling installations of
reasonable small scale Constellations.

1.3 Parallel Programming

As an interface between the programmer and the
underlying parallel hardware structures, parallel pro-
gramming models are used. Parallel programming
models are supported either on the level of program-
ming languages, compilers or applied libraries. Fol-
lowing Skillicorn ([8]), the development of parallel
programs requires the fulfillment of four tasks:

- Partitioning: divide a problem into multiple
partial problems

- Instantiation and Mapping: process startup
and assignment to processors

- Communication: data exchange between
processes

- Synchronization: management of process
states

In a parallel programming model, these programming
tasks can be explicit or implicit (visible or invisible in
the program code). The distinction of parallel program-
ming models is based on their set of explicit and impli-
cit programming tasks. Programming models with only
implicit programming tasks are referred to as implicit
models, while programming models requiring at least
one explicit task are referred to as explicit models.

Examples of implicit programming models are data
parallel languages like FORTRANi90, parallelizing
compilers like Intel or SGI compiler suites and the ap-
plication of parallel numerical libraries like ScaLA-
PACK. Widespread models for explicit parallel pro-
gramming are:

- Shared Memory Programming
- Message Passing Programming
- Remote Procedure Call (RPC) Programming
In all of these models, partitioning must be done
explicitly, while explicity of instantiation and map-
ping is system dependent. The explicit or implicit
representation of synchronization and communication
tasks is the main distinctive feature of the presented
models, as shown in Table 1.

In Shared Memory Programming, process commu-
nication is done implicitly via a common memory ad-
dress space. On the other hand, process synchroniza-
tion has to be organized explicitly, in the simplest case
to avoid concurrent write accesses to the same ad-
dresses. Common shared memory programming stan-
dards are OpenMP and POSIX threads.
In Message Passing Programming, process communi-
cation has to be implemented explicitly by send/
receive operations. In contrast to shared memory pro-
gramming, process synchronization is completely
implicit due to the causality of message transfer (a
receiving process blocks until a desired message is
sent). Well-know standards and libraries for message
passing programming are MPI and PVM.

Unlike shared memory and message passing pro-
gramming, RPC Programming is not originated in
parallel programming. Classical synchronous RPC is
a usual model in distributed programming. It is based
on a client-server structure, where one server process
serves multiple client processes. To make RPC usable
in parallel programming, this scheme must be inver-
ted, resulting in multiple server processes serving one
client exclusively.

SN
E 16/2, Septem

ber 2006

39

+++ SCE based Parallel Processing and Applications in Simulation ++

Prog.

Model

Parti-

tioning

Inst. and

Mapping

Commu-

nication

Synchro-

nization

Shared

Memory
explicit

explicit or
implicit

implicit explicit

Message

Passing
explicit

explicit or
implicit

explicit implicit

RPC explicit
explicit or
implicit

implicit implicit

Table 1: Programming tasks in explicit parallel
programming models.

In such a scenario, the client splits up one problem
into multiple partial problems, subsequently proces-
sed by the servers. After finishing all partial problems,
the results are collected by the client. This program-
ming scheme is also referred to as embarrassingly
parallel or task parallel.
When using RPC in parallel programming, the classi-
cal synchronous RPC semantic must be extended eit-
her to asynchronous scalar RPC (non-blocking RPC
[9]) or synchronous vectorial RPC (multiple RPC at
the same time [6]). In all RPC variants, communica-
tion takes place implicitly by parameter passing to and
from the remote procedure.

Regarding the introduced basic taxonomy, shared
memory and message passing programming can be
seen as native programming models on top of physi-
cal shared and distributed memory architectures, re-
spectively. But of course, arbitrary mapping of pro-
gramming models to certain physical architectures is
possible by intermediate layers. The RPC program-
ming model has no direct counterpart on the hardware
level, but can be mapped by shared memory and mes-
sage passing programming as well.

2 Scientific and Technical

Computing Enviroments

A Scientific and Technical Computing Environment is
a software system that enables interactive numerical
scientific and technical computations and visuali-
zations. The term SCE has been introduced in [6] as
an abbreviation of Scientific and Technical Compu-
ting and Visualization Environment.
Before the introduction of SCEs, scientific and techni-
cal computations were executed by compiler based
program development. To develop a program, the pro-
cess of coding, compiling, linking and testing had to
be iterated several times. Furthermore, to visualize
computational results, additional programs or libraries
were necessary.

The first major event of SCE history took place in
1977, when Research Systems Inc. released IDL (In-
teractive Data Language), enabling interpretative data
analysis and visualization. Also in the late 1970's,
Cleve Moler developed the first version of MATLAB,
a matrix based interpretative programming system for
linear algebra problems. In 1984, the first commercial
version of MATLAB was released by The MathWorks
Inc., focussing technical computations and visualiza-
tions on the upcoming PC. At the same time, further
commercial SCEs like Ctrl-C, MatrixX and Gauss
were released, partly derived from the first MATLAB
version and with MATLAB - similar syntax.

During the 1990's, MATLAB was growing to a pro-
prietary quasi-standard in computational engineering.
In the same decade, several non-commercial SCEs
arised (e.g. Octave in 1993, Scilab in 1994), partly
with MATLAB compatible syntax and function sets.
Nevertheless, MATLAB remained a standard, which
is revealed by the large set of MATLAB extensions
provided by The MathWorks Inc. and third parties.
Tablei2 summarizes today's available SCEs.

2.1 SCE Characteristics

The following properties denote software systems as
SCEs:
- Interactive way of working
- Integrated numerical libraries
- Integrated visualization libraries
- Extendable function set
- Matrix oriented high level programming

language

Interactive way of working allows immediate data ana-
lysis as well as tests of new code lines or modules.
Integrated numerical libraries provide users immediate
access to well tested algorithms, while visualization
libraries support instant visual data analysis. The
extendable function set enables the addition of user
defined functions or third party products to the SCE.
The SCE's high-level language allows variables to be
defined, redefined or resized at any point in a program.
The data type of variables is determined implicitly and
can change during program execution. Basic data types
are double precision matrices, extendable to complex or
non-complex multidimensional arrays. Consequently,
operators and integrated functions are array based,
which results in compact data parallel code.
Figurei1 shows the basic structure of SCEs: data proces-
sing follows the classical von Neumann (SISD) scheme,
processing one instruction stream over one data stream.

++ SCE based Parallel Processing and Applications in Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

40

Table 2: Today's available SCEs,
producers and initial release date.

SCE Producer Initial Release

IDL Research Systems 1977, commercial

Gauss Aptech Systems 1983, commercial

Matlab The MathWorks 1984, commercial

O-Matrix Harmonic Software 1992, commercial

Octave J. W. Eaton 1993, non commercial

Scilab INRIA 1994, non commercial

Rlab I. Searle 1994, non commercial

Tela P. Janhunen 1994, non commercial

Euler R. Grothmann 1996, non commercial

Yorick D. H. Munro 1996, non commercial

For this purpose, SCEs contain data stream input and
output modules as well as an instruction stream input
module represented by the interpreter. A memory ma-
nagement module storing internal data and a compu-
tational module containing internal and external func-
tion sets are further essential SCE components.

2.2 Acceleration of SCE Program Execution

As already mentioned, the usage of SCEs for scienti-
fic and technical program development takes con-
siderably less time compared to compiler-based de-
velopment. On the other hand, program execution in
SCEs is significantly slower than execution of com-
piled programs. SCE code acceleration offers possi-
bilities to weaken this drawback.
To accelerate SCE programs, profilers are useful. A
profiler allows time analysis of every code line and
simplifies identification of time-consuming program
structures. Today, profilers are components of com-
mercial SCEs like MATLAB, IDL or Gauss, only.

Several approaches to accelerate SCE program execu-
tion exist, also in combination with each other:

- Program optimization
- Compilation of SCE code
- Re-implementation in compilable language
- Parallel processing of SCE code

In case of program optimization, time-consuming
code lines are substituted by more efficient program
structures. Substitutions are for instance data pre-allo-
cation instead of data resizements or data parallel op-
erations instead of loops.

If compilation of SCE code is used, complete SCE
programs or parts of them are automatically translated
into compilable intermediate code and fed to a com-
piler subsequently (explicit compilation). Automatic
compilation is also used by just-in-time compilers

compiling program structures temporarily, so
that time consuming interpretation is avoided
(implicit compilation). Beside acceleration,
compilation of SCE code is useful for SCE pro-
gram deployment as a stand-alone application.
If re-implementation of SCE code is applied, time-
consuming program structures are transformed
manually into compilable code and compiled to
machine code subsequently. Since prototype deve-
lopment already happened within the SCE, code
re-implementation takes considerably less time
than direct compiler based development. For the
re-implementation approach, an interface between
SCE and a compilable language is necessary. For
instance, interfaces are provided by MATLAB (C,
Fortran), Octave (C++) or Scilab (C, Fortran).

In parallel processing of SCE code, time-consuming
program structures run in parallel on multiple proces-
sors. Discussions on SCE based parallel processing
are topics of the following sections.

3 SCE - based Parallel Processing

3.1 Taxonomy

The combination of parallel processing and SCE
based working can be realized in several ways. To
ease comparisons of SCE based parallel processing
variants, coarsely classifying taxonomies are pro-
posed. In literature, two sources of taxonomies can be
found. The first source ([6]) uses a SCE spanning
taxonomy distinguishing four categories:

- Compilation Approach: compilation of SCE
code into parallel machine code; execution
on a parallel system

- Coupling Approach: coupling of SCE and
parallel system; remote execution of
parallel routines

- Parallel-SCE Approach: SCE runs on a
parallel system; local execution
of parallel routines

- Multi-SCE Approach: coupling of multiple
SCEs, altogether representing a
parallel system

The second source ([10]) uses a MATLAB based taxo-
nomy and also distinguishes four categories:

- Embarrassingly Parallel: coupling of
multiple MATLAB instances with one
superordinated instance;
RPC programming model.

- Message Passing: coupling multiple MATLAB
instances without superordinated instances;
message passing programming model.

SN
E 16/2, Septem

ber 2006

41

+++ SCE based Parallel Processing and Applications in Simulation ++

Figure 1: Basic structure of SCEs (from [6]).

- Backend Support: MATLAB as a front end to
a parallel system executing parallel routines.

- MATLAB Compiler: compilation of
MATLAB code into parallel machine code;
execution on a parallel system.

A comparison of both taxonomies shows that in two
cases categories of one taxonomy can be merged into
one category of the other taxonomy. Firstly, Pawletta's
Coupling Approach and Parallel-SCE Approach can
be merged into Choy's Backend Support. Secondly,
Choy's Embarrassingly Parallel category and Message
Passing category can be merged into Pawletta's Multi-
SCE Approach. Furthermore, the compiler-based cate-
gory is the same in both taxonomies.

Therefore, both existing taxonomies can be brought
together, resulting in a new taxonomy on SCE based
parallel processing (see Figure 2):

- Compilation Approach: compilation of SCE
code into parallel machine code;
execution on a parallel system

- Front End Approach: SCE as a front end
to a parallel system which executes
parallel routines

- Multi-SCE Approach: coupling of multiple
SCEs, altogether representing a
parallel system

3.2 Compilation Approach

Following the compilation approach, sequential SCE
programs or parts of them are translated into compila-
ble intermediate code.

For the intermediate code, scalar languages like C or
Fortran 77, and data parallel languages like Fortran 90
are used. Subsequently, the intermediate code is com-
piled by a parallelizing compiler or linked against
parallel numerical libraries after compilation. To cre-
ate a parallel program by compilation, no modifica-
tion of SCE code is necessary, which indicates an
implicit parallel programming model. For parallel
execution of a compiled SCE program, no SCE is
necessary. Therefore, SCEs are just utilized as deve-
lopment environments in this approach.
Tablei3 summarizes projects following the compi-
lation approach. Compiler based projects focusing on
parallel signal processing hardware are neglected in
this summarization due to their high specialization.

The Conlab Compiler represents an exception in this
summarization, since sequential SCE code has to be
modified to run in parallel. Conlab is a development
environment for parallel algorithms with a syntax similar
to MATLAB. Additionally, Conlab contains directives
for parallel processing, e.g. process management, mes-
sage passing and shared memory techniques. Conlab
itself can only simulate parallel processing, but the Con-
lab compiler is able to translate Conlab (or extended
MATLAB) code into real parallel programs.

3.3 Front End Approach

Using the front end approach, the SCE represents a
user interface to a parallel processing platform. Whit-
hin the SCE, users may call parallel routines interacti-
vely, often without necessity of special parallel com-
puting knowledge. The parallel processing platform
can be represented by a remote computer or a local
parallel workstation. That means there is a distinction
between remote and local SCE front ends. Since no
modification of SCE code regarding parallel program-
ming tasks is necessary (see Sectioni1.2), an implicit
parallel programming model exists.

++ SCE based Parallel Processing and Applications in Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

42

Project SCE Intermediate Code Rel.

Conlab [11]

Compiler

Conlab
(MATLAB)

C incl. Message
Passing Routines

1993

Falcon [12] MATLAB Fortran 90 1996

Menhir

[13]
MATLAB

C or Fortran 77 incl.
parallel linear

algebra routines
1998

Otter [14] MATLAB
C incl. parallel linear

algebra or signal
processing routines

1998

Figure 2: New taxonomy on SCE based
parallel processing.

Table 3: Projects following the compilation approach.

Using this approach, SCEs are development and run-
time environments, but to run a parallel program, only
a single SCE instance is necessary.
For remote front ends, coupling follows the client ser-
ver model. The client is represented by the SCE, while
the remote parallel system acts as server. Servers pro-
vide mostly linear algebra routines like BLAS or Sca-
LAPACK, but integration of user-defined routines is
possible. Tablei4 summarizes projects following the
remote front end approach.

In the field of local front ends, the SCE's computatio-
nal module contains parallel numerical routines, exe-
cuted on the local parallel computer or on a com-
pound of local and remote computers. Parallel nu-
merical standard routines as well as user-defined rou-
tines are possible. In the area of standard routines,
internal SCE functions often use SIMD capabilities of
modern CPUs like MMX or SSE extensions, for ex-
ample in basic linear algebra, signal processing or tri-
gonometry.
Standard routines which facilitate capabilities of
MIMD structures like SMP or multi core CPUs are
rarely integrated into SCEs. Currently, only IDL is
known to facilitate such structures by its Multi-Thre-
ading libraries. User defined parallel routines can
easily be integrated into the SCE's computational
module by usage of SCE interfaces to compilable lan-
guages (see Section 2.2).

3.4 Multi-SCE Approach

The Multi-SCE approach is characterized by multiple
conventional SCE instances being connected by a
coupling platform, altogether representing a Multi-
SCE. The coupling platform consists of a physical
layer like Ethernet, shared memory or disk units and
of a software layer providing low level programming
access to physical devices.
Suitable low-level services to build up Multi-SCEs are:
- Operating System services like Sockets,

System V IPC, File I/O

- External middleware services like Java
sockets, PVM, MPI, CORBA, DCOM, HLA

- SCE internal middleware services like
Matlab engine

On top of these low level services a high level inter-
face has to be realized within the Multi-SCE. On one
hand, high level interfaces have to support a well-defi-
ned parallel programming model (see Sectioni1.3).
On the other hand, the interface should be well inte-
grated into the matrix oriented SCE programming
paradigm (see Sectioni2.1). To fulfill both demands, it
is necessary to adapt the classical programming
models to the matrix-oriented paradigm.

In real Multi-SCEs the following adaptations are found:

- Shared Memory Prog. 6 Shared Array Prog.

- Message Passing Prog. 6 Array Passing Prog.

- asynchronous RPC 6 vectorial RPC

Using the Multi-SCE approach, explicit parallel pro-
gramming can be done in the SCE typical way of
interactive working. In this approach, the whole SCE
compound is both development and runtime environ-
ment. Hence, parallel program execution requires
multiple SCE instances.
Due to its structure, the Multi-SCE approach is well
suited for cluster and grid platforms and therefore
attractive to a broad user community. This fact is re-
flected by the large number of Multi-SCE packages
released during the last decade, being listed in Table 5.
Since some Multi-SCE packages do not adapt par-
allel programming models in the way described
above, programming models in Tablei5 are classified
by general terms, i.e. Message Passing (MP), Shared
Memory (SHM) and RPC.

In [6] also combinations of SCE based parallel proces-
sing approaches have been proposed. The usage of
such hybrid approaches offers ways to use the Multi-
SCE approach only in development phases, while
switching to the front end approach in production pha-
ses. On the other hand, hierarchies like front end
approach on lower levels and Multi-SCE approach on
higher levels are imaginable. Up to now, hybrid
approaches have not been investigated in detail.

4 Multi-SCE Performance Analysis

To investigate Multi-SCE packages quantitatively,
communication performance measurements have
been executed. The aim of measurements applied is
the ascertainment of comparable Multi-SCE spanning
performance parameters.

SN
E 16/2, Septem

ber 2006

43

+++ SCE based Parallel Processing and Applications in Simulation ++

Project SCE Parallel Routines Rel.

Netsolve [15]
MATLAB,

Octave
linear algebra, user

defined ro utines
1997

PLAPACK

Server

Interface [16]

MATLAB linear algebra 1998

Matlab*P [10] MATLAB
linear algebra, user

defined ro utines
1999

Table 4: Projects following the front end approach
(remote coupling).

For parameter ascertainment, a programming model
independent measurement method has been develo-
ped and applied. Measurements have been executed
both with existing Multi-SCE packages and new
Multi-SCE prototypes.

4.1 Measurement Method and Platform

Communication performance measurements have
been applied using a round trip time (RTT) method
with a one-to-one communication scheme.

Within this method, a master-slave program structure
has been used, where the slave process reflects messa-
ges issued by the master process. To determine ave-
rage round trip times, the send/receive process is repe-
ated several times, altogether embedded into time
measurement in the master process. The method des-
cribed is well suited for packages using a message
passing programming model. For RPC and shared
memory models, this method has to be adapted to
deliver comparable results.

In RPC programming, time measurements have been
executed using a dummy function on the slave side,
which just returns a single input parameter. On the
master side, the dummy function is called remotely
with a message as input parameter, resulting in the
same message transfer as described above.
In shared memory programming, explicit synchro-
nization has been applied. In the master process, a
shared variable is written, followed by sending a syn-
chronization signal to the slave. Subsequently, the
master process blocks execution until receiving a syn-
chronization signal from the slave, finalizing the send/
receive process by a shared variable read. The slave
process behaves analogically, so message transfer fol-
lows the scheme described above.
Round trip time measurements have been executed
with different data sizes, resulting in a dependence of
round trip time to data size. If round trip time is linearly
dependent on message size, which is the case in execu-
ted investigations, linear regression of round trip time
at different data sizes leads to communication perfor-
mance significant parameters byte rate and latency. The
following formula describes the dependencies:

As measurement platform, two Linux computers run-
ning with kernel version 2.4.18 have been used. Com-
puters are driven by a 1,500 MHz AMD Athlon CPU
and are connected by Gigabit Ethernet.

4.2 Performance Results of Existing

Multi-SCE Packages

Out of all 24 listed Multi-SCE packages in Tablei5,
only 8 packages could be investigated regarding com-
munication performance. The remaining 16 packages
were either outdated (not adapted to recent SCEs) or
not available. Results for investigated Multi-SCE pak-
kages are summarized in Tablei6.
The results presented show that communication perfor-
mance of Multi-SCEs heavily depends on the used low-
level service but weakly depends on the applied SCE.

++ SCE based Parallel Processing and Applications in Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

44

Project SCE
Low Level

Service

Prog.

Mod.
Rel.

PT Toolbox [17] MATLAB external (PVM) MP 1995

DP Toolbox [2] MATLAB external (PVM)
MP,
RPC

1995

MultiMatlab [3] MATLAB external (MPI) MP 1996

Paralize [18] MATLAB OS (File I/O) RPC 1997

PVM Tbx. [19] Scilab external (PVM) MP 1998

PMI [20] MATLAB internal (engine) RPC 1999

Matmarks [21] MATLAB external
(ThreadMarks)

SHM 1999

PVM Tbx. [22] MATLAB external (PVM) MP 1999

Cornell MT Tbx.

[23]
MATLAB external (MPI) MP 2000

PLab [24] MATLAB OS (Sockets) RPC 2000

ParMatlab [25] MATLAB OS (Sockets) RPC 2001

MPI Toolbox [22] MATLAB external (MPI) MP 2001

IDLPVM [26] IDL external (PVM) MP 2001

MatlabMPI [27] MATLAB OS (File I/O) MP 2001

Beolab Tbx. [28] MATLAB internal (engine) RPC 2002

Parallelization

Tk. [29]
MATLAB internal (engine) RPC 2002

DistributePP [30] MATLAB OS (File I/O) RPC 2002

MPIDL [31] IDL external (MPI) MP 2003

Parallel [32] Gauss
external

(Java sockets)
RPC 2003

Parallel Octave

[33]
Octave external (MPI) MP 2003

Distributed

Octave [34]
Octave external (MPI) RPC 2004

MPI Toolbox [35] Octave external (MPI) MP 2004

DC Toolbox [36] MATLAB external
(Java Jini, MPI)

MP,
RPC

2004

pMatlab [37] MATLAB OS (File I/O) SHM 2005

MDiCE [38] MATLAB OS (Sockets) RPC 2005

Matlab2Matlab

[39]
MATLAB external

(Java sockets)
RPC 2005

GAMMA [40] MATLAB external
(Global arrays)

SHM 2006

⎟
⎠

⎞
⎜
⎝

⎛
+⋅= LatencyRoundTrip tt

ByteRate

DataSize
2

Table 5: Projects following the Multi-SCE approach.

So byte rates of packages using PVM (DP Toolbox and
PVM/Scilab) are nearly the same although SCEs dif-
fer. The same effect can be seen on packages using
LAM MPI. Furthermore, packages that do not use
message passing libraries show significant higher
latencies than message passing library based packages.

4.3 Performance Results of New Multi-SCE

Prototypes

For future designs of Multi-SCE packages, new
Multi-SCE prototypes have been developed using
MATLAB as targeted SCE. Aims of these prototype
developments are feasibility studies and performance
improvements compared to existing packages.

Up to now, five prototypes have proofed to be feasible
(communication performance results of prototypes are
shown in Table 7):

- Fast PVM prototype
- MPICH2 prototype
- Shared Arrays on top of MPICH2 prototype
- Matlab engine plus threads prototype
- Java sockets based Message Passing

prototype

The fast PVM prototype is a component of the latest
DP Toolbox release (v1.7.2), which has been entirely
rewritten.

It shows a slightly higher byte rate and lower latency
than the interface used in DP v1.5.
The MPICH2 prototype is the first freely available
MATLAB toolbox facilitating the MPICH2 library.
Prototypes using other MPI libraries (e.g. LAM or
MPICH) have shown to be unstable with MATLAB.
Compared to Tablei6, the MPICH2 prototype shows
very low latency.

The Shared Arrays prototype is built on top of the
MPICH2 prototype. It is intended to investigate map-
pings of parallel programming models, especially
from message passing to shared memory program-
ming. Since a distributed memory process model is
the basis of this prototype, shared memory can only be
virtual. In this prototype, a server process manages all
shared variables, while shared memory accessing pro-
cesses act as clients, issuing put memory and get
memory commands. Compared to the MPICH2 proto-
type, which uses the same low-level service, this pro-
totype shows lower byte rate and higher latency. This
is caused by frequent send/receive commands on cli-
ent/server communication as well as by additional
barrier synchronization effort.

The thread using MATLAB engine prototype repre-
sents a new approach to control multiple Matlab Engi-
nes simultaneously. Matlab engine is a library that
allows the invocation and control of a remote MAT-
LAB instance out of a C program. To execute a remote
command within the MATLAB instance, the blocking
function engEvalString() has to be called. To use
MATLAB engines in parallel computing, this blok-
king behavior needs to be circumvented. Existing
Multi-SCE packages that use Matlab engines bypass
blocking by misusing engine internal functionalities
(write/read on engine internal file pointers, not wor-
king on Win32 MATLAB), introduced by PMI.

SN
E 16/2, Septem

ber 2006

45

+++ SCE based Parallel Processing and Applications in Simulation ++

Package, SCE
Low Level

Service

Prog.

Mod.

Byte

Rate

[MB/s]

La-

tency

[ms]

DP Tbx. v1.5,

MATLAB v7.1
PVM v3.4 MP 11.9 1.1

PVM Tbx.,

Scilab v2.7
PVM v3.4 MP 12.0 0.2

MPI Tbx.,

MATLAB v7.1

LAM v7.1
(MPI)

MP 36.7 0.1

MPI Tbx.,

Octave v2.1

LAM v7.1
(MPI)

MP 37.2 0.1

Jini RPC 3.6 421.9
DC Tbx. v2.0,

MATLAB v7.1 MPICH2 v1.0 MP 34.1 0.3

MATLAB

MPI v1.2

 MATLAB v7.1

NFS MP 25.5 44.8

Beolab Tbx.,

MATLAB v7.1

Matlab
engine

RPC 37.1 81.8

Parallelization

Tk. v1.2,

MATLAB v7.1

Matlab
engine

RPC 37.2 25.3

Prototype
Low Level

Service

Prog.

Mod.

Byte

Rate

[MB/s]

Latency

[ms]

Fast PVM PVM v3.4 MP 13.3 0.3

MPICH2 MPICH2 v1.0 MP 29.9 0.1

Shared

Arrays
MPICH2 v1.0 SHM 11.0 1.7

Engine plus

threads

Matlab en-
gine, threads

RPC 31.0 20.9

Java MP
Java sockets,

threads
MP 1.4 2.4

Table 6: Communication performance of existing
Multi-SCE packages.

Table 7: Communication performance of Multi-SCE
prototypes (SCE: Matlab v7.1).

The thread using approach encapsulates all MATLAB
engine calls into threads, leading to an engine implemen-
tation independent interface, working also with Win32
MATLAB. In comparison with other engine based pak-
kages, this prototype offers the lowest latency.
The Java based message passing package is a proto-
type of a platform independent message passing
library, working with all MATLAB architectures (e.g.
Win32, Linux, Mac, Solaris). Inside this library, TCP
Socket accesses are encapsulated within threads lea-
ding to a communication that follows the message
passing paradigm. This approach disappoints with the
lowest byte rate out of all prototypes.

5 Characteristis of Simulation

Applications

Since simulation applications are well supported in
SCEs, for instance by ODE and PDE solvers or simu-
lation subsystems like Simulink, Stateflow or Scicos,
they are focused in application based investigations.
Furthermore, simulation experiments and simulation
based optimizations belong to the most time consum-
ing applications in SCEs today.

To characterize investigated applications with respect
to parallel processing, three qualitative criteria are used:

- Parallelism level
- Granularity
- Programming model applicability

5.1 Parallelism Level

From a programmer's point of view, simulation based
optimization is accomplished at several program
levels. On the highest level, an optimization method
tries to find optimal input parameters of an objective
function that has to be minimized. Within the optimi-
zation method, objective functions are called to calcu-
late objective values for current input parameter sets.
Within the objective function, results of simulation
runs are used to calculate objective values.

Following this view, parallelism in simulation and
optimization can occur on the described program lev-
els, subsequently referred to as parallelism levels.

Parallelism levels can be categorized in the following
way, ordered from highest to lowest program level:

- Independent optimization runs
- Parallel optimization methods
- Independent simulation runs
- Distributed models

Independent optimization runs are placed on the hig-
hest parallelism level. They occur, for instance if opti-
mizations on multiple model operating points are
necessary. In parallel optimization methods multiple
objective values are calculated independently during
one iteration step. Examples of parallel optimization
methods are evolutionary strategies or Monte Carlo
methods. Independent simulation runs do not have to
be embedded into objective functions necessarily, but
can also represent stand-alone simulation experi-
ments. They occur, for instance in parameter studies.
Distributed models are placed on the lowest paralle-
lism level. At this level, a model is split up into partial
models, subsequently simulated by multiple coopera-
tive processes. In discrete event simulation, those pro-
cesses are referred to as logical processes ([41]).

5.2 Granularity

In terms of parallel processing, granularity denotes the
ratio of computation effort to communication effort in
a parallel program. Distinctions are made between
coarse, middle and fine granular programs. A program
shows coarse granularity, if communication effort is
negligible compared to computation effort. On the
other hand, fine granularity exists, if communication
effort dominates seriously over computation effort.
Granularity represents a qualitative measure and is
also hardware dependent. So programs that show
middle granularity on one hardware, could be classi-
fied as fine granular on another hardware.

Regarding parallelism level, granularity tends to
decrease from the highest to the lowest level.

5.3 Programming Model Applicability

Programming model applicability means the appli-
cability of a parallel programming model to parallelize
certain application structures. Since RPC program-
ming is mappable onto shared memory and message
passing programming (see sect. 1.3), every application
being parallelizable by RPC is also parallelizable by
shared memory or message passing programming.

Hence, a classification regarding program model
applicability distinguishes two classes of applications:

- RPC capable: parallelizable by message
passing, shared memory or RPC
programming

- Non RPC capable: parallelizable only by
message passing or shared memory
programming

++ SCE based Parallel Processing and Applications in Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

46

In simulation based applications, programming model
applicability classification can be assigned unambi-
guously to parallelism levels, as shown in Table 8.

6 Application Performance Analysis

In this section, a number of optimization and simu-
lation applications, being parallelized on basis of the
Multi-SCE approach are discussed. Application based
investigations comprise benchmark problems as well
as real life applications from industry and research. In
Tablei9, applications are listed including their paralle-
lism level and granularity degree. In every applica-
tion, parallelization took place only on the highest
possible parallelization level.

All investigations have been performed on a cluster com-
puter, representing a distributed memory MIMD architec-
ture. Cluster nodes are driven by a 1.500 MHz AMD Ath-
lon CPU and are connected by Gigabit Ethernet. Opera-
ting system is GNU/Linux with kernel version 2.4.18.

The parameter optimization of an exhaust gas model
represents a real life application from automotive
industry. Typically, the optimization has to be perfor-
med for a large number of operating points of the
same simulation model. Therefore, the parallelism
level is independent optimization runs. With a number
of 12 processors, a speedup of 10.3 has been reached
on the test platform. As expected, this application
shows the highest efficiency of 0.9 (efficiency = spee-
dup divided by number of processors) among all
selected applications, caused by parallelism level and
granularity. A more detailed representation of this
application can be found in [42].

The evolutionary safety testing of embedded control is
also a real life application from automotive industry. In
contrast to the first example it is a single optimization
problem with embedded simulation. Nevertheless, the
parallelism level is still in the optimization because an
evolutionary search algorithm is used. Therefore, in
each optimization step multiple simulation based objec-
tive values can be calculated simultaneously.
The general structure of this application is well suited
for parallelization in principle. But the investigation of a
certain application configuration has shown only a spee-
dup of 4.7 with 12 processors on the test platform, lea-
ding to an efficiency of 0.4. The reason for this weak
result is a relatively small-scaled embedded simulation
in combination with very high latencies of the applied
Multi-SCE package (see Tablei10 and Tablei6). This
example illustrates that the relation of parallelism level
and granularity is only of structural nature and does not
guarantee good speedup values in each application case.

The parameter study of a dynamic system is a bench-
mark problem of the SNE Comparison CP1. In this
example, a mass spring system has to be simulated
with varying parameters, while system responses have
to be averaged. Hence, the parallelism level is inde-
pendent simulation runs. On the test platform, the
investigated implementation has reached a speedup of
5.6 under usage of 8 processors, corresponding to an
efficiency of 0.7. Some more details of the benchmark
solution are published in [45].

The simulation of Cavity Flow by the Lattice Boltz-
mann Method is also a typical benchmark problem. In
the example investigated, an incompressible fluid is
bounded in a square cavity, driven by a uniform flow
on the top boundary. Parallelization takes place by
domain decomposition of the cavity in y-direction. In
analogy to distributions in discrete event and continu-
ous models, the applied decomposition can be seen as
a model distribution approach.

SN
E 16/2, Septem

ber 2006

47

+++ SCE based Parallel Processing and Applications in Simulation ++

Parallelism level
Programming model

applicabi lity

Independent optimization runs RPC capable

Parallel optimization methods RPC capable

Independent simulation runs RPC capable

Distributed models non RPC capable

Application
Parallelism

Level

Granu-

larity

Parameter optimization of an
exhaust gas model [42]

independent
optimization

runs
coarse

Evolutionary safety testing
of embedded control

software [43]

parallel optimi-
zation method

coarse

Parameter study of a
dynamic system [7]

independent
simulation runs

coarse

Simulation of Cavity Flow
by the Lattice Boltzmann

Method [44]

distributed
models

middle

Solution of a PDE by finite
differences [7]

distributed
models

fine

Simulation of coupled
ODE systems [7]

distributed
models

fine

Table 8: Relation of parallelism level and programming
model applicability in simulation

and optimization applications.

Table 9: Parallelism level and granularity of
investigated applications.

Because of more or less strong dependencies between
distributed model parts such applications are structur-
ally not coarse grained. The investigated configura-
tion has reached a speedup of 5.5 using 12 processors,
corresponding an efficiency of 0.5.

The solution of a PDE by finite differences is a second
benchmark problem from the SNE Comparison CP1.
In this example, the motion of a swinging rope, des-
cribed by a partial differential equation, is simulated
under usage of the finite difference method. Similar to
the above Lattice Boltzmann problem, parallelization
takes place on the model level by domain decomposi-
tion of the rope. In this example, the computation eff-
ort in each distributed model part becomes very small
compared to the necessary communication effort.
Therefore, the application has not been speeded up on
the test platform successfully. Actually, run time in-
creases dramatically in comparison to the sequential
solution. As in every non coarse grained application,
the reachable speedup strongly depends on the run
time platform applied. Therefore, also successful solu-
tions of this benchmark have been published within
the scope of SNE Comparison CP1.

The simulation of coupled ODE systems is a third
benchmark problem from the SNE Comparison CP1. In
this example, five coupled predator-prey systems are
simulated. This benchmark problem is an example of
the model distribution approach in continuous simula-
tion. Due to the usually tight coupling between continu-
ous model parts, a successful parallelization of such
problems is mostly impossible on distributed memory
MIMD systems. Therefore, also with this benchmark
no speedup has been reached on the test platform.

Table 10 summarizes performance results of investiga-
ted simulation and optimization based application pro-
blems and shows the involved Multi-SCE packages.

Investigations of program parallelization efforts have
shown that for RPC capable applications RPC pro-
gramming is the most convenient model. Due to the
absence of explicit communication and synchroni-
zation, RPC programming results in the lowest num-
ber of code lines compared to message passing and
shared memory programming. Prerequisite for apply-
ing RPC programming is a modular, that means
strictly function based, sequential program. In real life
applications, this condition is often violated, for
example by script programming or by accessing glo-
bal variables.

In such cases, message passing programming can be
applied more efficiently, since there are no restrictions
with respect to script or function execution and varia-
ble accesses.

7 Conclusion

Regarding parallel processing in general, it was
shown that hardware specific classifications of Flynn
and memory structure could be seen as basic taxono-
mies for hardware and software structures, as well.

The analysis of hardware structures in small scale and
large scale parallel processing has demonstrated that
in both domains MIMD systems dominate, so further
distinctions with respect to memory structure are
necessary.

It was assumed that in small scale parallel processing
constellations consisting of multi core workstations
will prevail in the near future. The discussion of pro-
gramming models has shown that beside the two com-
mon explicit parallel programming models, shared
memory and message passing programming, RPC pro-
gramming is a convenient model for specific problems.

It was demonstrated that for the usage of RPC pro-
gramming in parallel processing, certain adaptations
to the classical RPC programming have to be made,
namely asynchronous or vectorial RPC.

++ SCE based Parallel Processing and Applications in Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

48

Application

Multi-

SCE

package

np
Speed

up

Effi-

cieny

Parameter optimization
of an exhaust gas

model [42]

DP Tbx.
v1.5.0

12 10.3 0.9

Evolutionary safety
testing of embedded
control software [43]

DC Tbx.
V2.0

12 4.7 0.4

Parameter study of a
dynamic system [7]

DP Tbx.
v1.5.0

8 5.6 0.7

Simulation of Cavity
Flow by the Lattice

Boltzmann Method [44]

DP Tbx.
v1.7.0

12 5.5 0.5

Solution of a PDE by
finite differences [7]

DP Tbx.
v1.5.0

8 <1 -

Simulation of coupled
ODE systems [7]

DP Tbx.
v1.5.0

5 <1 -

Table 10: Performance of investigated applications (np:
number of processors).

With respect to scientific and technical computing
environments, typical denoting features of such sys-
tems have been presented. Besides SCE based par-
allel processing, several other ways of SCE program
acceleration have been discussed.

Regarding SCE based parallel processing, a new taxo-
nomy combining two existing taxonomies have been
presented. Principles of all classes of the new taxo-
nomy have been discussed and more than 30 represen-
tatives have been identified and categorized.

In the field of the Multi-SCE approach, a comparable
communication performance measurement method
for all parallel programming models was developed
enabling comparisons on the basis of two parameters:
latency and byte rate.
Results of communication performance measure-
ments of existing Multi-SCE packages have been
presented. New Multi-SCE prototypes have been
discussed and communication performance has been
compared to existing packages.

With respect to applications, general characteristics of
parallel simulation and optimization problems have
been discussed. Especially, a parallelization level
based scheme has been presented, allowing the cha-
racterization of both parallel optimization and simula-
tion problems.
Regarding certain applications being parallelized
under usage of Multi-SCE packages, formerly intro-
duced characteristics have been applied. Parallel per-
formance results have been presented and discussed
with respect to application's characteristics.

References

[1] C. Moler: Why there isn't a parallel
MATLAB. Matlab News & Notes,
Spring 1995.

[2] S. Pawletta, W. Drewelow, P. Dünow,
T. Pawletta, M. Süße: A MATLAB toolbox
for distributed and parallel processing.
2nd International MATLAB Conference,
Cambridge, 10/1995.

[3] A. E. Trefethen, V. Menon, C. Chang,
G. Czajkowski, C. Myers, L. N. Trefethen:
MultiMATLAB: MATLAB on Multiple
Processors. Technical Report,
Cornell Theory Center, 1996.

[4] The MathWorks, Inc.: Distributed
Computing Toolbox For Use with MAT
LAB. User's Guide, Version 1, 11/2004.

[5] M. J. Flynn: Some Computer Organizations
and Their Effectiveness.
In IEEE Transactions on Computers,
Vol. C-21, No. 9, 09/1972.

[6] S. Pawletta: Erweiterung eines wissen-
schaftlich-technischen Berechnungs- und
Visualisierungssystems zu einer
Entwicklungsumgebung für parallele
Applikationen. Dissertation,
Universität Rostock, 06/1998.

[7] F. Breitenecker, I. Husinsky, G. Schuster:
Comparison of parallel simulation
techniques. In Simulation News Europe,
Issue 10, 03/1994.

[8] D. B. Skillicorn, D. Talia: Models and
Languages for Parallel Computing.
In ACM Computing Surveys,
Vol. 30, No. 2, 06/1998.

[9] A. L. Ananda, B. H. Tay, E. K. Kohn:
A Survey of Asynchronous Remote
Procedure Calls.
In ACM SIGOPS Operating Systems
Review, Vol. 26, Issue 2, 04/1992.

[10] R. Choy, A. Edelman: Parallel MATLAB -
Doing it Right. Technical Report, Computer
Science AI Laboratory, Massachusetts
Institute of Technology, 11/2003.

[11] P. Drakenberg, P. Jacobson, B. Kagström:
A CONLAB Compiler for a Distributed
Memory Multicomputer. In Proc. 6th SIAM
Conference on Parallel Processing for
Scientific Computing, 03/1993.

[12] L. DeRose, D. Padua: A MATLAB to
Fortran 90 Translator and its Effectiveness.
In Proc. 10th International Conference on

Supercomputing, 01/1996.
[13] S. Chauveau, F. Bodin: Menhir -

An Environment for High Performance
Matlab. In 4th International Workshop on
Languages, Compilers, and Run-Time
Systems for Scalable Computers, 05/1998.

[14] M. J. Quinn, A. Malishevsky, N. Seelam:
Otter: Bridging the Gap between MATLAB
and ScaLAPACK. In Proc. 7th IEEE Inter
national Symposium on High Performance
Distributed Computing, 07/1998.

[15] K. Seymour, A. YarKhan, S. Agrawal,
J. Dongarra: NetSolve: Grid Enabling
Scientific Computing. In Grid Computing:
The New Frontier of High Performance
Computing, Vol. 14, Elsevier,
Advances in Parallel Computing, 05/2005.

SN
E 16/2, Septem

ber 2006

49

+++ SCE based Parallel Processing and Applications in Simulation ++

[16] G. Morrow, R. van de Geijn: A Parallel
Linear Algebra Server for Matlab-like
Environments. In Proc. 1998 ACM/IEEE
conference on Supercomputing, 11/1998.

[17] V. P. Pauca, J. Hollingsworth, K. Liu: User's
Guide for the Parallel Toolbox for
MATLAB. Technical Report, Wake Forest
University, 05/1995.

[18] T. Abrahamson: Paralize. MATLAB
Central File Exchange, 11/1997.

[19] Scilab Group: PVM parallel toolbox. Scilab
Documentation (4.0 Version), 02/2006.

[20] D. Lee: PMI. MATLAB Central File
Exchange, 03/1999.

[21] G. Almasi, C. Cascaval, D. A. Padua:
MATmarks - A Shared Memory
Environment for MATLAB Programming.
In Proc. 8th IEEE International Symposium
on High Performance Distributed
Computing, 08/1999.

[22] J. F. Baldomero: Message Passing under
MATLAB. Advanced Simulation
Technologies Confer-ence (ASTC),
Seattle Washington, 04/2001.

[23] J. Zollweg: Cornell Multitask Toolbox for
MATLAB. Cornell Theory Center, 2006.

[24] U. Kjems: PLab. Technical University of
Denmark, 11/2000.

[25] L. Andrade: parmatlab. MATLAB Central
File Exchange, 04/2001.

[26] Kilvarock Corp.: IDL to PVM interface.
08/2001.

[27] J. Kepner: Parallel Programming with
MatlabMPI. High Performance
Embedded Computing Workshop,
MIT Lincoln Lab., 11/2001.

[28] T. Abrahamsson: Beolab Toolbox for v6.5.
MATLAB Central File Exchange, 01/2002.

[29] E. Heiberg: MATLAB Parallelization
Toolkit 1.20. MATLAB Central File
Exchange, 01/2002.

[30] M. D. DeVore: DistributePP. MATLAB
Central File Exchange, 02/2002.

[31] D. Mastrovito: MPIDL Overview. Princeton
Plasma Physics Laboratory, 01/2003.

[32] M. Ford: Parallel V1.1: Multi workspace
GAUSS plus networking. Forward
Computing and Control Pty. Ltd., 09/2003.

[33] T. Obara: Parallel Octave. Tohoku
University, 12/2003.

[34] J. D. Cole: Distributed Octave.
Transient Research, 04/2004.

[35] J. F. Baldomero: MPI Toolbox for Octave.
In 6th International Meeting on High
Performance Computing for Computational
Science, Valencia, 06/2004.

[36] The MathWorks, Inc.: Distributed
Computing Toolbox For Use with MATLAB.
User's Guide, Version 2, 03/2006.

[37] H. Kim, J. Mullen: Introduction to Parallel
Programming and pMatlab v0.7.
MIT Lincoln Lab., 02/2005.

[38] D. Gruber, C. Kastinger, T. Mayerdorfer,
S. Zorn-Pauli: MDiCE R2.0 - MultiMDiCE.
Carinthia Tech Inst., Klagenfurt, 07/2005.

[39] B. Phelan: Matlab 2 Matlab : Distributed
Computing Toolbox. XTargets, 11/2005.

[40] R. Panuganti et al: GAMMA: Global Arrays
meets MATLAB. Technical Report,
Ohio State University, 01/2006.

[41] H. Mehl: Methoden verteilter Simulation.
Vieweg, Braunschweig/Wiesbaden, 1994.

[42] R. Fink, S. Pawletta, M. Schultalbers:
Matlab-based parallel optimization with
integrated simulation. In 5th EUROSIM
Congress, ESIEE Paris, 09/2004.

[43] H. Pohlheim, M. Conrad, A. Griep:
Evolutionary Safety Testing of Embedded
Control Software by Automatically
Generating Compact Test Data Sequences.
In SAE 2005 Transactions Journal of Pas-
senger Cars: Mechanical Systems, 02/2006.

[44] S. Hou, Q. Zou, S. Chen, G. D. Doolen,
A. C. Cogley: Simulation of Cavity Flow by
the Lattice Boltzmann Method. J. Comp.
Physics, Vol. 118, Issue 2, 05/1995.

[45] R. Fink, S. Pawletta, T. Pawletta: A Matlab
based Solution to ARGESIM ‘Comparison
of Parallel Simulation Techniques’ using
DP-Toolbox. In SNE, Issue 38/39, 12/2003.

[*] The research is partly supported by BMBF
and BM M-V (HWP310 - FHW13).

Corresponding author: René Fink
Rene Fink, Sven Pawletta, Thorsten Pawletta
Res. Group Computational Engineering and Automation,
Wismar University, University of Technology, Business
and Design, PF 1210, 23952 Wismar, Germany
WWW.MB.HS-WISMAR.DE/cea

Bernhard Lampe, Institute of Automation
University of Rostock, Richard-Wagner-Str. 31/H.8
18119 Rostock, Germany; bernhard.lampe@uni-rostock.de

Received: June 15, 2006
Revised: June 29, 2006
Accepted: July 20, 2006

++ SCE based Parallel Processing and Applications in Simulation +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

50

SN
E 16/2, Septem

ber 2006

51

+++ HLA Applied to Military Ship Design Process ++

Introduction

In 2002, after successful completion of the Simulation
Based Design and Virtual Prototyping (SBDVP) pro-
gram, the NATO Naval Armaments Group NG6 has
charged the formal sub-group SG61 with establishing
standards for modeling and simulation in naval ship
acquisition. One of the objectives of this subgroup is
the development of the Virtual Ships (VS) STANAG
([2], [5]). The VS STANAG is currently in the final
draft state and in preparation for ratification. What is
technically most important, is that the VS STANAG
defines a simulation architecture for virtual ships based
on the HLA standard. The standardization activities of
the NATO indicate that also in Europe the HLA techno-
logy becomes important as strategic market factor for
simulation and military suppliers in future.

The MTG Marinetechnik GmbH is an independent
center of excellence for planning and designing sur-
face warships and operates already since 1966 pri-
marily for the German Navy. In cooperation with the
Federal Office of Defense Technology and Procurement
(BWB) MTG already deals with the topic Simulation
Based Design and Virtual Prototyping for a while.
Thus, the computer-aided model VORGES was alre-
ady conceived for the development and evaluation of
ship designs.
The main objective of VORGES is to point out possi-
ble realization variants for the future ship design. Fur-
thermore, VORGES should support the selection of a
ready to build solution as well as the process of con-
struction, proving, and operation control ([9]). During
this ship design process the simulation tools and
models utilized have to interoperate.

Thereby, it has to be distinguished between non-run-
time and runtime interoperability. Non-runtime inter-
operability can be achieved through use of shared data-
bases, common access to Product Data Management
(PDM) systems, and data exchange standards ([2]). Run-
time interoperability has to be achieved via HLA techno-
logy because that is mandatory to become compliant
with the upcoming VS STANAG.

Therefore, MTG started a project in cooperation with
Wismar University in 2005 to explore feasibility and eff-
ort of HLA connectivity between existing simulation
software. MTG decided to start with a medium scale pro-
blem - called SIMBELFederation - of connecting two
existing Fortran codes for simulating ship motion in sea-
way and computing seaway heights in a spatially boun-
ded region with a third visualization component. At first
view it seems that only the technical problem of linking
Fortran code with an RTI implementation has to be over-
come to solve the overall problem. After more general
examination one realizes that the problem belongs to an
HLA application domain with specific characteristics.

In [8] three dissimilar approaches to build HLA based
federates are distinguished, which fulfill the specific
needs of different application domains:

1.) Implementation (programming) of federates using
common object-oriented programming languages. That
is the approach for which HLA RTIs are originally desi-
gned for. Consequently, all relevant RTI implementa-
tions provide C++ and Java language bindings.
This approach seems to meet the needs of a wide
range of defense simulation applications because that
is the domain for which HLA and RTI development
was initiated by the U.S. Department of Defense.

HLA Applied to Military Ship Design Process

Christian Stenzel, Sven Pawletta, Wismar University, Germany
christianstenzel@gmx.net, WWW.MB.HS-WISMAR.DE/cea

Richard Ems, Petra Bünning, MTG Marinetechnik GmbH, Hamburg, Germany
{Richard.Ems; Petra.Buenning}@mtg-marinetechnik.de

This article reports on an ongoing project in the field of naval architecture where existing implementations for simu-
lating surface vessels in seaway have to be integrated into an HLA compliant distributed simulation and visualiza-
tion federation. Like in other engineering fields, existing Fortran codes for extensive numerical problems play an
important role in the ship design process. Unfortunately, relevant RTI implementations provide language bindings
only for C++ and Java. Therefore, it is currently not straightforward to build HLA federates using existing Fortran
codes. The article points out possible coupling variants between an RTI and Fortran code and discusses pros and
cons. It is also shown how this research is influenced by experiences from related efforts to provide Matlab/HLA
connectivity. Subsequently, the current implementation state of the simulation federation is presented. Finally, the

overall development effort is evaluated and possible ways towards complexity reduction are pointed out.

2.) Implementation (modeling) of federates using simu-
lation tools. This approach is still more a need than
reality from the perspective of possible industrial
application domains, where it is common to utilize
simulation tools. Although extensive research on
interfacing HLA RTIs from so-called COTS (commer-
cial off-the-shelf) simulation packages has produced
solutions in principle ([10]), HLA support is not
widely provided by today's COTS.
3.) Beside the above domains, there exists a commu-
nity in various fields of engineering where neither
C++ and Java programming nor modeling with COTS
is the preferred approach. Characteristic problems in
this domain are extensive numerical simulations and
other computations, which are traditionally coded in
Fortran. In some areas (e.g. control engineering) Fort-
ran coding has been replaced by computing environ-
ments like MATLAB.

The SIMBELFederation problem obviously belongs to
the last domain. Unfortunately, also in this domain, HLA
connectivity is not a matter of course yet. But at least for
the MATLAB computing environment there exist expe-
riences from earlier research and also some commercial
solutions are available in the meanwhile. Some essential
aspects of MATLAB/HLA integration and the current
state of the art in this branch are summarized in Sec-
tioni1. Basic coupling variants between Fortran and HLA
RTIs are discussed in Sectioni2. Sectioni3 outlines the
SIMBELFederation problem and its current implementa-
tion state. In the Conclusions Section, the overall deve-
lopment effort is discussed and possible ways towards
complexity reduction are pointed out.

1 MATLAB/HLA Connectivity

In 1998 the development of an HLA toolbox for MAT-
LAB was started at the University of Rostock. Essential
design challenges and solutions were published in [7],
[8]. A generalization to the entire class of SCEs (Scien-
tific and Technical Computing Environments) can be
found in [6]. Results of this project which are also
meaningful for the problem of Fortran/HLA connecti-
vity are summarized in the following subsections.
In 2005, the first two commercial solutions for MAT-
LAB/HLA connectivity have been released. They are
viewed in the last subsection briefly.

1.1 RTI Linkage

The concrete structure of an RTI implementation is
vendor dependent. However, the connection between
an application and a certain RTI is always realized in
a uniform way. For C++ coded applications, RTI im-

plementations provide interface libraries, which have
to be linked. This technique can also be used to build
a connection between MATLAB and an RTI.
For extension purposes, MATLAB provides a number
of external interfaces. One of them is the so-called
MEX-interface, which allows dynamic linkage of C
code. By this way also C++ libraries can be linked if
C style name mangling is enforced (extern ‘C’).

1.2 Procedural HLA Interface

The HLA interface is specified in an object-oriented
manner and consists of two fundamental classes
which define the RTI Ambassador and the Federate
Ambassador. But as a rule, an application is not simul-
taneously federate in more than one federation.
Hence, only single RTI and Federate Ambassador
instances are needed per application.
Consequently, in a MATLAB/HLA integration it is pos-
sible to instantiate the two ambassadors below the
MEX-interface on the C/C++ layer. Then, on the MAT-
LAB layer only a procedural interface is required to ac-
cess RTI services and to provide federate services.
For simple handling of an HLA interface in MAT-
LAB, the original very long designations of the RTI
and federate services should be replaced by abbrevia-
tions. This is in particular necessary for the interactive
way of working in MATLAB. Since from the huge
number of federate services typically only a few are
needed in an application, a MATLAB/HLA-interface
should provide predefined federate services.

1.3 Vectorization

RTI and federate services perform scalar operations
with elementary data objects as parameter as it is usual
in conventional programming. However, efficient
MATLAB programming is based on vectorization,
whereby code complexity is reduced considerably.
Therefore, the routines of a MATLAB/HLA-interface
should be vectorized as much as possible.
Due to vectorization not only application code is sim-
plified but also the complexity of a MATLAB/HLA-
interface is reduced. For example, in the HLA Toolbox
presented in [8] which is based on a DMSO RTI more
than 80 auxiliary routines of the primary C++ interface
became unnecessary in the MATLAB/HLA interface.

1.4 Commercial Tools

The first commercial product for MATLAB/HLA con-
nectivity was the HLA Toolbox from ForwardSim,
Inc. released in May 2005 ([1]). It provides a procedu-
ral MATLAB/HLA interface with some features sta-
ted in Subsection 1.2. By now, the toolbox supports
only HLA 1.3 compliant RTI implementations.

++ HLA Applied to Military Ship Design Process ++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

52

Since July 2005, MÄK Technologies, Inc. offers the
product The MÄK HLA/DIS Toolbox for MATLAB
and Simulink ([4]). But in the above sense this pro-
duct is not a direct MATLAB/HLA-interface. Rather
the toolbox provides a MATLAB interface to VR-
Link. VR-Link is also a product of MÄK Technolo-
gies which provides a higher middleware-independent
interface. VR-Link can run on top of DIS, HLA 1.3,
and IEEE 1516 compliant middleware.

2 Fortran/HLA Connectivity

In various fields of engineering, especially where
complex numerical problems have to be solved, For-
tran is still the dominating programming language.
This fact will probably not change in future because
there are a large number of well-tested Fortran codes;
the language is continuously refined and standard-
ized. Furthermore, Fortran is the most common lan-
guage in High Performance Computing (HPC).

In the original HLA main application areas, which are
Distributed Virtual Training Environments (DTVE)
and wargaming, Fortran has no importance. Therefore,
established RTI implementations offer programming
interfaces for C++ and Java, but not for Fortran.
Currently, development of HLA federates based on
Fortran or by using existing Fortran codes is only pos-
silbe by applying one of two indirect methods: The first
method requires an appropriate modularization of the
Fortran code to allow subsequent integration into an
HLA-capable language environment. Then, all HLA
specific parts have to be implemented in this language
environment. The second method is to employ an HLA
interface within Fortran that permits access to an exter-
nal RTI implementation. Problem specific as well as
HLA specific parts are coded in Fortran.

2.1 Integration of Fortran Routines into

HLA-Capable Language Environments

Appropriate language environments for this approach
are C++, Java, and Matlab. In the following, basic
solutions for these three language environments are
discussed.
On the object code level, usual Fortran and C++ com-
pilers have very different naming conventions for sub-
routines and methods, respectively. Therefore, linkage
of Fortran and C++ object code is impossible without
taking special precautions. But most C++ compilers
can provide C-style naming on demand. C and Fortran
naming are not identical but the differences are small
and can be handled on source code level.

The following code fragments illustrate, how Fortran
routines can be integrated into a C++ program:

C Computing routine implemented in Fortran
SUBROUTINE COMPUTE(result)
DOUBLE PRECISION result
...
END

/* External declaration of the Fortran computing
routine as C++ function with C-style naming */

extern "C"{
extern void compute_(double *result);

}
/* Usage of the Fortran computing routine

in a C++ program */
int main () {

...
compute_(&result);
rtiamb.updateAttributeValues(...);
...

}

The code fragments are based on name conventions of
the GNU compiler suite and are therefore not generally
valid. Hence, this approach is compiler dependent.
Furthermore, differences between representations of
data objects in memory in Fortran and C++ have to be
taken into consideration. Especially, if arrays are pas-
sed as parameters, conversion from the column-orien-
ted representation in Fortran to the row-oriented
representation in C++ is required. Such conversions
are potentially error-prone.

Java offers integration of extern software via the Java
Native Interface (JNI). However, only C/C++ is
directly supported by JNI. Due to that fact, integration
of Fortran routines is only possible by using additio-
nal C/C++ wrappers. Hence, for this approach all pro-
blems already discussed for the C++ integration have
to be solved. In addition, some more platform specific
conversions for correct parameter passing between
C/C++ and Java need to be accomplished. Conse-
quently, error-proneness increases and runtime perfor-
mance decreases.

In contrast to C++ and Java, MATLAB with its MEX-
Interface supports the integration of Fortran routines
very well. Parameter passing between Fortran and
MATLAB is also well-supported by the MEX-Inter-
face. No extensive conversions are necessary because
MATLAB uses the same representation of array data
types like Fortran.
Main advantage of the approach to integrate Fortran
routines into HLA-capable language environments is
that it is not necessary to implement an HLA interface
within Fortran. Thus, realization of HLA federates on
basis of existing small and medium Fortran codes is
possible without greater effort. The approach is not
suitable if HLA federates have to be build using large
and complex Fortran codes.

SN
E 16/2, Septem

ber 2006

53

+++ HLA Applied to Military Ship Design Process ++

In such cases, it can be difficult to modularize the
codes into subroutines in such a way that all HLA
parts can be done on top of these routines in the inte-
grating language environment. From a structural and
technical point of view, implementations based on the
integration approach have to be characterized as ad
hoc solutions. The approach enforces the separation of
problem specific from HLA specific implementation,
which can lead to insufficient structures. The Fortran
integration technique into C++ and particular into
Java is very wasteful and error-prone.

2.2 Fortran Integrated HLA Access

The integration approach discussed in the previous
subsection does not provide direct HLA access within
Fortran. But actual Fortran integrated HLA access can
be realized in a similar way, as presented for MAT-
LAB in Sectioni1. Therefore, in analogy, the neces-
sary software layer, which realizes the Fortran/HLA
connectivity, is called HLA toolbox for Fortran. Pro-
totypes of such an HLA toolbox are currently develo-
ped at Wismar University. Essential design issues are
discussed subsequently.

A Fortran/HLA toolbox has to work on top of com-
mon RTI implementations, which provide C++ and
Java interfaces. The C++ interfaces are clearly pre-
ferred to build up a Fortran/HLA toolbox. If Java
interfaces were used, additional mapping and conver-
sion problems would occur like in the integration
approach discussed in the previous subsection.
A Fortran/HLA toolbox which is internally based on a
C++ interface has to link an RTI class library. That can
be done by mapping the relevant C++ class methods
to ordinary functions for which C style naming is
enforced.
Like in the MATLAB/HLA toolbox, the RTI Ambas-
sador as well as the Federate Ambassador can be
internally instantiated in the C++ layer. Thus, it beco-
mes possible to build up a purely procedural Fortran
interface consisting of subroutines to access RTI ser-
vices and to provide federate services. As in MAT-
LAB, the very long designations of the RTI and the
federate services should be replaced by abbreviations,
because it is common Fortran-style to use short desi-
gnators. Likewise, a Fortran/HLA toolbox should pro-
vide predefined federate services. Further design
issues depend on the concrete Fortran version. Relevant
versions are FORTRAN 77 and Fortran 90/95. FORT-
RAN 77 does not support vectorization and optional
subroutine parameters. Therefore, the interface of an
HLA toolbox for FORTRAN 77 cannot be simplified so
much as it is possible for Fortran 90/95 and MATLAB.

3 The SIMBELFederation

Figurei1 shows a simplified architecture of the so-called
SIMBELFederation. It is a medium scale problem con-
sisting of real-world software components used in the
ship design process. It serves as test problem for a step-
wise examination of suitable solutions for integrating
existing software with the HLA technology, especially
Fortran codes of various scale. As result of this ongoing
research, it should be possible for future HLA projects
to form a realistic estimate of the overall development
effort and reachable runtime performance in advance.

The problem examined consists of three components,
which should work together in an HLA federation.
SIMBELFed is a simulator federate which computes the
motion and position of a ship in seaway. The computing
federate SeaGenFed generates a spatial representation
of the seaway around the ship position. The visualiza-
tion of the ship motion in seaway takes place in the
federate VisuFed.
The implementation state subsequently discussed is
based on the DMSO RTI-1.3NG. Further investigations
will also include commercial RTI implementations.

3.1 SIMBELFed

The federate SIMBELFed has to integrate the simula-
tion package SIMBEL which is used to compute
hydrodynamic forces and moments of monohull and
multihull ships in different seaways. This permits con-
clusions about the suitability of ship designs in the op-
erating range supposed. Already since the end of the
1980s, the simulation package SIMBEL is developed
in cooperation with TU Hamburg-Harburg and the
MTG. It is coded in FORTRAN 77 completely and
comprises currently approx. 50.000 lines of code.

++ HLA Applied to Military Ship Design Process ++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

54

Figure 1: Simulation compound SIMBELFederation.

Because of this high complexity, a first step was to
realize an offline-coupling of the SIMBEL simulator
and the federation through files (Figurei2). In this
case, the SIMBELFed federate has to contain only
simple Fortran routines for reading out simulation
data. Consequently, the appropriate integration appro-
ach in terms of Sectioni2 is to insert the Fortran routi-
nes into a C++ program, where necessary HLA parts
have to be implemented. But this approach is not sui-
table for the intended online integration of the SIM-
BEL simulator. In that case, a fully operational Fort-
ran/HLA-interface will be necessary.

Figure 2: Current state of federate SIMBELFed.

During initialization SIMBELFed reads the file sea-

way.dat using the Fortran routine readSeaway. The con-
tent of this file describes initial environmental data like
form, direction, and strength of seaway. The data are
hold in the C++ class InitialValues. The file simout.dat

contains among others header information about the
simulated ship type, which is also read during initializa-
tion. All initial data are made available to the federation
by the HLA request/response mechanism.

After initialization, the simulated ship motion data are
read time stepwise from the file simout.dat. It con-
tains motion data of six degrees of freedom, where xsi,
eta, and zeta represent the translations and phi, theta,
and psi the rotations in the directions x, y, and z. Fur-
thermore, the ship velocity Vx in x and Vy in y direc-
tion as well as the timestamp tShip are included. After
reading, the data are made available to the federation
by the HLA update/reflect mechanism.

3.2 SeaGenFed

For the generation of a seaway height matrix also
existing Fortran code should be used. It permits the
computation of complex natural seaways on basis of
a JONSWAP spectrum. The amplitudes of the indi-
vidual wave components are additively overlaid for
each time step and point of the seaway height matrix.

The computation effort rises quadratically with the
grid size. Currently, grid sizes up to 64x64 points can
be computed in real time on a standard PC. The de-
mand for computability of the seaway height matrix in
real time arises from the presence of the visualization
component VisuFed in the federation. If it is necessary
to generate seaways of higher accuracy in the future,
parallel processing has to be employed. With this in
mind, the placement of the seaway generation into a
separate federate is very meaningful.

Currently, the federate SeaGenFed contains only
sequential FORTRAN 77 code, which could be easily
integrated into a C++ program. The necessary HLA
parts are implemented on the C++ level (see Figurei3).
If in future the federate is to employ parallel proces-
sing, at least parts of the exiting code have to be por-
ted to Fortran 90. Then it is more efficient to imple-
ment also HLA parts in Fortran following the appro-
ach described in Section 2.2.

All input data of the federate SeaGenFed are obtained
from the federate SIMBELFed. The initial environmen-
tal data SeawayData are received during initialization.
The current central ship position presented by xsi and
eta is transferred time stepwise. On that basis, SeaGen-
Fed computes a seaway height matrix zmatrix, which is
spatially centered around the central ship position. Sub-
sequently, zmatrix is communicated together with its
position in the xy-plane and with a timestamp tSeaway
using the HLA update/reflect mechanism.

3.3 VisuFed

The federate VisuFed is the primary interface of the
federation to the user. It visualizes the moving ship in
seaway as a photorealistic three-dimensional repre-
sentation. Additionally, two-dimensional representa-
tions of the ship motion can be displayed.
Recent visualization software is mostly written in
C++ or Java. Therefore, there usually exists no HLA
connectivity problem. That applies also to the federate
VisuFed presented in Figurei4, which is currently
based on visualization software written in Java.

4 Conclusions
Due to the establishment of new standards the HLA
technology will play an important role also in the mili-
tary ship design process.

SN
E 16/2, Septem

ber 2006

55

+++ HLA Applied to Military Ship Design Process ++

Figure 3: Current state of federate SeaGenFed.

On the other side, simulation- and other engineering
software have been developed with large effort over
many years and have to be reused as much as possible
in future. Therefore, it is necessary to investigate how
HLA connectivity can be reached for existing software,
and which development effort has to be spent for that.

The research presented in this article is based on ear-
lier works in the field of Matlab/HLA connectivity,
which have provided important patterns for the deve-
lopment of Fortran/HLA connectivity. Both, MAT-
LAB and Fortran are essential language environments
in many engineering fields. For Fortran two basic coup-
ling approaches were examined:
- Fortran integration in HLA-capable language

environments like C++, Java, and MATLAB,
- Fortran integrated HLA access according to

the pattern of an HLA toolbox.

The approach exposed first can only be viewed as ad hoc
solution for small and medium scale problems. For C++
and Java as integrating language environments it is
potentially error-prone and difficult to handle for appli-
cation developers, because special knowledge in diffe-
rent language environments is required.
The second approach is well suited for problems of arbi-
trary scale. Application developers do not have to use
different programming languages, what is profitable
regarding error-proneness and implementation effort.
Essential design issues of an HLA toolbox for Fortran
were discussed.
Further on, the application problem SIMBELFederation
was introduced. The presented current implementation
state is based on the approach of integrating Fortran rou-
tines into C++ as HLA-capable language environment.
With it the proof of concept has been provided, it is pos-
sible to connect existing real-world Fortran codes with
the HLA technology and the concrete realtime require-
ments of the application are not violated by the distribu-
ted processing approach. As a matter of fact, the correct
and effective usage of the HLA concepts depends on
deep knowledge in the field of distributed simulation. No
interface technology can eliminate this prerequisite.

The discussed Fortran/HLA connectivity approaches are
based directly on the HLA interface specification. More
than 130 HLA services require a considerable amount of
initial training. Therefore, a number of software packa-
ges exist defining an interface layer above the HLA ser-
vice set for complexity reduction. Typical representati-
ves are VR-Link from MÄK technologies (see 2.4, and
pSISA [3]), developed by the German Armed Forces
(WTD 81). Similar to RTI implementations, C++ lang-
uage bindings are provided. Therefore, the integration
techniques examined in this article can also be applied
to realize Fortran connectivity to these packages.

References

[1] HLA Toolbox - The MATLAB interface to HLA.
Brochure, ForwardSim, Inc., Sainte-Foy, QC, 2005.

[2] K. J. de Kraker, J. Duncan, E.-W. Budde,
R. Reading, R.: NATO Standards for Virtual Ships.
Procs. Fall 2005 Simulation Interoperability Work-
shop, Paper 05F-SIW-020, Orlando, FL, 2005.

[3] U. Krosta, H.-P. Menzler, K. Pixius:
Implementierung von HLA-Schnittstellen mittels
pSISA. HLA Forum, Magdeburg, 2001.

[4] MÄK HLA/DIS Toolbox for MATLAB and Simulink.
Broch., MÄK Technologies, Cambridge, MA, 2005.

[5] NATO STANAG for Virtual Ships, Study Draft
v0.10, Military Agency for Standardisation.

[6] S. Pawletta, W. Drewelow, T. Pawletta: On the
Integration of HLA into SCEs. TRANSACTIONS
of SCS, Vol. 18, No. 2 (2001), pp. 92-97.

[7] S. Pawletta, B. Lampe, T. Pawletta,
W. Drewelow: Eine HLA-Toolbox für Matlab.
In Proc. Simulation und Visualisierung,
Magdeburg 2000, SCS Int., pp. 31-44.

[8] S. Pawletta, T. Pawletta, W. Drewelow: HLA-
based Simulation within an Interactive Engineering
Environment. In Proc. 4th IEEE Workshop on
Distributed Simulation and Real-Time
Applications, San Francisco 2000, pp. 97-102.

[9] H. Schütz, H.: Wohin steuert die maritime Rüstung
in Deutschland? In Marineforum 04/2003.

[10] S. Straßburger: Distributed Simulation Based on
the High Level Architecture in Civilian
Application Domains. Advances in Simulation,
SCS-Europe BVBA Ghent, Belgium, 2001.

Corresponding author: Christian Stenzel
Christian Stenzel, Sven Pawletta, Group Computational
Engineering and Automation, Wismar University,
PF 1210, 23952 Wismar, Germany; WWW.MB.HS-

WISMAR.DE/cea; christianstenzel@gmx.net
Richard Ems, Petra Bünning, MTG Marinetechnik GmbH
Wandsbeker Königsstraße 62, 22041 Hamburg, Germany
{Richard.Ems; Petra.Buenning}@mtg-marinetechnik.de

Received: June 17, 2006
Revised: July 7, 2006
Accepted: July 20, 2006

++ HLA Applied to Military Ship Design Process ++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

56

Figure 4: Current state of federate VisuFed.

SN
E 16/2, Septem

ber 2006

57

+++ Co-simulation of Matlab/Simulink with AMS Designer ++

Introduction

Today's integrated circuits often contain analog and
digital signal processing as well as microcontrollers
and memory. These complex Systems-on-Chips (SoCs)
provide high functionality and enable the design of
smart products for a mass market. Chip designs have
to be verified well before the expensive manufactu-
ring of the first prototype in silicon is started. Simula-
tion is the key element in chip verification.
The design flow is usually divided into different ab-
straction levels as shown in Figurei1. At system level
functionality and performance of the whole system are
specified and evaluated by system-level simulations.
Afterwards, the system is partitioned into hard- and
software, analog and digital parts - possibly in several
steps. At circuit level these blocks are implemented as
analog or mixed-signal circuits or gate netlists. Finally,
a layout is designed. After each step the description of
the design is more detailed than before.

In modern design flows, simulation support is availa-
ble for all design levels and system parts. A wide
range of tools offer dedicated solutions for specific
design problems. Each tool is optimized for a specific
level of abstraction and application area. Even though
there is a certain range of overlap between the tools,
difficulties arise when effects have to be analyzed that
span different design levels. While the interfaces bet-
ween block level and transistor circuit are well esta-
blished by mixed-signal simulators, the link toward
system level is still weak in most environments,
although there are approaches e.g. for using simulator
coupling in digital design flows ([5]).

MATLAB and its simulation toolbox Simulink are
used in system design for many applications including
communication, automotive and control systems. The
visualization of results is well supported by compre-
hensive functions for signal analysis and monitoring.

In an ideal top-down design flow the system level
model will be used as executable specification for the
detailed block implementation using mixed-signal
languages like VHDL-AMS or Verilog-AMS. In a fol-
lowing step the implementation proceeds down
towards circuit level. Since most of these designs con-
sist of analog and digital parts, their implementation is
usually supported by mixed-signal simulators like Vir-
tuoso AMS Designer or ADVance MS. Thus, a very
accurate analysis of analog and mixed-signal circuits
is provided. On the other hand this accuracy naturally
reduces the simulation speed, so that it is often imprac-
tical to verify the whole system behavior on a very
detailed level of abstraction.

Co-simulation of Matlab/Simulink with AMS Designer
in System-on-Chip Design

U. Eichler, U. Knöchel, S. Altmann, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
{eichler, knoechel, altmann}@eas.iis.fraunhofer.de

W. Hartong, J. Hartung, Cadence Design Systems GmbH, Feldkirchen, Germany
{hartong, juergenh}@cadence.com

With increasing complexity of Systems-on-Chips (SoC), system level design and simulation is a necessity. In an
ideal top-down design flow, the system level model is used as executable specification for the block implemen-
tation, which is supported by mixed-signal simulators. This contribution describes a link between the system-
level simulator MATLAB/Simulink and mixed-signal simulation in Virtuoso AMS Designer by a socket based
co-simulation. The implementation of the co-simulation is described in detail, including user interface, protocol,
synchronization and cross-platform support. The application of the co-simulation is illustrated by a wireless
LAN system. While the RF subsystem of the WLAN receiver is modeled in Virtuoso AMS Designer, Simulink
provides standard compliant testbenches and adequate visualization tools. The presented simulator coupling, as

a special case of distributed simulation, provides a functional parallelization of the involved tools.

Implementation Verification

Time

h
ig

h
lo

w
A

m
o

u
n

t
o

f
d

e
ta

il
s

Layout Verification ,

Parasitic Extraction
Layout Level

Circuit Verification
Circuit / Transistor

Level

Block Verification
Electrical Block

Level

System Level

(Executable

Specification)

System Verification

Figure 1: Design levels.

A verification of the implemented blocks against
system level is difficult, due to the missing link. On the
other hand, individually testing the designed circuits
often does not ensure a working system, and designs
fail due to problems at the interfaces. A direct link to the
system environment can help to reduce interface pro-
blems and increase design efficiency and quality.
This was the main motivation for the development of
the AMS Designer - Simulink co-simulation feature.
Designers of analog and mixed-signal systems can eva-
luate their designs within a system model that can be
reused from system design. The powerful Simulink
model libraries simplify the design of module testben-
ches. System designers may include block or circuit
level models of critical analog modules in the system
simulation to analyze the performance impact and to
adjust analog and digital parts, e.g. by digital predistor-
tion of signals to compensate the non-linearity of a suc-
ceeding analog amplifier. Some of the existing solu-
tions for multi-level simulation have been evaluated
and improved within the project DETAILS ([*]). It is
focused on an integrated simulation flow from system-
level to mixed-signal and RF circuit implementation.

1 Concept and Implementation

When linking two simulators for co-simulation three
main aspects of implementation have to be conside-
red: the coupling of the different simulation algo-
rithms, the choice of an appropriate user interface that
integrates well in the simulators' handling concepts,
and how both simulators should communicate. In the
presented simulator coupling the mixed-signal simu-
lator Virtuoso AMS Designer is used for the block and
circuit level simulation. MATLAB/Simulink acts as
sys-tem level simulator. Because both tools calculate
the time-dependent behavior of the analyzed model
(time-domain simulation), the coupling algorithm is
focused on synchronization which is discussed in Sec-
tion Synchronization below.
The simulator coupling user interface has to provide a
simple way for the user to define the border between
both model parts residing in the two different simula-
tion environments. That concerns the choice of the
signals to be transferred, their data types and the sam-
pling mode to be used. Special coupler modules have
been introduced for both simulation environments. The
coupler module represents the model part that resides in
the other simulator. Signals that should be transferred to
or from the other model part are connected to the input
or output ports of the coupler (see Figurei2). This
approach allows to keep the modular structure of a
model when splitting it for co-simulation.

The coupler modules can be easily inserted and para-
meterized using the well-known graphical user inter-
faces of both simulation environments.

For the communication between the coupled simu-
lators a TCP/IP network socket connection is used,
allowing the co-simulation to be run on a single ma-
chine as well as on different hosts in a network. Dif-
ferent operating systems and platforms are supported
in one co-simulation run (cross-platform simulation,
see also Section Platform Support below). When run-
ning on different machines, the co-simulation may
profit from better memory utilization because more
memory is available per simulator.

1.1 Virtuoso Coupler Module

For AMS Designer the actual coupler module is written
in Verilog-AMS. It provides port definitions, contribu-
tion statements for port access, and intermediate varia-
bles of type real for each input and output port. These
variables are read and written by the VPI application -
a dynamically loaded library which is written in C and
contains the main coupling functionality. VPI, the Ver-
ilog Procedural Interface, provides several functions to
interact with the simulation engine and to access Ver-
ilog objects like variables, modules and ports. The VPI
application is started by a user-defined system task cal-
led at initialization of the coupler module:
initial $couple_init(CouplerToSimulink,hostName);

SN
E

16
/1

,
Se

pt
em

be
r

20
06

++ Co-simulation of Matlab/Simulink with AMS Designer +++

58

 Verilog-AMS model Simulink model

 coupler module
S-Function

real real double, int,
uint, bool

double, int,
uint, bool

Socket channel

coupler module

VPI application

Figure 2: Co-simulation principle.

Figure 3: Virtuoso AMS Designer coupler module.

In each step, the simulation data received from Simu-
link is written to the Verilog module's output vari-
ables, and the input variables are read. Inside the Ver-
ilog coupler module these variables has to be mapped
to the module ports. Currently, there are two coupler
modules implemented. The first one is a pure digital
module and maps data directly to its ports of type
wreal. The second one is shown in Figurei3 and has
analog electrical ports. It uses an interpolation algo-
rithm to write the received data to its output ports.

Symbol and parameter dialog of the Verilog-AMS
coupler module in Virtuoso AMS Designer are shown
in Figurei3. The following parameters are provided:

- NumberOfInputs, NumberOfOutputs:
The number of module ports per direction.
The symbol view is changed according to
these settings.

- InitialValue: The starting value for the inter
polation algorithm. It is provided at the
coupler module's output ports at simulation
time t0 (Figurei5, 6).

- HostnameOfMaster:The name of the local
or remote host where Simulink is started.

- SocketPort:The TCP/IP port number for the
socket connection. Both simulators must use
the same setting in order to communicate.

- TimeoutConn: Time before terminating
simulation if no data is received from the
other simulator.

1.2 Simulink Coupler Module

The C-based s-function API was used to implement
the coupler module on Simulink side. The advantage
is that common functions for protocol and socket
access could be shared by VPI application and s-func-
tion. The S-Function code is compiled to a shared
library and contains the entire functionality of the
coupler except the parameter dialog which was crea-
ted using the Simulink Mask Editor (see Figurei4).
The coupler module can be executed either at a pos-
sibly variable sample rate, inherited from the connec-
ted blocks, or at a constant, user-defined sample rate.

With the following three parameters the sampling
mode can be controlled:

- FrameMode:Toggles between framed and
unframed synchronization (see below).

- FrameSize: The number of samples per frame.
If the frame size should be inherited from the
connected blocks, this value is set to -1.

- SampleTime: This value defines a fixed
sampling or frame period for the coupler
block. If set to -1, sample time is inherited
from the connected blocks.

1.3 Synchronization

When splitting a simulation task into several parts for
co-simulation, the synchronization of the involved
simulation tools is an important issue. This comprises
the choice of an appropriate synchronization algorithm
as well as its implementation (for overview, see [4]).
A synchronization algorithm should strongly depend on
the scheduling schemes used by the coupled simulators.
In our case these are a dataflow-like scheduling algo-
rithm with fixed or variable time steps for Simulink and
a combination of discrete-event control with a continu-
ous-time analog solver for the mixed-signal simulator
AMS Designer. Here, the set of applicable synchroniza-
tion schemes is mostly determined by Simulink,
because in dataflow simulation a block is not executed
until all of its inputs are calculated by their drivers. This
results in a fixed execution order of all blocks that is
repeated for each sample period. Thus, also the Verilog-
AMS model represented by the coupler block has to be
executed accordingly to this order and has to calculate
its outputsfor that sample period. The synchronization
time points are given by Simulink. This scheme is a
conservative synchronization approach ([3], [1]).
With these preconditions an implementation using the
master-slave principle was the most preferable one due
to its simplicity and its only small communica-tion over-
head. Consequently, Simulink was chosen to take the
master role for synchronization and connection setup.

SN
E 16/2, Septem

ber 2006

59

+++ Co-simulation of Matlab/Simulink with AMS Designer ++

Figure 4: Simulink coupler module.

The simulators exchange data frames with blocking
access to the socket connection. Simulation time
advance is controlled by the master simulator and is
always positive for both simulators. That means, Si-
mulink calculates the coupler module's input data for
the current time step, sends this data together with the
time of the next sampling point to the Verilog cou-
pler. AMS Designer advances simulation until this
time and sends back its output data to Simulink.

Inside the Verilog-AMS coupler module the discrete-
timed data received from Simulink has to be mapped
to the continuous time axis of the analog part. This is
done by an interpolation algorithm that calculates
additional values between the received samples if
requested by the analog solver. The interpolation is
done linearly starting at simulation time t0 with the

value of the parameter InitialValue. In the opposite
direction the input signals of the Verilog coupler are
sampled at the times given by Simulink. This can in-
fluence the co-simulation performance significantly.
Thus, the sampling rate should be chosen carefully. If
it is too low, signal changes with smaller time con-
stants are lost. If the sampling rate is too high, simula-
tion performance decreases.

With its signal processing blockset Simulink pro-
vides a special signal type - so-called frame-based sig-
nals. These compose several successive samples to a
single frame and transmit them all at once. Frame-
based signals can help modeling multi-rate systems
and increase simulation performance significantly due
to the reduced communication effort between connec-
ted blocks ([6]). This feature had to be considered also
for the proposed co-simulation. Supporting Simulink's
different sampling modes - from variable sample rates
to frame-based signal processing - was a challenge for
the co-simulation implementation.

For more flexibility two different synchronization
algorithms for framed and unframed data are used. In
unframed mode (Figurei5) the Simulink coupler
module does not exchange data at simulation time t0.

The first input sample of the coupler module is igno-
red and a value of 0 is written to the outputs. The input
sample of the second sampling period is then sent to
AMS Designer together with the current simulation
time t1. AMS Designer advances simulation until t1,

samples the coupler module's input signals and sends
these values back to Simulink. Due to the interpola-
tion algorithm in the Verilog coupler module, the sig-
nal values received at time t0 are not achieved until t1
is reached. Thus, the introduced delay of one sample
period is compensated, and time axes of both simula-
tors are absolutely synchronous. Because the Simu-
link coupler module only needs to know the current
simulation time, the synchronization scheme for the
unframed mode allows using the coupler also in
models with variable sample time.

In framed mode whole data frames are exchanged bet-
ween the simulators at the equidistant frame sample
points. It is important to note, that Simulink always
generates frames for the following frame period. Thus,
the first frame is sent at simulation time t0 from Simu-

link to AMS Designer for the interval from t0 to t1
(Figurei6). The Simulink coupler module has to know
the next synchronization point tn+1 when sending a

data frame. This is only possible with fixed sampling
rates as used in framed mode. Within the VPI applica-
tion of the Verilog-AMS coupler the incoming data
frame is split into the original data points. The Verilog
simulation works subsequently on this input data. The
generated output data is again collected into a frame
and sent back to Simulink once the frame is complete.
At sample level AMS Designer shows a delay of one
sample period compared to Simulink resulting from
the linear interpolation between the sample points (see
above). In both, framed and unframed mode, there
appears no delay between the input and output ports of
the Simulink coupler module.
For the analog co-simulation, the use of the two diffe-
rent schemes provides the most suitable synchroniza-
tion in both, framed and unframed mode. The unfra-
med synchronization also allows variable sample times
in Simulink. The occurring delays are negligible.

SN
E

16
/1

,
Se

pt
em

be
r

20
06

++ Co-simulation of Matlab/Simulink with AMS Designer +++

60

t0

AMSD

Simulink

t2

h
a

n
d

 s
h

a
k
e

interpolation s
a

m
p

lin
g

initial value

(parameter)

ignored

tAMSD

tSimulink

sample period

t1

sample period

tAMSD

tSimulink

t0

frame period

AMSD

Simulink

t1 t2

frame period

h
a

n
d

 s
h

a
k
e

interpolation

sampling

Figure 5: Sample-based synchronization.

Figure 6: Frame-based synchronization.

1.4 Protocol

The implemented master-slave coupling principle has
only few requirements concerning the underlying
communication protocol. There are initial handshake
messages exchanged at co-simulation setup and data
messages containing simulation data (see Figurei7).
When starting a co-simulation, the master simulator
acts as server waiting for client requests. After the
client simulator has sent an initial handshake message,
the master sends a handshake reply containing infor-
mation on its Endian byte format (see below) and the
number, data types and dimensions of its coupler
module's ports.

If the client simulator accepts the received settings,
simulation starts with the first data frame from the
master simulator. The data messages contain a flag
describing the simulation status. It is mainly used to
signalize errors or the end of simulation. The maxi-
mum time a simulator waits for an incoming message
can be set by a parameter of the coupler module.

1.5 Platform Support

The current implementation of the simulator cou-
pling supports the Linux, Solaris, and Windows oper-
ating systems and the Sparc and x86 processor archi-
tectures. To enable cross-platform simulation, it was
necessary to consider the different Endian formats of
the target platforms. Data is stored in sequences of
bytes assembled of eight bits. To store numbers like
integers or doubles using more than eight bits, several
consecutive bytes are used. Different processor archi-
tectures use different byte orders inside those multi-
byte numbers.

There are two common formats:
Little Endian, used by Intel pro-
cessors and Big Endian used by
Sparc or Motorola processors
and for protocol data in TCP/IP
networks.

The cross-platform support pro-
vides an automated detection of
the Endian format on both
machines. A conversion is done
only in the case of different for-
mats to minimize the simulation
overhead.

For Little Endian the least significant byte is stored at
the first position (the lowest address) and for Big
Endian the most significant byte comes first. To per-
form a cross-platform co-simulation, the Endian for-
mat of the master machine must be detected and - if
necessary - transferred data must be converted when
sent/received from the other simulator. In the current
implementation the initial handshake messages con-
tain a flag that indicates the Endian format of the
simulator and are sent always in Big Endian format.
The subsequent data messages are sent in the Endian
format of the master simulator. That means, during
simulation only the client simulator converts data if
the Endian formats of client and master are different.

Endian format detection is done by casting the first
byte of a long integer variable with value 1 to a one-
byte character and checking whether it's value is 0
(Big Endian) or 1 (Little Endian). The data conversion
simply re-orders the bytes of each double or integer in
the reverse order.

2 Application Example: Wireless

LAN Transceiver

In this section the application of the co-simulation for
modeling a wireless LAN IEEE 802.11b physical
layer transmission system on different levels of ab-
straction is shown.

Figure 8 shows the Simulink top-level schematic of a
wireless LAN system level model. Binary random data is
encoded and modulated in the transmitter part. The
OFDM signal is then transferred to a channel model.

SN
E 16/2, Septem

ber 2006

61

+++ Co-simulation of Matlab/Simulink with AMS Designer ++

AMS Designer SIMULINK

ti
m

e start simulation

wait for incoming connection

initial handshake
start simulation

handshake answer

1st data sample/frame

1st data sample/frame

stop simulation
stop message

simulation stopped simulation stopped

< TimeoutInit

< TimeoutConn

calc 1st sample/frame

calc 1st sample/frame

< TimeoutConn

< TimeoutConn

user input user input

Figure 7: Protocol message flow.

In the example a White Gaussian Noise
channel is used. The receiver blocks
demodulate and decode the channel out-
put. Finally the received bits are compa-
red with the original bit stream to com-
pute the bit error rate.

This standard compliant model of the
wireless LAN link is built with modules
from the Simulink communication and
signal-processing toolboxes. The sam-
ple model contains only the digital parts
of the transmission system. Effects ori-
ginating from the analog RF parts of
transmitter and receiver are not conside-
red in the current simulation.

The RF frontend was designed using
SpectreRF and AMS Designer within
the Cadence Virtuoso environment.
Figurei9 depicts the behavioral model of
the RF transmitter module, which fil-
ters, up converts and amplifies the sig-
nal.

For simulation speed-up, the RF parts
are modeled in complex baseband
domain as Verilog-A behavioral models.
It is possible to switch the abstraction
level as far down as transistor level.
However, the simulation performance
will be lower in this case.

One- and two-tone sources are typically
used in this environment as stimuli for
the analysis of the RF sub-systems.
Characteristics of the design are for
example intercept points, noise figures
and corner frequencies.

In most cases, it is much easier to handle
more realistic stimuli, like modulated
signals and corresponding DSP post-
processing blocks for performance eva-
luation, on system level using Simulink.

With the co-simulation those tests are
set up easily without modifying the
environment setup too much.

SN
E

16
/1

,
Se

pt
em

be
r

20
06

++ Co-simulation of Matlab/Simulink with AMS Designer +++

62

Figure 8: End-to-end system-level simulation with Simulink.

Figure 9: Behavioral model of the transmitter RF frontend.

Figure 10: Simulink model with modules for co-simulation.

Figure 11: AMSD testbench with couple module.

A coupler module is used to link the RF transmitter
model into the Simulink system-level schematic
(Figurei10). In AMS Designer the RF frontend model
is embedded in a separate testbench containing the
corresponding coupler module and a simple antenna
model (Figure 11). The input of this coupler module is
sent through the socket connection to the output of the
Simulink coupler module and is therefore connected
to the output of the transmitter model.

Figure 12 depicts the frequency characteristic of the
transmitted OFDM signal and the spectral mask (dot-
ted) for IEEE 802.11a. The transmitted signal must be
within this mask to fulfill the specification. The left-
hand plot shows the signal generated by the digital
baseband in Simulink. After passing the RF frontend
some deviations can be observed, caused by nonlinear
behavior (right-hand plot). The co-simulation can now
be used to improve the system model by optimizing
the parameters of RF front-end and DSP part.

3 Summary and Outlook
The presented simulator coupling enables the co-simu-
lation of MATLAB/Simulink and the mixed-signal
simulator Virtuoso AMS Designer. Its main advantage
comprises the possibility to integrate design verifica-
tion steps into system level simulation by increasing
simulation accuracy of selected parts of a model - if
necessary down to circuit level. Here, the general tra-
deoff between simulation accuracy and performance
has to be taken into account. This application scenario
was demonstrated by a WLAN transceiver model.
Furthermore, the coupling allows to use special featu-
res of one simulator in a co-simulation, e.g. Simulink
blocks for stimuli generation and postprocessing, AMS
Designer for multi-language mixed-signal simulation.
Cadence Design Systems is providing this coupling
feature within the current software release. It has been
successfully tested by several major design companies.

References

[1] U. Donath et al.: Parallel
Multi-Level Simulation
with a Conservative
Approach. J. Systems
Analysis - Modelling -
Simulation 21(1995), pp.
187-201

[2] R. Frevert et al.: Modeling
and Simulation for RF

System Design.
ISBN 0-387-27584-3,
Dordrecht, Springer, 2005

[3] D. Kim, C.-E. Rhee, S. Ha:
Combined Data-Driven and Event-Driven
Scheduling Technique for Fast Distributed
Cosimulation.
IEEE Trans. on VLSI Systems,
Vol. 10, No. 5, pp. 672-678, Oct. 2002

[4] P. Le Marrec et al.: Hardware, Software and
Mechanical Cosimulation for Automotive
Applications. Proc. 9th IEEE Int. Workshop
on Rapid System Proto-typing, pp. 202-206,
Leuven, June 1998

[5] S. Wielens, S. Altmann, J. Haufe,
P. Schneider: Integration of Prototypes into
the Design Flow of Digital Hardware for
Applications in Mechatronics and
Telecommunication. Proc. Model-Based
Design Conf. 2005, pp. 55-60,
Munich, June 2005

[6] Simulink Signal Processing Blockset,
WWW.MATHWORKS.COM/products/sigprocblockset/

[7] Cadence RF Design Methodology Kit.
WWW.CADENCE.COM/products/kits/RF_Design/

[*] The presented work was partly funded by the project
DETAILS, promoted by the German BMBF (Sign
01M3071) within the initiative ‘Mobile Internet’.

Corresponding author: U. Eichler
U. Eichler, U. Knöchel, S. Altmann
Fraunhofer Institute for Integrated Circuits (IIS),
Branch Lab Design Automation (EAS)
Zeunerstraße 38, 01069 Dresden, Germany
{eichler, knoechel, altmann}@eas.iis.fraunhofer.de
W. Hartong, J. Hartung, Cadence Design Systems GmbH
Mozartstrasse 2, 85622 Feldkirchen, Germany
{hartong, juergenh}@cadence.com

Received: May 2, 2006
Revised: June 8, 2006
Accepted: June 20, 2006

 SN
E 16/2, Septem

ber 2006

63

+++ Co-simulation of Matlab/Simulink with AMS Designer ++

Figure 12: Co-simulation results, spectral masks.

Introduction

In the western industrial countries cardiovascular dis-
eases are the most frequent cause of death. Therefore
a lot of research is done to get a better understanding
of the cardiovascular system (CVS). To simulate the
CVS, various models of different accuracy are used
and often coupled together to describe the circulation
on different spatial and temporal scales [1].

In this work a LBM is used to simulate the blood flow
in three spatial dimensions, solving the Navier-Stokes
equation with the Lattice Bhatnagar-Gross-Krook
(LBGK) method ([2,i3]). The main advantages of the
LBGK method are that it is simple to implement and
to parallelize which enables an efficient computation.
Furthermore it is a bottom up approach. Thus the algo-
rithm can be interpreted physically in every step,
which makes the method very intuitive.

The calculations in computer fluid dynamics (CFD)
and specially blood flow simulation in three spatial
dimensions are very time consuming. Adequate com-
puter systems often make use of multiple CPUs.
Therefore it is fundamental for algorithms in CFD to
support parallelization. In this work the LBGK
method in three dimensions with 15 degrees of free-
doms is tested under these aspects.

The LBGK method is tested on a Dell Precision 670
machine containing two Intel Xeon dual core proces-
sors with 2.8 GHz.

The test case simulates unsteady flow in a rectangle.
The time dependent pressure gradient, fluid viscosity
and the resulting Reynolds numbers lie in a range rele-
vant for blood flow simulation.

The results of the simulation are in best accordance
with the analytical results obtained by Womersley, see
[4]. The example shows the benefits of the LBGK
method for blood flow simulation and thus acts as a
relevant example for comparing computation times of
multiple CPUs.

1 The LBGK D3Q15 Model for

Blood Flow Simulation

For simulating the flow field we use a LBGK model
[2, 3], which is proved to be capable of dealing with
pulsative flow within the range of Reynolds and
Womersley numbers existing in large arteries [5, 6].

The LBGK model is based on a statistical description
of a fluid in terms of the Boltzmann equation. The
Boltzmann equation with single relaxation time is
given by

This equation is discretised in the spatial domain, in
velocity space and in time, yielding

++ Parallel Computation in Blood Flow Simulation using Lattice Boltzmann Method +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

64

Parallel Computation in Blood Flow Simulation
using the Lattice Boltzmann Method

Daniel Leitner, Siegfried Wassertheurer, ARC Seibersdorf research GmbH, Vienna, Austria
{daniel.leitner, siegfried.wassertheurer}@arcsmed.a

Felix Breitenecker, Vienna University of Technology, Vienna, Austria
Felix.Breitenecker@tuwien.ac.at

Michael Hessinger, Andreas Holzinger, Medical University Graz
{michael.hessinger, andreas.holzinger}@meduni-graz.at

Lattice Boltzmann Models (LBM) are widely used to solve fluid mechanical problems in engineering and
biomedical applications. First a brief introduction of LBM is given and an example model with three spatial
dimensions is introduced. The model is relevant for blood flow simulation because it uses Reynolds and
Womersley numbers found in hemodynamics with a realistic time dependent pressure gradient as a boundary
condition. A big advantage of LBM is the possibility of easy parallelization. Therefore different approaches
of implementations are discussed. To test parallelization, the example model is used as a benchmark. The

simulation times are compared calculating the problem in parallel on one to four processors.

)(
1 eqfff

t
f

−−=∇⋅+
∂
∂

λ
ξ

SN
E 16/2, Septem

ber 2006

65

+++ Parallel Computation in Blood Flow Simulation using Lattice Boltzmann Method ++

where c = Dx/Dt, Dx is the lattice grid spacing, and Dt
the time step.

The particle distribution functions fi evolve on a regu-

lar grid and represent particles travelling on the link ei
(Figurei1), thus fii(x,it) refers to the particle distribu-

tion on the lattice node x at time t on the link ei.

Note that f0 (x,it) represents the particles resting at

node x, thus i = {0,…, 14} in the D3Q15 LBGK
method. In the name D3Q15, D3 is referring to the
three spatial dimensions, Q15 to the 15 degrees of
freedom in a node.

Figure 1: The velocity directions in the
LBGK D3Q15 model

The equilibrium density distribution f eq(x,it) depends
solely on the density ρi(x,it) and the velocity u(x,it) of
a lattice node x. The density ρ and the velocity u are
obtained from the density distribution function fi :

The equilibrium is defined as

with the weight coefficients

The mass and momentum equations can be derived
from the model via multiscale expansion as

where p is the pressure, cs is the speed of sound, and

v is the kinematic viscosity. The mass and momentum
equations are exactly the same as the compressible
Navier-Stokes equation, if the density variation is
small enough.

Thus the compressible Navier-Stokes equation is
recovered in the incompressible limit. If the density
fluctuation is assumed to be negligible, the incom-
pressible Navier-Stokes equation can derived directly
via the Chapman-Enskog procedure. Because of the
expansion in the velocity term the lattice Boltzmann
method is only applicable to low Mach number hydro-
dynamics.

2 Implementation Notes for Parallel

Computation

The strictly local nature of the LBGK method enables
an easy parallelization of the algorithm.
The pseudo code for a one processor machine can be
easily formulated, as can be seen in the following
code snippet:

while(running) {
for each node { calc kinetic equ }
for each node { calc equilibrium }

}

Furthermore note, that the discretised Boltzmann
equation (see before) is normally formulated as
kinetic equation (ω = 1/λ):

⋅⋅−⋅+

+⋅+=

)
2

3
)(

2

9

3(),(

2 uuu

uuf

iii

iii
eq

i

ωω

ωωρρ

e

e

)),(),((
1

),(),(

txftxf

txftttcxf
eq

ii

iii

−−

=−+Δ⋅+

λ

e

∑

∑
⋅=

=

i
ii

i
i

txfctxutx

txftx

),(),(),(

),(),(

eρ

ρ

⎪
⎩

⎪
⎨

⎧

=
=

=
=

14,,7,72/1

6,,1,9/1

0,9/2

K

K

i
i

i

iω

6
)12(,

3
,

)))(()((

)(
)(

0)(

22

2

Dtcvcccp

uuvp

uu
t
u

u
t

ss −===

⋅∇∇+∇+∇−

=⋅∇+
∂

∂

=⋅∇+
∂
∂

τρ

ρρ

ρ
ρ

ρ
ρ

++ Parallel Computation in Blood Flow Simulation using Lattice Boltzmann Method +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

66

To adjust the method for multiple CPUs the set of
nodes must be simply distributed on the threads, each
running on one processor. In each calculated time step
the threads must wait for each other two times:

while(running) {
for each thread {calc kinetic
equation for all nodes }

wait for all threads
for each thread {calc equilibrium
for all nodes }

wait for all threads

The way the nodes are distributed on the threads is
important. Neighbouring nodes should be processed
from one thread for optimal cache usage. Special care
must be taken when there are complex boundary
nodes which need more computation time. The nodes
should be distributed in a way that every thread needs
exactly the same time to calculate its nodes.

For the computation a data structure is needed to store
the densities, equilibria and information about neigh-
borhood. Basically there are three approaches for the
representation of the states: lattice, list, and object.

Lattice Implementation

The simplest approach is to store all states in a three -
dimensional lattice and a three-dimensional array,
respectively.
Two lattices are needed. In one time step the new values
are calculated from an input lattice A into a lattice B, in
the next step from B to A and so on, see Figurei2. There
is no need to store extra information about neighbor-
hood because the position of the data in the lattice and
therefore the position in memory is known.

List Implementation

A major drawback of the method with lattices is when
small structures lie in a big volume, like arteries in
tissue. Most of the nodes are boundary nodes and
there is only a small percentage of fluid nodes.
The idea is to calculate and store only relevant nodes,
which are fluid nodes and no slip nodes neighbouring
them. The data of these relevant nodes are written into
a list. Two sets of states are stored for every node, old
states and new states. In addition extra information
about neighbourhood is needed, see Figurei3. Thus
the indices of the neighbours must be stored in a table
for each node in the list.

Further the positions of the nodes in space are needed,
therefore three additional values must be stored for
every node. Note that in the implementation with
lattices this information is provided in a natural way.

Implementation with Objects

A more intuitive but slightly
slower and more storage
demanding approach is to
represent every node as an
object. The states and positions
in space are stored within the
object. Neighbourhood is
realized by storing the refe-
rences to the neighbours, see
Figurei4.

),(),()1(

),(

txftxf

tttcxf
eq

ii

ii

ωω −−

=Δ+Δ⋅+ e

Figure 2: Implementation with two lattices.

Figure 3: Implementation with a list.

SN
E 16/2, Septem

ber 2006

67

+++ Parallel Computation in Blood Flow Simulation using Lattice Boltzmann Method ++

This needs more memory on 64 Bit machines because
a reference needs 64 Bits while an integer used for an
index of a list needs only 32 Bits of memory.

The object oriented approach has been used in this
work, because it simplifies experiments with new
node types.

3 Simulation Results

The example models are boxes of 20*20 nodes with a
length of 20, 100, 200 nodes. The boxes are sur-
rounded with no-slip nodes describing the walls. At
the top and bottom of the box a special boundary con-
dition is applied for describing the time dependent
pressure gradient. For more information about boun-
dary conditions for LBGK methods the reader may
refer to [2]. An approach to model elastic walls of
arteries is given in [7].
The results of the simulation are presented in Figurei5.
They are in best accordance with analytic solutions
presented by Womersley.

The simulation is done on a Dell Precision 670 con-
taining two Intel Xeon dual core processors with 2.8
GHz with Windows XP SP2 and J2SE 5 Update 7.

Time is measured over 100 time steps. The simula-
tion is done 20 times on one to four processors. The
run times are compared to the calculation time of one
processor. Thus ideally two processors should work
exactly with twice the perfomance as one.
The blue line in Figures 6-8 is the regression line of all
sample points, the red line is the regression line of all
points except the three worst results.

Simulation of the Box with 20*20*20 nodes: The
smallest experiment with only 8000 nodes works very

well and scales nearly linear. Eye
catching is that two CPUs work
have more than twice the perfor-
mance than one CPU (see Figu-
rei6). An explanation for this is
the architecture of the computer.
When two threads are used they
run on the cells of only one CPU,
while the second CPU can serve
the operation system.

Figure 4: Object oriented implementation.

Figure 6: Simulation times of a 20*20*20 box
(8000 nodes).

Figure 7: Simulation times of a 20*20*50 box
(20000) nodes.

Figure 5: Velocity profiles of unsteady flow.

++ Parallel Computation in Blood Flow Simulation using Lattice Boltzmann Method +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

68

The threads on the two cells can use the cache in an
optimal way. In this small example four threads are most
of the times really four times faster than one thread.

Simulation of the Box with 20*20*50 nodes: The
slightly bigger example with 20000 nodes shows a
different behaviour. Because the simulation time is
longer, more influences from the operation system
affect the simulation time. Further performance is lost
because the cache usage is not as good as in the
smaller model. This results in slower simulation times
than in the first example. Four threads are only three
times faster than one thread (see Figure 7).

Simulation of the Box with 20*20*100 nodes: The
biggest example with 40000 nodes shows similar be-
haviour than the model with 20000 nodes. Four
threads have nearly the same performance as three
threads (see Figure 8). The reason for this behaviour
is that system services take a lot of time from one
processor and therefore all other threads have to wait.

4 Summary

The LBGK D3Q15 method is described, which is a
widely used method for fluid mechanical application.
This work mainly focuses on the application of this
method to hemodynamics and parallelization. A rele-
vant example for blood flow simulation is described
and the LBGK D3Q15 method is used for the calcula-
tion of the problem.
The model is used as a benchmark to test the ability of
parallelization of the method. Different approaches of
implantation are discussed. The object oriented ap-
proach is favoured.
For the computation a Dell Precision 670 workstation
containing two Intel Xeon dual core processors with
2.8 GHz is used. The method scales linearly as ex-
pected for small models (8000 nodes).

For larger models (20000 or 40000 nodes) the simula-
tion time is strongly influenced by services of the under-
lying operation system when working with four threads.

References

[1] D. Leitner, J. Kropf, S. Wassertheurer,
F. Breitenecker: Lattice Boltzmann Methode
zur Simulation vom Strömungsverhalten in
Arterien. In (U. Rüde et al., eds.) Proc.18th
Symp.Simulationtechnique ASIM 2005,
Frontiers in Simulation, SCS Publishing
House, Erlangen, 2005; pp 768-774.

[2] S. Succi: The Lattice Boltzmann Equation
for Fluid Dynamics and Beyond.
Oxford University Press, 2001.

[3] D.A. Wolf-Gladrow: Lattice-Gas Cellular
Automata and Lattice Boltzmann Models -
An In-troduction. Lecture Notes in
Mathematics. Springer, 2002.

[4] D.A. McDonald: Blood Flow in Arteries.
Edward Arnold, 1974.

[5] A. M. Artoli, D. Kandhai, H. C. Hoefsloot,
A. G. Hoekstra, P. M. A. Sloot: Lattice
bgk simulations of flow in a symmetric
bifurcation. Future Gener. Comput. Syst.,
20(6):909-916, 2004.

[6] A.M. Artoli, A.G. Hoeksta, P.M.A. Sloot:
Simulation of a systolic cycle in a realistic
artery with the lattice boltzmann bgk
method.
Int. J. Mod. Phys. B, (17):95-98, 2003.

[7] D. Leitner, S. Wasssertheurer, M. Hessinger,
A. Holzinger: A Lattice Boltzmann Model
for pulsative blood flow in elastic vessels.
Elektronik und Informationstechnik,
heft 4, 152-155, 2006.

Corresponding author: Daniel Leitner
Daniel Leitner, Siegfried Wassertheurer,
ARC Seibersdorf research GmbH, Biomedical Engineering,
Floragasse 7, 1040 Vienna, Austria;
{daniel.leitner, siegfried.wassertheurer}@arcsmed.at
Felix Breitenecker, Vienna University of Technology,
Inst. for Analysis and Scientific Computing,
Wiedner Hauptstr. 8, 1040 Vienna, Austria;
fbreiten@osiris.tuwien.ac.at
Michael Hessinger, Andreas Holzinger, Medical University
Graz, Auenbruggerplatz 2/4, 8036 Graz, Austria
{michael.hessinger, andreas.holzinger}@meduni-graz.at

Received: May 15, 2006
Revised: July 10, 2006
Accepted: July 20, 2006

Figure 8: Simulation times of a 20*20*100 box
(40000) nodes.

SN
E 16/2, Septem

ber 2006

69

++ ARGESIM Comparisons / Benchmarks - Definition +++

ARGESIM Benchmark on Parallel and Distributed Simulation
Felix Breitenecker, Gerhard Höfinger,Vienna University of Technology, Austria

{Felix.Breitenecker, Gerhard.Hoefinger}@tuwien.ac.at
René Fink, Sven Pawletta, Thorsten Pawletta, Wismar University, Germany

WWW.MB.HS-WISMAR.DE/cea

Introduction

In 1994, ARGESIM has set up the ARGESIM Com-
parison on Parallel Simulation Techniques (CP1).
There, three test examples have been chosen to investi-
gate the types of parallelisation techniques best suited
to particular types of simulation tasks. The new ARGE-
SIM Benchmark on Parallel and Distributed Simula-
tion (CP2) extends the previous comparison, addres-
sing not only simulation software and predefined given
algorithms, but also allowing use of different algo-
rithms for solving the tasks and comparing different
strategies for parallelisation or distribution of the tasks.

1 Contribution to the Benchmark CP2

The ARGESIM Benchmark on Parallel and Distribu-
ted Simulation tests benefits of parallel and distributed
simulation with three case studies:
- Monte Carlo - Study
- Lattice Boltzmann Simulation
-• PDE Solution

Participation at this benchmark requires:
• Documentation of the algorithms for solving

the case studies (one or more algorithms)
• Documentation of the strategy for

parallelising or distributing the case studies
(one or more strategies)

- Serial solution of the case studies
- Parallel / distributed solutions of the case

studies
- Determination and documentation of

efficiency of parallelisation

In detail, a contribution to this benchmark should for
each case study describe first the approach or the algo-
rithms for calculating solutions, followed by informa-
tion about the method of parallelisation or distribution
of tasks and subtasks. It is highly appreciated, if more
than one solution for a particular case study is given,
either using different parallelisation strategies or stra-
tegies for distribution, or by using different hardware

environments, or by using different algorithms for cal-
culating solutions. In the following, results of the case
studies should be presented, based on a comparison of
a serial solution and the parallel / distributed simula-
tion of each case study.

For quantitative comparison of serial solution and par-
allel or distributed solutions, performance should be
assessed in terms of the relative speed-up factor, a nu-
merical value found by dividing the time for serial so-
lution by the time for the parallel solutions (speed-up
factor f). Measurements of time, whenever necessary,
should be in terms of the total elapsed time for run-
ning the task. Furthermore, a rough indication should
be provided for the (time) effort for implementing a
parallel or distributed simulation (at best compared
with implementation time for the serial solution).

Contributions to this benchmark will be published in
the journal SNE – Simulation News Europe. Solutions
sent in should not exceed three SNE pages and will be
reviewed by the editorial board and by authors of the
benchmark.

2 Case Study 1 – Monte Carlo Study

The first case study is a Monte Carlo study. In a dam-
ped dynamic mass – spring system the damping factor
is randomly disturbed, and the mean of a sample of
dynamic outputs is to be calculated.
The second order mass-spring system is described by
the following ODE, where the damping factor d
should be chosen as a random quantity uniformly dis-
tributed in [800, 1200]:

The task is to calculate a sample of M = 1000 results
x(t,idi) of the motion (Figurei1 shows x(t,1000)) and to

calculate the mean motion xmean(t) over the time interval

[0, 2] with a resolution (stepsize) of 0.01 (n = 200 steps):

This new ARGESIM Benchmark addresses benefits of parallel and distributed computing in the area of conti-
nuous, discrete, and hybrid simulation and in related areas. The benchmark may be of interest for users of all
types of parallel and distributed facilities. The spectrum may range from parallelisation strategies and strategies
for distributing tasks, via general purpose programming languages to simulation languages, andfrom networks

of workstations, via special parallel computers, to very high performance computers.

0)()()(=++ txktxdtxm &&&

450,9000,1.0)0(,0)0(==== mkxx &

As the model is a linear one, the solution can be pro-
vided also analytically, not only by using an ODE solver:

While the ODE may be basis for a parallelisation of
the varying damping factor, the analytical formula
may be a basis for parallelisation of the 201 time
instants, where a solution is to be calculated.

For documentation,
we ask for a precise
description of the
parallelisation stra-
tegy used, and for
comparison of the
solutions we ask for
a plot of the mean
motion xmean(t) and

of values for the
speed-up factors f.

3 Case Study 2 – Lattice Boltzmann
Simulation

The second case study addresses the lattice Boltz-
mann method (LBM) for fluid flows, which is wide-
spread in parallel simulation domains today. The
method is derived from lattice gas cellular automata in
which space, time, particle velocity and particle occu-
pation state are all discrete. In LBM, particle occupa-
tion state on nodes is replaced by single-particle distri-
bution functions (real values).

The case study is based on the famous cavity flow pro-
blem published by Hou et al in J. Comput. Phys. 118

(1995), where the
behaviour of an
incompressible fluid
in a square enclo-
sure, driven by a
constant stream on
the top boundary is
examined
(see Figurei2).

For a description of the geo-
metry matrix g, cell types are
divided into wall cells (W),
driving cells (D) and fluid
cells (F). For a lattice size of
2x2, g is given at right.

The uniform translation on top of the cavity is given as
u0x = 0.1, u0y = 0, where the Reynolds number is Re =
1000. At any grid point, the initial macroscopic velocity
is ux = 0, uy = 0 and the initial density is ρ = 1.
The task is, to simulate the cavity flow with lattice size
257 x 257 for a number of 350.000 iterations. After this
number of iterations, steady state is reached. Simula-
tion results are shown in Figurei3.
For documentation, we ask for a precise description of
the parallelisation strategy used, and for comparison of
the solutions we ask for a plot of relative macroscopic
velocity magnitudes (u/u0) at steady state and for val-

ues of the speed-up factors f (please note, that also a
serial solution is necessary for this purpose).
A problem discussion in detail and links to sequential
reference implementations as well as to introductory
materials for the lattice Boltzmann method are pro-
vided at WWW.MB.HS-WISMAR.DE/cea/lbm.

4 Case Study 3 – Solution of a

Partial Differential Equation

The third case study is based on a second order partial
differential equation describing a swinging string with
length L, fixed at both ends, excited at the beginning
(surface plot shown in Figure 4):

++ ARGESIM Comparisons / Benchmarks - Definition +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

70

∑
=

=

===
M

k
jimean

iji

tx
M

tx

minjdtxtx

1

)(
1

)(

,,1,,0),,()(KK

)sin(),(tKedtx t ωα−=

ω
αωα

)0(
,,

2
22 xK

m
k

m
d &

=−==

Figure 2: Lid-driven
cavity flow.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

WWWW
WFFW
WFFW
DDDD

g 2,2

Figure 3: Relative macroscopic velocity magnitude (u/u0)

in cavity flow after 350000 iterations on a 257x257 grid.

),(
1

),(
2

xtu
v

xtu ttxx =

Figure 1: Plot of the analytical solu-
tion of the second order mass –
spring system with d = 1000.

One approach for solving this PDE is the method of
lines, using discretisation of space. Discretising the
space into N equidistant intervals and replacing the dif-
ferential quotient uxx (t,ix) by a central difference quo-

tient, a set of weakly coupled ODEs replaces the PDE:

Also an analytical solution (approximation) can be cal-
culated because of linearity. A classical separation
approach u(t,ix) = X(x) T(t) can be used for calculating
the solution. This yields with given initial and boundary
conditions a solution with a Fourier series ([3]; Figure
5 and Figure 6 show lines in x and t, calculated with
Fourier series cut at 100 summands):

In principle, also discretisation of space and time may
be suitable. For instance, using for space discretisation
a central difference quotient as in method of lines, and
using for time backwards difference quotients (as well
for PDE and for initial condition) yields a linear system
for u(tk, xi), which may be parallelised for solution.

Of course, other algorithms for solving the PDE may be
used, with varying grids etc, which can be parallelised
/ distributed appropriately.

In general, the system is to be solved with a spatial dis-
cretisation of N = 500 lines at the interval [0, 10] with
time discretisation of 0.01s (m = 1000). For documen-
tation, we ask for a precise description of the paralleli-
sation strategy used, and for comparison of solutions
we ask for plots of the lines u(x=3L/4,it), u(x=L/2,it) and
u(x,it=15), u(x,it=30), and of a surface plot (excitation
versus space and time). Furthermore, values for the
speed-up factors f should be given.

References

[1] F. Breitenecker, I. Husinsky, G. Schuster:
Comparison of Parallel Simulation
Techniques –Definition. Simulation News
Europe SNE 10, March 1994.

[2] S. Hou, Q. ou, S. Chen, G. D. Doolen,
A.C. Cogley: Simulation of Cavity Flow by
the Lattice Boltzmann Method.
J. Comput. Phys. Vol. 118, no. 2, May 1995.

[3] Ch. B. Lang, N. Pucker: Mathematische
Methoden in der Physik; Akad. Verlag,
Spektrum HTB, Heidelberg, 1998
ISBN 3-8274-0225-5

Corresponding author: Felix Breitenecker
Felix Breitenecker, Gerhard Höfinger
Vienna University of Technology,
Inst. f. Analysis and Scientific Computing,
Wiedner Hauptstrasse 8-10, 1040 Vienna,
Austria; {Felix.Breitenecker,
gerhard.Hoefinger}@tuwien.ac.at
René Fink, Sven Pawletta, Thorsten
Pawletta, Res. Group Computational
Engineering and Automation
Wismar University, Phillip Müller Straße,
23952 Wismar, Germany;

{s.pawletta, r.fink}@et.hs-wismar.de
pawel@mb.hs-wismar.de,

Received: June 15, 2006
Revised: August 30, 2006
Accepted: September 15, 2006

SN
E 16/2, Septem

ber 2006

71

++ ARGESIM Comparisons / Benchmarks - Definition +++

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

+
−

= ∑
∞

= L
vtj

L
xj

j
htxu

j

j ππ
π

)12(
cos

)12(
sin

)12(

)1(8
),(

0
22

Figure 5: Solution of the PDE,
excitation over time at
x = 0.375 and x = 0.25.

05.0,5.0,6.0

)
1

1(2)0,
2

(,2)0,
2

0(

0)0,(,0),(),0(

===

−=≤≤=≤≤

===

hLv

x
L

hLxLux
L
hLxu

xutLutu t

Figure 4: Surface plot for the swinging string
– excitation in dependency of space and time.

0)0(,,,
2

),1(2)0(

,
2

,,0,2)0(

1,1),()(2)()(112

2

==−=

==

−=+−= +−

ii

i

iiii

uNNi
N
ihu

Nii
N
hu

Nitutututu
v
k

&K

K

&&

Figure 6: Solution of the PDE,
excitation over space at

t = 5 and t = 8.

ASIM ASIM

SCS

Publishing

House

SCS

Publishing

House

R
E

P
O

R
T

S
R

E
P

O
R

T
S

ASIM - Buchreihen / ASIM Book Series

Fortschritte in der Simulationstechnik (FS) / Series Frontiers in Simulation (FS)
- Monographs, Proceedings:

W. Borutzky: Bond Graphs Methodology for Modelling Multidisciplinary Dynamic
Systems. FS 14, ISBN 3-936150-33-8, 2005.

M. Becker, H. Szczerbicka (eds.): 19th Symposium Simulation Techniques.
Proceedings Tagung ASIM 2007, Hannover; FS 16, ISBN 3-936150-49-4, 2006.

S. Wenzel (Hrsg.): 12. Fachtagung Simulation in Produktion und Logistik.
Proceedings Tagung ASIM SPL 2006; ISBN 3-936150-48-6, 2006.

F. Hülsemann, M. Kowarschik; U. Rüde: 18th Symposium Simulation Techniques.
Proceedings Tagung ASIM 2005 Erlangen; FS 15, ISBN 3-936150-41-, 2005.

Available / Verfügbar: SCS Publishing House e.V., Erlangen, WWW.SCS-PUBLISHINGHOUSE.DE

Download ASIM Website WWW.ASIM-GI.ORG (partly; for ASIM members)

Fortschrittsberichte Simulation (FB) / Advances Simulation (AS) / ASIM Mitteilung (AM)
ARGESIM Reports (AR) - Special Monographs, PhD Theses, Workshop Proceedings

C. Deatcu, S. Pawletta, T. Pawletta (eds.): Modelling, Control and Simulation in
Automotive and Process Automation. Proceedings ASIM Workshop Wismar 2006,
ARGESIM Report 31, AM 101; ISBN 3-901-608-31-1, 2006.

H. Ecker: Suppression of Self-excited Vibrations in Mechanical Systems by Parametric
Stiffness Excitation. ARGESIM Report FB 11, ISBN 3-901-608-61-3, 2006.

M. Gyimesi: Simulation Service Providing als Webservice zur Simulation Diskreter Prozesse.
ARGESIM Report FB 13, ISBN 3-901-608-63-X, 2006.

J. Wöckl: Hybrider Modellbildungszugang für biologische Abwasserreinigungsprozesse.
ARGESIM Report FB 14, ISBN 3-901608-64-8, 2006.

Available / Verfügbar: ARGESIM/ASIM Publisher, TU Vienna, WWW.ARGESIM.ORG

Download / Bestellung zum Mitgliederpreis € 10.- ASIM Website WWW.ASIM-GI.ORG

Reihen der ASIM-Fachgruppen / Series of ASIM Working Groups

S. Collisi-Böhmer, O. Rose, K. Weiß, S. Wenzel (Hrsg.): Qualitätskriterien für die Simulation
in Produktion und Logistik. AMB 102, Springer, Heidelberg, 2006; ISBN 3-540-35272-4.

M. Rabe, S. Spiekermann, S. Wenzel (Hrsg.): Verifikation und Validierung für die Simulation
in Produktion und Logistik. AMB 103, Springer, Heidelberg, 2006; ISBN 3-540-35281-3.

A. Gnauck (Hrsg.): Modellierung und Simulation von Ökosystemen - Workshop Kölpinsee
2004. AMB 93, Shaker Verlag, Aachen, 2006; 3-8322-5203-7

Available / Verfügbar: Bookstore / Buchhandlung, ermäßigter Bezug für ASIM Mitglieder
Info at ASIM webite WWW.ASIM-GI.ORG

Accelerating the pace of engineering and science

515.000.000 KM, 380.000 SIMULATIONEN
UND KEIN EINZIGER TESTFLUG.

DAS IST MODEL-BASED DESIGN.

Nachdem der Endabstieg der beiden

Mars Rover unter Tausenden von

atmosphärischen Bedingungen simuliert

wurde, entwickelte und testete das

Ingenieur-Team ein ausfallsicheres

Bremsraketen-System, um eine

zuverlässige Landung zu garantieren.

Das Resultat – zwei erfolgreiche

autonome Landungen, die exakt gemäß

der Simulation erfolgten.

Mehr hierzu erfahren Sie unter:

www. mathworks.de/mbd

MBD-Mars_Ad_A4.indd 1MBD-Mars_Ad_A4.indd 1 18.08.2005 15:33:3518.08.2005 15:33:35

TITEL, NACHNAME

VORNAME

FIRMA / UNIVERSITÄT

ABTEILUNG

ADRESSE

PLZ, ORT

TELEFON, FAX

EMAIL

Fax: +49(0)551 / 99 721- 29
www.comsol.de/conference2005/cd/

• Akustik und Fluid-Struktur-Interaktion
• Brennstoffzellen
• Chemietechnologie und Biotechnologie
• COMSOL Multiphysics™ in der Lehre
• Elektromagnetische Wellen
• Geowissenschaften
• Grundlegende Analysen, Optimierung, numerische Methoden
• Halbleiter
• Mikrosystemtechnik
• Statische und quasi-statische Elektromagnetik
• Strömungssimulation
• Strukturmechanik
• Wärmetransport

ANWENDUNGSBEREICHE:

 Proceedings CD der
 Konferenz zur Multiphysik-Simulation

www.comsol.de

Bestellen Sie hier Ihre kostenlose Proceedings CD mit
Vorträgen, Präsentationen und Beispielmodellen
zur Multiphysik-Simulation:

