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Abstract. In this paper we present a joint model
for order reduction for dynamic linear time invariant
(LTI) system, which we call SVD-AORA (Singular Value
Decomposition-Adaptive Order Rational Arnoldi). The
SVD-AORA method is an extension of the SVD-Krylov
based method. It is based on linear projection using
two projection matrices (V and Z). The first matrix V is
generated using the Krylov technique through the AORA
method, the second matrix Z is generated using the SVD
technique by the resolution of the Lyaponuv equation.
After the resolution of the Lyaponuv equation, the so-
lution obtained (The gramian observability matrix go) is
decomposed using the SVD technique and thus we ob-
tain the second projection matrix Z. The use of the AORA
method enhances the numerical efficiency thanks to its
relative lower computation complexity and the use of the
SVD technique preserves the stability of the reduced sys-
tem. The proposed method gives a reduced order model
asymptotically stable, captures the essential dynamics of
the original model and minimizes the absolute error be-
tween the original and the reduced one. The results of
the proposed method are compared with other popu-
lar approach of order reduction in the literature which is
the SVD-Krylov method. The reduced systems obtained
by the proposed method have better performance com-
pared to SVD-Krylov method. The method is explained
through two numerical systems of different order.

Introduction
Technological world, physical and artificial processes

are mainly written by mathematical models which can

be used for simulation or for control. Among these

models the LTI of high order. However, these high order

models are difficult to manipulate and analyze because

of the fact that the resolution of these models is in-

deed very demanding in computational resources, stor-

age space, and mainely in CPU time. Hence the neces-

sity of model order rection technique.. In the literature

there exist different reduction methods of linear time

invariant system (Arnoldi, Lanczos [1, 2, 3, 4],Rational

Arnoldi [5],Rational Lanczos [6, 7], AORA [8], AO-

GRA [9], AORL [10], PRIMA [11],...); which perfor-

mance differantly. Among these performances we can

mention:

• A significantly reduced number of variables or

states (required for description of a given model)

compared to the original model,

• The simulation should be quick and does not re-

quire large memory space,

• The computational complexity associated with the

evaluation of the reduced model should be signifi-

cantly lower than the original model,

• Stability of reduced model must be guaranteed,

• Minimization of error between the original model

and reduced one.

To Bring this performances, we depict in this paper the

SVD-AORA method. This paper in organized as fol-
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low: in section 3, basic tools are developed. In sec-

tion 4, a description of SVD-AORA method is given

with application in theoretical models. In section 5, a

comparative study is presented. Section 6 concludes the

work.

1 Preliminary

This section reviews some basic mathematical tools re-

lated to the linear dynamical system.

1.1 Moment matching

Let a state space representation of linear dynamical sys-

tem be as [12, 13]:

∑ =

{ dx(t)
dt = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(1)

The transfer function of linear system described as

equation 1 is given by [14, 15]:

F(s) =C(sE −A)−1B (2)

If F(s) is expanded as a power series around a given

finite point s0 ∈ R, then we obtain [9, 8]:

F(s)= f0+ f1(s−s0)+ f2(s−s0)
2+ ...+ fn−1(s−s0)

n−1

(3)

Where, n is the order of original system and the

fk, f or k = 0 : n− 1 coefficients present the moment

matching of the dynamical linear system around the fre-

quency s0. The fk coefficients are described by [10, 5]:

fk(s0) =C(s0E −A)−(k+1)B (4)

1.2 Krylov Subspace

Let a frequency si be for i = 1 : î, a matrix ψ = (A−
siE)−1E and a vector ξ = (siE − A)−1B. Then the

Krylov subspace is obtained by [1, 2, 16, 17]:

K(ψ,ξ ) = {ξ ,ψξ , ...,ψn−1ξ} (5)

1.3 H∞ error

Take a linear asymptotically stable system as in 1. The

H∞ norm is computed by this relation [18, 1, 19]:

H∞ = supw∈R‖F( jw)‖2 (6)

The reduced transfer function obtained by the use of

model order reduction method is F̂(s) = Ĉ(sÊ − Â)B̂.

Then, the H∞-norm error between the original system

and reduced one is determined by the following rela-

tionship:

‖ F − F̂ ‖H∞= supw∈R ‖ f ( jw)− f̂ ( jw) ‖2 (7)

2 SVD-AORA Model Order
Reduction Method

The accuracy and the computational efficiency of the

AROA and SVD-Krylov methods still insufficient in

term of H∞error minimization and the stability preser-

vation of the reduced system. In this section we give

a main mathematical problem formulation. Also, we

present the main steps of the proposed method SVD-

AORA and the results obtained by the use of two mod-

els.

2.1 Mathematical problem formulation

The mathematical problem consists on determining the

state space parameters (order k << n) of the reduced

model ∑̂ from the state space parameters (order n) of the

original model ∑ [1, 20, 12, 21] by using the proposed

model order reduction method:

∑ =

{ dx(t)
dt = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(8)

in which A ∈ R
n×n, B ∈ R

n×p, C ∈ R
p×n and for sim-

plicity we take D = 0, we obtain.

ˆ∑ =

{
dx̂(t)

dt = Âx̂(t)+ B̂u(t)
ŷ(t) = Ĉx(t)+ D̂u(t)

(9)

such as, Â ∈ R
k×k, B̂ ∈ R

k×p,Ĉ ∈ R
p×k.

2.2 Description of SVD-AORA Model Order
Reduction Method

The SVD-AORA method is a joint method which ben-

efits from both Krylov and Singular value decomposi-

tion technique. This method generates two projection

matrices V and Z. The first projection matrix V is gen-

erated by using of the AORA technique. The second

matrix is computed by the use of the SVD technique
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and the matrix V is given according to this relation

Z = g0V (V T g0V )−1, where go presents the Gramian ob-

servability matrix. The details of the SVD-AORA algo-

rithm can be found in table 1 [21, 20, 6]:

Theorem 1 summarizes the principle of the proposed

method .

Theorem 1: Let a linear system as in 1 of order n and
k expansion frequency (k << n). Use the AORA al-
gorithm to compute a first projection matrix V after a
first k steps and the Lyaponuv technique to generate the
observability Gramian matrix go. Then the second pro-
jection matrix Z is generated by the use of this relation:

Z =WV (V TWV )−1 (10)

where the projection matrix W is a diagonal matrix,
containing in the diagonal the first k singular values de-
termined from the SVD decomposition of Gramian ma-
trix.

2.3 Application

To test the SVD-AORA algorithm, we take two SISO

models of different order (Eady of order 598 [22, 23]

and RLC model of order 150 [24]). We present of each

model the frequency response of the original model and

the reduced one, the absolute error between the original

model and reduced one and the poles distribution of the

reduced model.

2.3.1 Model 1: Eady 598

The Eady model presents a mathematical model of

atmospheric storm track (for example the region in the

mid-latitude Pacific [22]). Its a SISO dynamical linear

system of order 598 [22].

The figure 1 presents the frequency response of

original system (Exact-598) and reduced one (SVD-

AORA-16) of order 16. We notice a good correlation

between the original and reduce one about the fre-

quency range.

The absolute error variation between the original

system and reduced one is shown in figure 2. We notice

also from this result that there exist a good correlation

between the original and reduced one.

The figure 3 depicts the poles distribution of the

reduced system of order 16, we note that all poles are

negative real part, which explain the preservation of

stability.
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Figure 1: Frequency response of original system (Exact-598)
and reduced one (SVD-AORA-16).
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Figure 2: Absolute error between original model (598) and
reduced one (16).

2.3.2 Model 2: N-RLC 150

The RLC model is a dynamical system with single-

input/single-output [25, 26, 27, 11], it is very met in

modeling of the electrical and electronic systems. The

N-RLC model contains N chain of RLC circuit (where

RN = 10kΩ, CN = 680μF and L = 0.1H for N = 1 : 50).

The electronic schematic of our N-RLC network is pre-

sented in figure 4:

The figure 5 depicts the frequency response of origi-

nal system (Exact-150) and reduced one (SVD-AORA-

12). We notice a good correlation between the original

system and reduced one.

The figure 6 presents the absolute error variation be-

tween the original system and reduced one. We also
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Table 1: SVD-AORA Model Order Reduction algorithm.

SVD-AORA Model Order Reduction algorithm:(Inputs:A;B;C;D;S;k; Outputs:V ;Z)
(1): Define a frequency range S

S = [s1,s2, ...,sk] (with k � n)

(2): Define a matrix ψ and a vector ξ for each expansion frequency si:

ψi =−(siE −A)−1E for i=1:k

ξi = (siE −A)−1B for i=1:k

(3): Compute the first projection matrix V using the AORA algorithm

V = span{ξ1,ψ2ξ2, ...,ψk−1
k ξ2}

(4): Compute the gramian observability matrix go by solving the following Lyaponuv equation:

AT go +goA+CTC = 0

(5):Compute the singular value of the go matrix

[U,W,T ] = SV D(go)
(6): Compute the second projection matrix Z through the following relation:

Z =WV (V TWV )−1

(7):The reduced system parameters can be defined by the congruences transformation

Ê = ZT EV , Â = ZT AV , B̂ = ZT B, Ĉ =CTV
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Figure 3: Poles Distribution of Eady reduced model with
SVD-AORA method.

Figure 4: Chain RLC.

notice from the figure a good correlation between the

original system and reduced one.

The poles distribution is depicted in the figure 7. We

see that the all poles are negative real part, which ex-

plain the stability preservation of reduced system.

Figure 5: Frequency response of original system (Exact-150)
and reduced one (SVD-AORA-12).

3 COMPARATIVE STUDY
In this section we present a comparative study be-

tween the SVD-AORA method and the SVD-Krylov

one. Firstly, we present the frequency responses and

the absolute error variations obtained by the tow meth-

ods. We depict also the poles distribution obtained by

the SVD-Krylov method. Secondly, we give a compar-

ative table containing the CPU-Time and the H∞norm

error for each method.

Figure 8 presents the frequency response of original

system (order 598) and reduced one (order 16) obtained
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Figure 6: Absolute error between original system (150) and
reduced one (12).

Figure 7: Poles Distribution of RLC reduced model (12) with
SVD-AORA method.

by the two methods. We notice a good correlation be-

tween the original system and reduced one for the result

obtained by the SVD-AORA method.

We notice also from the figure 9 of the absolute error

variation that the best result is obtained by the SVD-

AORA method.

We note from the figure 10 of poles distribution ob-

tained by the SVD-Krylov method the existence of pos-

itive real part poles, which explain the instability of re-

duced system.

Figure 11 shows the frequency response of original sys-

tem (RLC-150) and reduced one (order 12) obtained by
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Figure 8: Frequency response of original system (Exact-598)
and reduced one (16) with two methods.
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Figure 9: Absolute error between original model (598) and
reduced one (16).

the two methods (SVD-AORA and SVD-Krylov). We

note that the result obtained by the SVD-AORA method

is very close to the original system which is not the case

for the SVD-Krylov method.

Figure 12 shows the variation of absolute error between

the original system and reduced one obtained according

to the previous frequencies responses. The variation er-

ror between the original system and reduced one is very

small near the low frequency and relatively small near

the high frequency by the SVD-AORA method which

is not the case for the SVD-Krylov method.

We note from the figure 13 of poles distribution ob-
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Figure 10: Poles Distribution of Eady reduced model (16)
with SVD-Krylov method.

Figure 11: Frequency response of original system
(Exact-150) and reduced one with two methods
(SVD-AORA-12 and SVD-Krylov-12).

tained by the SVD-Krylov method that all the poles are

negative real part, then the reduced system is stable.

The table 2 contains the different values of H∞ norm er-

ror and CPU-Time of each method. We note from the

figures 8, 9, 11, 12 and from the table 2 that the best

performance is obtained by the proposed method SVD-

AORA.

4 Conclusion
A combined SVD-AORA method for dynamic linear

time invariant model order reduction have been pre-

Figure 12: Absolute error between original model (150) and
reduced one (12) with two methods
(SVD-AORA-12 and SVD-Krylov-12).

Figure 13: Poles Distribution of RLC reduced model (12) with
SVD-Krylov method.

sented. The proposed method combine two techniques,

which are the singular value decomposition and the

Krylov. The Krylov technique is used in generation of

first projection matrix, which is numerically efficiency.

The singular value decomposition is used in computing

the second projection matrix by the using of the Lay-

ponuv technique and the first projection matrix. Two

models of different order were provided to prove why

model order reduction via a combined techniques (SVD

and Krylov) has the potential for significants improve-

ment over existing combined method.
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Table 2: H∞norms and CPU-Time of each method.

Methods SISO LTI Sys-
tem minH∞ maxH∞ CPU-Time

SVD-AORA Eady598 1.51110−7 2.76010−5 111.311s

SVD-Krylov Eady598 0.044 6.693 98.755s

SVD-AORA RLC150 5.88410−15 4.34310−4 13.023s

SVD-Krylov RLC150 1.758910−4 0.6290 11.823s
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